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Abstract: Background: Image analysis applications in digital pathology include various methods for
segmenting regions of interest. Their identification is one of the most complex steps and therefore of
great interest for the study of robust methods that do not necessarily rely on a machine learning (ML)
approach. Method: A fully automatic and optimized segmentation process for different datasets is a
prerequisite for classifying and diagnosing indirect immunofluorescence (IIF) raw data. This study
describes a deterministic computational neuroscience approach for identifying cells and nuclei. It is
very different from the conventional neural network approaches but has an equivalent quantitative
and qualitative performance, and it is also robust against adversative noise. The method is robust,
based on formally correct functions, and does not suffer from having to be tuned on specific data
sets. Results: This work demonstrates the robustness of the method against variability of parameters,
such as image size, mode, and signal-to-noise ratio. We validated the method on three datasets
(Neuroblastoma, NucleusSegData, and ISBI 2009 Dataset) using images annotated by independent
medical doctors. Conclusions: The definition of deterministic and formally correct methods, from a
functional and structural point of view, guarantees the achievement of optimized and functionally
correct results. The excellent performance of our deterministic method (NeuronalAlg) in segmenting
cells and nuclei from fluorescence images was measured with quantitative indicators and compared
with those achieved by three published ML approaches.

Keywords: biomedical imaging; explainable ai; neuron physiology networks; computer-aided analysis;
image segmentation; pattern analysis

1. Introduction

One of the objectives of automatic image analysis is the formalization of methodologies
to identify quantitative indicators that characterize elements on pathological slides. The
analysis of immunofluorescence images is becoming a fundamental tool for identifying
predictive and prognostic elements that can be used to diagnose various pathologies.
Cell studies, particularly cancer cell studies, could allow the identification of predictive
parameters, to improve patient diagnosis and develop prognostic tests. The segmentation
phase for single cells and nuclei is relatively simple if performed by an expert on cytological
images, because, in most cases, cells/nuclei are intrinsically separated from each other.
Automated recognition combined with unsupervised and automatic quantitative analysis
helps doctors in decision-making and provides cognitive support during the diagnosis of
pathologies carried out on slides [1]. This reduces the level of subjectivity, which may affect
the decision-making process. The segmentation process is a necessary first step in obtaining
quantitative results from cellular or nuclear images. An accurate and detailed segmentation,
in which single instances of cells/nuclei are highlighted, would provide a valuable starting
point for identifying their quantitative characteristics. Incorrect biomedical conclusions may
result from the inability of algorithms to separate different and more complex aggregations
of cells/nuclei [2]. For example, complex images, such as those shown in Figure 1, can
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result in incorrect conclusions about specific instances or, in some cases, in disregarding
fundamental aggregates that would allow obtaining a more accurate diagnosis. Precise
segmentation allows highlighting the instances on which to focus attention, thus improving
the diagnostic process. This process is not the only motivation for the development of new
methodologies for extracting characteristics from digital pathological images, and a better
understanding of the pathological processes caused by cellular anomalies would be helpful
in clinical and research settings.

Figure 1. Example of a complex image in which some nuclei cannot be clearly distinguished from
the cytoplasm.

In biomedical data analysis, technologies based on big data and machine learning
contribute to the identification or prediction of a disease and can improve diagnostic
processes and guide doctors towards personalized decision-making [3]. The use of machine
learning technologies on biomedical images can hopefully improve clinical processes
(diagnostic and prognostic) by reducing human errors. However, in recent years, the
use of these methods has highlighted the presence of biases, attributable to distortions
in the learning dataset or related algorithms, that lead to an inaccurate decision-making
process. For example, a ML algorithm will only be valid for the dataset on which it
has been trained; therefore, if there are distortions, these will be reiterated and probably
exacerbated by an ML application [4]. Different studies have offered various solutions
from different perspectives. Some studies focused on an automated approach to analysis
of medical images with consolidated tools [5–11]. This has proven to be quite useful in
clinical cases, such as those based on wavelet transforms, which can extract a set of features
and discriminate objects [12,13]. Others have developed innovative methodologies that
aim to understand the functional and deterministic correctness of the adopted functions. In
De Santis et al. [14] adopted a segmentation strategy based on a grey-level top-hat filter
with disk-shaped structuring elements, and a threshold at the 95th percentile. Then, cells
are segmented using the ISODATA threshold. This is important because the availability of
formally correct methods, from both a functional and structural point of view, guarantees
that a method can achieve optimized and functionally correct results.

This study introduces a deterministic method for cell or nuclei segmentation that does
not use ML techniques or artificial neural network models and is immune to adversative
noise. Our results demonstrate a high degree of robustness, reliability, and computational
performance, particularly for noisy images. We believe that this method will significantly
improve the ability to understand all phases of the process of identifying regions of interest
in immunofluorescence images.

2. Related Works

The design and development of intuitive and efficient methodologies for highlighting
biological patterns is the mission of a subset of the scientific community. A collaborative
framework for managing intelligence modules and complete datasets has grown in the last
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decade. Wählby et al. [15] presented a contribution on image analysis algorithms for the
segmentation of cells imaged using fluorescence microscopy. The method includes an image
preprocessing step, a module to detect objects and their merging, and a threshold for the
statistical analysis of certain shapes describing the features of the previous results, which
allows the splitting of the objects. The authors declared that the method is fully automatic
after the training phase on a representative set of training images. It demonstrated a
correct segmentation of between 89% and 97%. An interesting study by Rizk et al. [16]
presented a versatile protocol for the segmentation and quantification of subcellular shapes.
This protocol detects, delineates, and quantifies subcellular structures in fluorescence
microscopy images. Moreover, the same protocol allows application to a wide range of
biomedical images by changing certain parameter values.

Di Palermo et al. highlighted the use of wavelet transforms applied to the main phases
of immunofluorescence image analysis. They tried to utilize the versatility of wavelet
transform (WT) for various levels of analysis to classify indirect immunofluorescence
images (IIF) and to develop a framework capable of performing image enhancement, ROI
segmentation, and object classification [12]. They reported the following success rates (in
terms of specificity, sensitivity, and accuracy) of the method for different types of cells,
classifying them as mitotic and non-mitotic: CE (98.15, 92.6, 97.9); CS (93.83, 71.1, 91.6); and
NU (91.53, 88.1, 91.3).

In order to explicitly deal with the intraclass variations and similarities present in
most of HEp-2 cell images datasets, Vununu et al. in [17] proposed a dynamic learning
method that uses two deep residual networks with the same structure. First, the results of
discrete wavelet transform are archived from the input images. Then, the approximation
coefficients are used as inputs for the first network, and a second network has the sum of
all coefficients as input. Finally, the results are fused at the end of the process, to combine
the information extracted from the two networks.

Such methods are only a few examples of the multitude of image segmentation
algorithms introduced in the literature: k-means clustering [18,19], graph cuts [20–22],
active contours [23,24], and watershed methods [25,26].

An exhaustive dissertation on emerging image segmentation techniques was presented
in [27] by Minaee et al., in which approaches based on deep convolutional neural networks
and supervised machine learning methods were introduced to solve the segmentation task
as a subfield of the more general classification strategies.

Pan et al. presented an efficient framework in which a simplification of U-Net and W-
Net formed an original method for nuclei segmentation; they named it attention-enhanced
simplified W-net (ASW-Net). This method is based on a light network and a cascade
structure of network connections. This infrastructure enables the efficient extraction of
features. Furthermore, the adopted post-processing refined the accuracy of the segmen-
tation results [28]. On low-resolution images (909 images), the assessment reported that
89% of the cells were correctly segmented, whereas on high-resolution images (251 im-
ages), 93% of cells were correctly segmented; therefore, the method achieved a 89–97%
segmentation accuracy.

Van Valen et al. investigated multiple cell types; they used a deep convolutional neural
network as a supervised machine learning method, to achieve robust segmentation of the
cytoplasm of mammalian cells, as well as of the cytoplasm of individual bacteria. They
demonstrated through a standard index (Jaccard index) that their methodology improved
on the accuracy of other methods [29]. Therefore, they asserted that deep convolutional
neural networks are an accurate method and are generalizable to a variety of cell types, from
bacteria to mammalian cells; they also reported a remarkable degree of success in different
areas: bacteria 0.95(J.I.); mammalian nuclei 0.89(J.I.); various mammalian cytoplasm from
0.77 to 0.84(J.I.).

Another remarkable approach is using a deep learning method to perform simul-
taneous segmentation and classification of the nuclei in histology images. The network
HoVer-Net [30] is based on the prediction of horizontal and vertical maps of nuclear dis-
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tances from their centers of mass, to detach the clustered nuclei. Graham et al. stated that
the HoVer-Net network achieved at least the same performance as that reported by several
recently published methods on multiple H&E histology datasets [30]. Moreover, they
experimented with their methodology on different exhaustively annotated datasets and
performed instance segmentation without classification, with a Dice percentage ranging
from 0.826 to 0.869.

The Residual Inception Channel Attention-Unet, an Unet-based neural network for
nuclei segmentation, was proposed in [31] (RIC-Unet). The authors included the techniques
of residual blocks, multi-scale, and channel attention mechanisms in RIC-Unet, to achieve
a more precise segmentation of nuclei. The effectiveness of this approach was compared
to traditional segmentation methods and neural network techniques, as well as tested on
different datasets. They reported three quantitative indices (Dice, F1-score, and Jaccard)
ranging from 0.8008 to 0.7844, 0.8278 to 0.8155, and 0.5635 to 0.5462, respectively.

Machine learning has had a transformative impact on image segmentation; thus,
the scientific community considers it a powerful tool for analyzing biomedical images.
However, the training phase, tuning parameters, and statistical learning conditions are ML,
AI, and DL processes. In contrast, our method does not require any fine-tuned parameters
nor has a training phase, and it is robust in terms of adversative noise.

The evolution of information technologies and high-performance computing power
(HPC) combined with new developments in computational neuroscience have highlighted
potential applications in many fields: pattern recognition, hardware design for neurons,
data mining, and modeling. The modeling of the interconnection between neurons has
allowed defining non-canonical computational models able to satisfy processes in applied
sciences. Abhilash et al., in [32], presented a review of the recent developments in the field
of computational neuroscience. Their contribution supports researchers from other fields of
science and engineering who intend to move into the field of computational neuroscience
and neuronal communications. Moreover, this field is less disconnected to standard artificial
intelligence approaches and more linked to actual neuronal intelligence [33–37].

3. Methods and Data

This section describes some machine learning techniques, as well as the set of datasets
used to validate the effectiveness and compare our method. Datasets with cells and nuclei
are also described. In addition, a brief description of the Otsu algorithm, wavelet transform,
and active contour models used in the preprocessing phase of our methodology is provided
in Section 3.2.

3.1. Machine Learning Approaches

In recent decades, neuronal networks have proven to be a solution to various compu-
tational problems [38–40] and have achieved considerable success in the segmentation and
classification of the objects present in digital images [41,42]. The basic technique consists
of automatic learning from a training set, with a multilevel hierarchical strategy; in some
cases, this functionality is invariant with respect to small or large variations in the learning
samples, producing relevant results [39,43]. Convolutional neural networks (CNN) are
among the best performing neuronal networks, consisting of pairs of convolutional levels
coupled to connected levels. The fundamental components of a CNN can be summarized
as follows: convolutive filters operating within convolutional levels, in which the goal is to
produce a map of features from input images; grouping functions, in which the outputs of
the convolutional levels converge and in which maximum values are selected; functions for
the assignment of the probabilities, in which the data coming from the grouping functions
are permitted, and in which the probabilities of the input data belonging to a specific class
are assigned [44]. Moreover, Krotov et al. in [45] introduced a learning rule based on
biological activities related to the change of synaptic forces. They suggested local changes
dependent only on the activities of pre- and postsynaptic neurons. Synaptic weights are
learned using only bottom-up signals, and the algorithm operates without knowing the
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task present at higher levels of the network. Despite this lack of knowledge of the task,
the method finds a set of weights that performs well compared to standard feed-forward
networks trained end-to-end with a backpropagation algorithm. However, alternative
approaches exist for selecting the maximum probability, such as the convolution with
strides approach [46] and capsule neural networks [47].

The following section provides a brief description of some of the best and most
popular neural networks (NN) for image segmentation. In addition, this section provides
comparisons with our method.

3.1.1. U-Net

U-Net is a deep learning network [48] for image processing. The idea is to scale
down the information of the input image using convolution layers and then scale up the
information through transposed convolutional layers, to obtain an image with the exact
resolution of the original image using the information of the semantic segmentation in each
pixel. U-Net is the most popular segmentation algorithm for several reasons:

• The architecture is so simple that it can be applied to many medical imaging segmen-
tation tasks [49].

• Even if the network is deep, it can be trained in a short time, requiring low computa-
tional resources (the U-Net used in this study [48] was trained on a GPU RTX 2070
with 8 GB of VRAM in approximately 1 h).

• This network requires few computational resources for prediction, and it has a very
fast forwarding time [50].

The main disadvantage of this architecture is that the cell/nuclei segmentation task
returns a binary label and cannot separate single cells/nuclei by default. In this work, we
used the Keras/Tensorflow implementation available at https://github.com/zhixuhao/
unet (accessed on 10 January 2022) inspired by [48] with grayscale images at a resolution of
512× 512.

3.1.2. KG Network

A keypoint graph network (from now on KG Network) is a neural network based on
the concept of the keypoint graph [51]. The network first applies ResNet34-based feature
extraction. Then, the network layers identify some points (called keypoints) that discretize
the input image, and the collected keypoints are processed to extract the bounding boxes of
the cells/nuclei. Finally, the bounding boxes of the cells/nuclei are taken as the input for the
final layers, which extract the cell/nuclei masks. This network (in contrast with the previous
U-Net) provides object-by-object segmentation. However, it has a more considerable
forward time than U-Net and had a training time of approximately 4 h on the same machine
with a GPU RTX 2070 with 8 GB of VRAM. In this study, we used a PyTorch implementation
publicly available at the website https://github.com/yijingru/KG_Instance_Segmentation
(accessed on 10 January 2022) based on Ref. [51], with grayscale images at a resolution of
256× 256.

3.1.3. R-CNN

A mask R-CNN uses a region-based convolutional neural network (R-CNN) [52] to
extract the masks of single cells and nuclei. This network has a more significant forward
time than the previous networks, and it requires a massive amount of VRAM to be trained.
In fact, we trained it on a cloud node with a GPU NVIDIA K80 with 24 GB of VRAM
for 2 h and 30 min. For this study, we used a Tensorflow/Keras implementation publicly
available at https://github.com/matterport/Mask_RCNN (accessed on 10 January 2022)
with grayscale images at a resolution of 256× 256.

3.2. Deterministic Approaches

Several approaches do not use machine learning for object segmentation. However,
most of these are characterized by a single feature: they work for a combination of pa-

https://github.com/zhixuhao/unet
https://github.com/zhixuhao/unet
https://github.com/yijingru/KG_Instance_Segmentation
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rameters depending on the dataset (in the worst cases, only on a single image), but this
combination must be manually found by trial and error. For this reason, these approaches
are described below as having a wide prospects in the current state of the art. Although
they were not fully tested in this study, a few of these approaches will be used in our
pipeline.

Otsu’s Method

The first segmentation approach was Otsu’s method [53]. It is based on the simple
idea that if a white object is placed on a dark background, then there must be two peaks in
the grayscale pixel value histogram [54]: the first is the most common background color,
and the second is the most common object color. Thus, the idea behind Otsu’s method is to
find a grayscale value TOtsu defining two classes of pixels as

• The class (class 0) of pixels with a grayscale value smaller than TOtsu;
• The class (class 1) of pixels with a grayscale value greater than TOtsu.

Otsu’s method iterates the threshold TOtsu from 0 to 255, to determine the value that
maximizes the variance. It is a powerful tool because it does not require any tuning by the
user. However, it has many disadvantages that render it impractical for real-world images.
The most common underlying assumption is that a perfectly bright object is placed on a
completely dark background. This rarely occurs in real-world images [55]. If the previous
hypothesis holds, the color histogram is a perfect bimodal distribution; however, real-world
images are noisy, making Otsu’s segmentation difficult. Another common problem is that
when the colors of the object and background are easily distinguishable, the object is very
small in comparison to the background [56]. In this case, the peak of the object pixels in the
histogram exists but is too small to be relevant in terms of variance. This case recurs in the
proposed model and is solved using our neuronal agents. In conclusion, Otsu’s method is
very powerful, but when used alone, it can lead to poor performance.

3.3. Watershed

One of the limitations of Otsu’s method is that it returns a binary result, where every
pixel indicates class 1 or class 0. However, in many applications, it is not sufficient to
identify the pixel class, and it is also necessary to discriminate between different objects
of the same class inside the image. A classic example of this is the analysis of cellular
microscopy images. In this case, the user is not only interested in where cells/nuclei are
placed, but they are also interested in distinguishing different cells/nuclei, to count or
classify them. Therefore, a watershed [57] was introduced. This transform can be used to
distinguish homogeneous objects based on the gradient of the image. Several versions of
this algorithm have been proposed [58]. We considered the most common; that is, Meyer’s
watershed [59], implemented in the open-source framework OpenCV [60]. This transform
starts with a set of markers established by the user (most of the time, this is extracted in an
automated manner using mathematical morphology). The algorithm performs a “flooding”
of the image, in order to find the optimal “basins” using the following procedure:

• The markers are initialized with the user’s input;
• The neighboring pixels of a marked pixel are inserted into the queue with a priority

proportional to the gradient modulus of the image of the inserted pixel;
• The pixel with the highest priority is extracted. If the surrounding marked pixels have

the same label, the pixel is marked with this label. All the surrounding pixels that are
not yet marked are inserted into the queue;

• Return to step 2, until the queue is empty.

Watersheds are one of the simplest algorithms for splitting purposes, and with good
quality images, they perform very well. However, this method has several disadvantages.
Often, the initial markers are selected starting from Otsu’s thresholding, which means that
these implementations can be affected by the same problems as described in the previous
section. Another disadvantage is that in noisy images, a watershed can be affected by
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oversplitting [58], meaning that there are more clusters than expected. In addition, for
very close and merged objects (such as cell/nucleus clusters), mathematical morphology
methods can fail to separate single objects. For these reasons, the proposed model has
some preprocessing steps in the marker individuation and postprocessing steps for the
watershed masks, to obtain optimal results.

Active Contour Model

The snake or active counter model was widely used in this study. However, our
neuronal agents lead to a better generalization without parameter tuning; thus, they replace
the snake classic function. The following section describes some aspects of the general
snake, to better understand the entire process. The idea of an active contour module is to
build a discrete contour made of keypoints (often called a snake) and aimed at minimizing
a line functional. To define this line functional, three energies associated with ACM must
be defined [61]. The first is Eint, which is the internal energy functional defined to keep the
ACM as rigid as possible and to avoid excessive ACM shrinking. The second energy is the
image energy functional, defined as

Eimg = wlineEline + wedgeEedge + wtermEterm

where Eline from the grayscale values of the image , Eedge from its gradient, the energy
Eterm taking into account the normal derivative of the image gradient, and the constants
wline, wedge, wterm must first be defined. Therefore, ACM minimizes the functional calculated
along the contour. Econ is an additional component used to guide the user through the
process by adding constraints to the run [61]. The main criticisms of this kind of algorithm
include the following: Problems involving the internal functional for complex shapes [62];
Convergence of the algorithm to local minima [63]. The first class of problems is caused
by the fact that ACM uses Eimg to attract the snake towards the edge and Eint to avoid the
collapse of the snake at a single point, keeping it as smooth as possible. The second type of
problem is caused by the process of minimization, which can converge to a local minimum
(caused, for example, by a source of noise), leading to poor convergence to the actual
contour. These problems imposed the definition of a new contour model implemented by
our neuronal agents, which is immune to parameter tuning.

3.4. Datasets

Fluorescence (F.) is a technique used to detect specific biomolecules within a tissue or
cells/nuclei using specific antibodies that contain fluorescent dyes [64]. There are different
F. techniques. A distinction can be made between direct and indirect F. [64]: in direct
F., the antibody carrying the fluorophore (the fluorescent substance) binds directly to
the biomolecule, whereas in indirect F., the antibody carrying the fluorophore binds to
other antibodies or molecules that are directed against the biomolecule of choice, thus
binding indirectly to it. Our discussion focuses more on the results of F. than on the
methods involved in this procedure. The result of F. is a microscopy image that shows the
fluorescence of the area bound by the antibody, in contrast to the darker regions not bound
by the antibody. The proposed algorithms work with grayscale images; subsequently, we
will assume a preprocessing step that extracts such information from each dataset. This
assumption generally holds [65], but it is not true for all datasets. For example, some
datasets are RGB, and they contain most of their information in the green channel [66] or
even in the blue channel [67]. Therefore, in the proposed analysis, it is implied that the
starting point is a grayscale version of every dataset with as much information as possible.
Here is a brief description of the datasets involved in the experiments.

3.4.1. Neuroblastoma Dataset

The first dataset was the dataset introduced in [65]. It is composed of four samples
of tumor tissue and four samples of the bone marrow of Neuroblastoma patients. The
dataset was created with the aid of the Children’s Cancer Research Institute (CCRI) biobank
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(EK.1853/2016), to establish a benchmark for experiments on automatic cell nuclei segmen-
tation. The dataset consists of 41 training images and 38 test images in jpg format. with a
resolution variable of approximately 1200× 1000 F. cells/nuclei. The images are already in
grayscale, which means that brighter zones are white and darker zones are black, so they do
not require preprocessing. Segmentation was performed manually by the authors [65], and
this distinguished different cells/nuclei. The segmentation was stored in text-based files.
This dataset has proven to be a sufficiently hard benchmark to test models on real-world
images [68]. For these reasons, it was considered the main benchmark of this study.

3.4.2. NucleusSeg Dataset

The second dataset was introduced in [69] and then used in [67]. It is composed of
61 RGB images with a resolution variable of approximately 1000× 700 cancer cells/nuclei
taken from the Huh7 and HepG2 regions. Koyuncu et al. acquired images under a Zeiss
Axioscope fluorescent microscope with a Carl Zeiss AxioCam MRm monochrome camera
with a 20× Carl Zeiss objective lens. For the Hoechst 33258 fluorescent dye, a bisbenzimide
DNA intercalator can be observed in the blue region upon UV region excitation. Hoechst
33258 dye was excited at 365 nm and the blue light (420 nm) emitted was acquired [69].
Therefore, the bright color in this dataset was not white but blue. Therefore, this dataset
was preprocessed to extract the blue channel of the image, to obtain a grayscale image
representative of fluorescence. This dataset was not used to train the model, because it
did not include a variety of neuroblastoma datasets. However, it was used as a test set to
examine the generalization capacity of the algorithms.

3.4.3. ISBI 2009 Dataset

The third dataset was introduced in [70] and is composed of 46 grayscale images with
a resolution variable of about 1350× 1000 U2OS cells, created explicitly as computer vision
benchmarks. To the best of our knowledge, the authors did not declare the microscope
used and the IF methods involved. Moreover, the dataset was segmented by hand by the
authors, making the handmade segmentation in GIMP files publicly available. Then, the
dataset was preprocessed to transform the data images and the author’s segmentation into
explicit images.

4. Proposed Method
4.1. Why a New Approach Is Needed

The previous algorithms were all based on artificial neural networks, and they per-
formed well under optimal conditions. However, the literature shows that deep neural
networks (DNN) can be affected by adversarial attacks [71]. An adversarial attack is a small
perturbation (often called adversarial noise) introduced and tuned by a machine-learning
algorithm to induce misclassification in the network. Segmentation neural networks are
not immune to these types of attack. For example, in [72], it was proven that an adversa-
tive attack can fool ICNet [73], which provides semantic segmentation by controlling an
autonomously driving car. The changes in the adversative algorithm applied to the input
image are so subtle that a real-world light imperfection or a camera sensor not working
properly can recreate the adversative pattern, leading to an accident. This unlucky (but
possible) scenario reveals the second major problem of these algorithms: they are black
boxes, and in many cases, after an accident, the best solution is to train the network again,
hoping that no similar issues will affect the network in the future. Therefore, the concept
of explainable artificial intelligence (XAI) is becoming increasingly popular. In brief, XAI
is an algorithm designed to determine its actions and eventually correct them. This is of
crucial importance for the real-world application of deep learning in fields such as robotics,
automation, and medicine, because an XAI can be fixed after an error, and a human can
eventually be held accountable for its errors. Interpreting results in medical imaging top-
ics is a crucial task for an accurate medical report. An exhaustive survey of recent XAI
techniques in medical imaging applications was presented by Chaddad et al. in [74]. They
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presented several popular medical image XAI methods, regarding their performance and
principles. Therefore, they emphasized the contribution of XAI to problems in the medical
field and elaborated on approaches based on XAI models for better interpreting such data.
Furthermore, this survey provides future perspectives to motivate researchers to adopt
new XAI investigation strategies for medical imaging.

These assertions include the formulation of new methods, in which the DNN per-
formance is guaranteed, and the correct approach of XAI must be considered. There-
fore, our strategy defines a new method based on neuronal electric activity in brain, and
which has formal correctness and good DNN performance, as well as in the presence of
adversative noise.

4.2. Wired Behaviors in Neuronal Electric Activity

The crucial role of neuronal electric activity in brain cognitive processes is well known,
for this reason it is important to describe neuronal networks in terms of wired behavior.
Then, the first step is to determine a neuron model able to simulate neuronal electric
activity. Use of spiking neuronal networks in signal processing is a new frontier in pattern
classification, where efficient biologically inspired algorithms are used. In particular,
Lobov et al. in [75] showed that, in generating spikes, the input layer of sensory neurons
can encode the input signal based both on the spiking frequency and on the latency. In
this case, it implements learning working correctly for both types of coding. Based on
this assumption, they investigated how a single neuron [76] can be trained on patterns
and then build a universal support that can be trained using mixed coding. Furthermore,
they implemented a supervised learning method based on synchronized stimulation of a
classifier neuron, with the discrimination task among three electromyographical patterns.
Thier methodology showed a median accuracy 99.5%, close to the result of a multi-layer
perceptron trained with a backpropagation strategy.

There are many neuronal models, but the most accurate is the Hodgkin–Huxley
model [77]. However this model is made up of several ODEs (ordinary differential equa-
tions) and some PDEs (partial differential equations). Owing to its complexity, less accurate
but simpler models are preferred to the Hodgkin–Huxley model for many applications.
A popular model in the application is the Leaky, Integrate and Fire model [78] (hereafter
LIF). Moreover, an interesting methodology was proposed by Squadrani et al. in [79],
the authors planned a hybrid model, in which current deep learning methodologies are
merged with classical approaches. The Bienenstock–Cooper–Munro (BCM) model created
for neuroscientific simulations is finding applications in the field of data analysis, recording
good performances.

The main equation of the LIF model is

I(t) = IR + IC

where I(t) is the external current, IR is the resistor current, and IC is the capacitor current.
Then, it can be observed that defining V as the membrane potential, then IC = C dV

dt and
IR = ∆V

R = V−Vrest
R . Then, it holds

I(t) =
V −Vrest

R
+ C

dV
dt

and then
C

dV
dt

= −V −Vrest

R
+ I(t)

multiplying by R

RC
dV
dt

= τ
dV
dt

= −(V −Vrest) + RI(t)
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where τ = RC is the membrane time constant. Observing that dV
dt = d(V−Vrest)

dt = d ∆V
dt ,

often the previous equation takes the form

τ
d ∆V

dt
= −∆V + RI(t)

for this reason it can be assumed Vrest = 0 (even if experimental findings suggest that is not
the case).

However, this differential equation alone cannot model neuronal activity, because it is
observed that if the neurons reach a threshold potential, they “fire”, which means that they
come back to the resting potential Vrest. Moreover, they keep this value for an interval of
time called the refractory time. For this reason, we add to the ODE model the condition
that if V reaches the value Vthr, then V is reset to Vrest and keeps this value for the refractory
time τr. It may seem that neuron connectivity has no role in the network activity, but this is
not the case, because the term I(t) is still unknown. This term usually includes the synaptic
connections. For example, in [80], given a neuron i, this term takes the form

Ii(t) = τ
N

∑
j=1

Jji ∑
k

δ(t− tk
j + D)

where Jji is not zero if there is a connection starting from the neuron j and arriving at
neuron i, and in particular Jji > 0 if the connection is excitatory and Jji < 0 if the connection
is inhibitory. The term δ(t − tk

j + D) says that if the neuron j fires at the time tk
j , then

it generates a reaction that is a delta distribution. In conclusion, supposing G is the
connectome of the network, Jhj = 0 if and only if (AG)ji = 0. Therefore, the key role of
connectivity in network dynamics is clear.

4.3. Segmentation

Segmentation of an image is the task of dividing the area of an image into subregions.
A classic example of segmentation is when an algorithm is asked to mark an image area
occupied by a given object with color. In this case, the objects are cells/nuclei, two main
approaches can be used for segmentation:

1. The binary approach returns a binary image, in which every pixel is white if it belongs
to an object and black otherwise. This approach considers all cells and nuclei as a
single object.

2. The object-by-object approach assigns a different color to each object. Consequently,
cells/nuclei are distinguishable and, in general, are numbered with natural numbers.

For a long time, this operation has been performed manually, and the datasets contain
this information. We used the publicly available dataset introduced in Ref. [65]. This
dataset contains 79 annotated nuclei from nuclei images of tissues stained with fluorescent
antibodies. In particular, Ref. [65] subdivided the dataset into 41 images for the training set
and 38 images for the test set.

In general, the images in this dataset do not have exactly the same resolution (however,
the resolution of each image is approximately 1200 × 1000). Therefore, we assumed that
each image had been properly rescaled before processing.

4.4. The Proposed Model

We propose an explainable artificial intelligence method based on mask transformation.
Its main core is a module in which a set of neurophysiologic-based agents generate results.
The algorithm comprises six main parts, as shown in Figure 2:

1. Preprocessing phase: prepares the images for the next steps.
2. Watershed analysis: splits cells/nuclei using the well-known watershed

transformation [65].
3. Two steps of splitting and merging phase: improves watershed separation;
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4. Pattern extraction phase: from the cells/nuclei masks, the contour was extracted to run
the neuronal model.

5. Neuronal model phase: manipulate the contour of the mask using neuronal agents;
6. Postprocessing phase: Some thresholding algorithms improve the mask precision.

Figure 2. Sketch of our deterministic method (NeuronalAlg): (a) preprocessing module extracts a
rough segmentation of the input image; (b) split and merge module as a first step for improving the
previous segmentation; (c) last step of the rough segmentation; (d) main core of the task: neuronal
method. This module improves the segmentation with a neuronal agent; (e) postprocessing phase, to
extract the binary mask.

4.5. Model Description

The main goal of the proposed algorithm is to segment bright (colored) cells/nuclei
on a dark background in grayscale images. However, the dataset detailed in the previous
sections consists of blue or green RGB images. The underlying concept is that the dataset is
processed to extract the brightness of cells/nuclei, to obtain a grayscale image suitable for
further processing. For example, Hoechst staining data were extracted from the dataset
NucleusSegData [67], which was obtained using U.V. light, and the color of such images
was blue. Therefore, in this case, the blue channel was extracted from the image to obtain
a grayscale image with the desired properties. Every step is linked to the others using a
constant called the scale factor (since now s f ), which is defined as

s f =
(Height + Width)/2

µds

where height and width are the dimensions of the image in pixels and µds is the average
value of image resolution for the neuroblastoma dataset (ex µds = 1110). This value is
introduced to provide scale-invariant properties for the algorithm. In the subsequent
paragraphs, it will be necessary to estimate a real number to the nearest odd or even
number. Therefore, we introduce the following functions:

odd(x) = 2d(x− 1)/2e+ 1
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and
even(x) = 2dx/2e

where dxe denotes the ceiling approximation. These functions are often used to filter
dimensions.

The first phase is the preprocessing (see Figure 2a), in which a rough contour is
evaluated. Thus, the image is enhanced, and a first rough segmentation is performed.
Specifically, the grayscale image is sharpened through a convolution process [54,81] with
this kernel:  −0.5 −0.5 −0.5

−0.5 4.5 −0.5
−0.5 −0.5 −0.5


Then, a median blur is applied [54] with a 3 × 3 size. Defining as Img the result of

the previous processes, a chain of Gaussian filters [54] is then applied, with a standard
deviation 5× s f

µ = gaussian(Img, 5× s f )

µ2 = gaussian(µ, 5× s f )

Next, a type of low-pass filter is calculated using the formula

σ0 =
√
|µ2 − µ2|

where µ2 is the pixel-wise multiplication of image µ with itself. The σ0 is normalized to be
encoded as an 8-bit depth image using the following formula:

σ = 255× σ0

max(σ0)

Finally, Otsu segmentation [45] is performed on the image σ using OpenCV [60]. Using
the above segmentation, a watershed module performs a transformation [59] with the
OpenCV function [60] to detect single cells and nuclei (see Figure 2a). The results at this
stage are poor, and further steps are required to achieve optimal performance. The main
problems related to this first segmentation concern cells/nuclei that are over segmented
(the mask is bigger than the ground truth) or poorly split (many cells/nuclei that should
be identified as distinct are classified as a single object). Therefore, we introduced a two
steps of splitting and merging task (see Figure 2b). This routine assumes that the size
of cells/nuclei in the image is uniform, and if an object is significantly larger than the
average, it is a cluster. Every time the cell/nuclei splitting routine identifies a cluster, it
starts trying to split it into a number of cells/nuclei coherent with its surface in relation to
the average object size. In detail, the algorithm starts from the grayscale image Img, for
which is calculated σ0, as proposed in Equations (1) and (2). Then, an intermediate image is
calculated as

G = 0.5× Img + 0.5× 255× σ0

max(σ0)

Then, the segmentation calculated in the previous phase (with N cells/nuclei) is
loaded, and (defining Ai as the area of object i), we calculate Aavg as the average area of an
object segmented as

Aavg =
∑N

i=1 Ai

N
Then, for each object i, we calculate the ratio

ri =
Ai

Aavg
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This ratio encapsulates the idea that if an object is two or three times larger than the
average, then it is likely to be composed of two or three different cells/nuclei. If ri > 1.5,
the algorithm attempts to split the object. In this case, the object mask is preprocessed
three times through dilatation with size odd(5× s f ) iterations. Then, an iterative process
attempts to optimize the number of cells/nuclei using the following routine:

1. Given Vup (initialized at 190) and Vdown (initialized at 0) is calculated Vtresh = 0.5×
Vu p + 0.5×Vdown

2. On the image G is performed a threshold at Vtresh, creating a binary mask
3. The threshold binary mask is processed three times with an size odd(5× s f ) and two

times with an size odd(5× s f )
4. ρi is calculated as the number of sufficiently large connected components of thresh-

olding mask
5. The distance is calculated δi = |ri − ρi|
6. If δi is minimal, this configuration is saved
7. In any case, if ri > ρi, then Vup = Vtresh else Vdown = Vtresh
8. Return to Step 1, until the desired number of iterations is reached (in this contribution,

this number is 10).

In conclusion, the optimal segmentation in terms of δi is taken as the result of the
splitting procedure. However, the result of this splitting procedure is undersegmentation
(any regions marked as the ground truth are not present in segmentation). To combine
the positive aspects of the two segmentations, we implement a fusion task between the
segmentation results of the watershed module and the split-and-merge task. This process
is performed by taking the segmentation computed before the splitting procedure as input.
Each marked pixel of the input segmentation is then assigned to the nearest object of the
split segmentation. This approach makes it possible to obtain the number of cells/nuclei for
splitting segmentation using the binary mask of the original segmentation. This splitting–
merge cycle is iterated twice, to improve the segmentation. Next, the contour extraction
phase starts, and the result is a collection of binary masks, one for each object. Each mask
is dilated three times with a kernel of the size even(20× s f ) and then eroded three times
with a kernel of size odd(5× s f ) (Pattern extraction phase in Figure 2c). The mask is then
subdivided into 30 radial bins, and the mean radius is calculated for each bin. A collection
of 30 points following the contour of the mask is obtained from the bin angle and the
average radius. This phase is shown in Figure 2c as a contour–extraction module and then,
the generated contour provides an idea of the displacement of an object, but this is not
sufficiently precise to challenge the state-of-the-art models.

Therefore, each point of the contour is associated with a neuronal agent in the neuronal
model phase (see Figure 2d), which moves along the line starting from the center of the
object and passing through the original contour point. This agent is then a 1D agent that
can move in the direction of the center or away from the center. The motion of the agent
is controlled by the simple idea that the agent is repulsed by high grayscale values in
the input image but is attracted by the segmentation mask previously computed. These
conditions create a system that converges on the position of equilibrium, which is the actual
contour of the object. The agent is the neuronal network introduced in Section 4.2 and
built into NEST [82], with eight neurons distributed in three layers (see Figure 3). The
first layer (L1) is the input layer and is composed of four neurons: the LS, LE, RE, and RS.
To calculate the intensity of the current to which these neurons are subjected, we need to
calculate the images

gray = gaussian(EqHist(Img), 30× s f ) (1)

where EqHist is a function of histogram equalization.
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Figure 3. Sketch of the neuronal agent.

In conclusion, for each pixel p = (px, py), it is possible to calculate

E
(

px, py
)
= 3000×

∑
px+sd
i=px−sd ∑

py+sd
j=py−sd mask f ilt(i, j)

2 sd2



S
(

px, py
)
= 3000× 3

8
×

∑
px+sd
i=px−sd ∑

py+sd
j=py−sd gray(i, j)

sd2 grayavg


where

grayavg is defined as the average grayscale value of gray. The defined mask as the
binary mask obtained by the previous steps is dilated three times with a kernel of size
even(10× s f ).

mask f ilt =
2× gaussian(mask, 15× s f ) + 0.1

1 + 0.1
(2)

sd = even(10× s f ), the 3000 value is the stimulation intensity, and 3/8 is an empirical
value fixed for all experiments.

Now, if p0 is the center of the object and pc is the contour position, for each agent, the
coordinate λ is introduced, such that the position of the agent can be expressed as

pa(λ) = λpc + (1− λ)p0

We defined the stimulation current for the neurons LS (SLS), RS (SRS), LE (ELE), and
RE (ERE) as

SLS(λ) = S(pa(λ− 0.2))

SRS(λ) = S(pa(λ + 0.2))

ELE(λ) = E(pa(λ− 0.2))

ERE(λ) = E(pa(λ + 0.2))

The neuron LS has an excitatory synapse on the neuron LI and the neuron RM; in
contrast, the neuron RS has an excitatory synapse on the neuron RI and the neuron LM. The
LE and RE neurons have excitatory synapses on the LM and RM neurons, respectively. The
role of this first layer is to “perceive” the image configuration and send it to the next layers.
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The second layer (L2) is made up of two inhibitory neurons, LI and RI, which have an
inhibitory synapse on the neurons LM and RM. Their role is to inhibit the motor neurons
LM and RM when the LS and RS neurons are activated. Neurons LM and RM, included in
layer 3, are responsible for the motion of the agent. The speed of the agent is calculated as

speed = 0.06(SpikesRM − SpikesLM)

where SpikesRM and SpikesLM are the number of spikes in the simulation window (5 ms).
Following the previous steps, each agent reaches the convergence point. After this, the
agent mask is postprocessed in the post-processing phase with a standard binary seg-
mentation [62] inside the masks, which has a good performance, because its content is
bimodal (see Figure 2e). However, some cells/nuclei are still clustered, and for this reason,
a final splitting and merge cycle is performed. This final splitting differs from the previous
splitting because it is based on the distance transform L2 [83].

4.6. Evaluation Criterion and Metrics

Hereafter, only the binary segmentations of the methods discussed will be evaluated,
even if some of them return object-by-object segmentation. In general, a bit of binary object
segmentation can be called positive if the segmentation shows that there is an object on it,
or negative if not. To evaluate the accuracy of binary segmentation, there are many metrics
with slightly different interpretations, but every metric proposed is based on four sets: true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN). The TP set
is the set of pixels positive for the ground truth and the prediction. Similarly, the TN set is
the set of pixels negative for the ground truth and the prediction. The FP set is the set of
pixels that are positive for the prediction and negative for the ground truth. Analogously,
the FN set is the set of pixels negative for the prediction and positive for the ground truth.
The metrics used are as follows:

• Intersection over Union (IoU): This is defined as TP
TP + FP + FN and is one of the most

balanced metrics.
• F1-score is defined as 2TP

2TP + FP + FN and can be proven to be almost proportional to
the IoU.

• Accuracy is defined as TP + TN
TP + FP + FN + TN and is one of the most popular metrics for

machine learning. However, in object segmentation tasks, this metric can be biased in
cases of sparse cells/nuclei; in these cases, the number of negative pixels can be much
greater than the number of positive pixels. This means that even if the prediction is
fully negative (every pixel is negative), if the ground truth ratio P/N tends to 0, then
the accuracy tends to 1.

• Sensitivity is defined as TP
TP + FN and can be biased if the ground truth ratio N/P tends

to zero.
• Specificity is defined as TN

TN + FP and can be biased if the ground truth ratio P/N tends
to zero.

5. Results

We tested NeuronalAlg against three datasets, with and without adversative noise
and a ground truth as a baseline, to evaluate the performance our method. Tables A1–A15
show that the method reported equivalent results to NNs and outperformed them in the
presence of adversative noise (fast gradient sign method). Therefore, NeuronalAlg achieved
a notable performance in cell/nuclei segmentation and, contrary to NN, it does not require
a training phase to evaluate other datasets.

5.1. Adversative Noise

Using the fast gradient sign method (FGSM) methodology in [73], we performed an
adversative attack on the network U-Net. The FGSM epsilon value was set to 0, 0.01, 0.025,
0.05, 0.1, and 0.2. Figures 4–6 show three samples of images related to the Neuroblastoma
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dataset with different PSNRs. U-Net, in the absence of noise, performed very well (Figure 4,
second row). However, in the presence of a slight noise (Figure 5, second row), the U-
Net segmentation started to exhibit large holes in the cells/nuclei, and the phenomena
become worse when the noise became consistent (Figure 6, second row). In these cases,
the segmentation almost disappeared and no object was shown. One of the most common
criticisms regarding adversative noise is that the ML model that generates it is trained on
the network and is strongly focused on the analyzed network. Thus, the images obtained
by the FGSM trained on the U-NET were evaluated using the KG network and mask
R-CNN network. The result was that the KG network was very resistant to intermediate
noise (Figure 5, third row), but often returned no segmentation with high noise values
(Figure 6, third row). The mask R-CNN showed a good performance under every noise
condition, even if some cells/nuclei were lost with strong noise (Figure 6, third row). The
best performance was achieved using the proposed model. Indeed, the segmentation was
consistent for low and intermediate noise (Figures 4 and 5, third row), and it only exhibited
a few holes if the noise was strong (Figure 6, third row).

PSNR = 100.0

Input Image Ground Truth

Neuronal Model U-Net ResNet34

KG network Mask R-CNN

Figure 4. Results for an input image without noise.

  = 32.7
Input Image Ground Truth

Neuronal Model U-Net ResNet34

KG network Mask R -CNN

PS RN

Figure 5. Results for an input image with a 32.7 PSNR.
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  = 15.7
Input Image Ground Truth

KG network Mask R -CNN

Neuronal Model U-Net ResNet34

PS RN

Figure 6. Results for an input image with a 15.7 PSNR.

5.2. Results for the Neuroblastoma Dataset

Judging algorithms based on a few images is not a good practice, so we conducted a
quantitative investigation of the results of the algorithms with adversative noise with peak
signal-to-noise ratio (PSNR) values of 100.0, 40.1, 32.7, 26.9, 21.1, and 15.7. The algorithms
were evaluated using a test set of 38 images. Each image was compared with the ground
truth, to compute the metrics of intersection for the union, F1-score, accuracy, sensitivity,
and specificity. The results are plotted in Figure 7 and summarized in Tables A1–A5 (in the
Appendix A.2). It can be observed from Figure 7a and Table A1 that, in terms of IoU for
PSNR 100.0 (no noise), the U-Net had the best performance, with an IoU of 0.718, followed
by the KG network with an IoU of 0.712, the proposed Neuronal algorithm with an IoU of
0.708, and finally the Mask R-CNN with an IoU of 0.682. However, by adding adversative
noise, the situation changed and U-Net showed the steepest descent, but these results can
be explained by the fact that adversative noise was created ad hoc for this network. The
KG network seemed to maintain a good performance with a low amount of adversarial
noise, but with a PSNR less than 25, the IoU dropped to less than 0.32. The other algorithms
outperformed the mask R-CNN for low noise, but when adding a strong noise, the IoU had
a slower decay than the other DNNs, even when the maximum adversarial noise reached
an IoU of 0.21. The proposed model outperformed the DNN in terms of noise resistance,
because with a PNSR = 15.7 (the highest noise evaluated), it achieved the lowest IoU value
of 0.55, which was more than twice that of the other algorithms.

The F1-score (Figure 7b and Table A2) had a behavior equivalent to that of the IoU,
and all the considerations for the IoU remained for the F1-score. Accuracy (Figure 7c and
Table A3) and all other metrics must be carefully analyzed. If U-Net, KG network, and
mask R-CNN produce false classifications, they are more prone to false negatives (FN). In
contrast, the proposed neural algorithm is more prone to producing a false positive (FP) in
the case of false classification.

This translates into the observation that DNNs usually have more background (nega-
tives) than the ground truth, and they are undersegmented because the cells/nuclei parts
are cut by the algorithm, being classified as background. On the other hand, the pro-
posed model showed oversegmentation, because part of the background was classified
as cells/nuclei. This simple observation slightly conditioned the accuracy, because in the
undersegmenting algorithms, the number of TNs is more significant than in an overseg-
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menting algorithm. However, the overall graph confirms that the proposed model was
more resistant to adversarial noise.

Figure 7. Performance in terms of IoU (a), F1-score (b), accuracy (c), sensitivity (d) and specificity (e)
for each algorithm on the Neuroblastoma dataset.

The previous event became clearer in terms of sensitivity (Figure 7d and Table A4) and
specificity (Figure 7e and Table A5). Indeed, the proposed neuronal algorithm outperformed
the DNN algorithms in terms of sensitivity (because in this case, the FN was very small),
whereas the DNN algorithms outperformed the proposed algorithm in terms of specificity
(because in these cases, the FP was very small). However, the specificity case was very
curious, because it seemed that the greater the noise, the better the specificity. The answer
is found in Figures 4–6, in which many DNN predictions with strong noise are almost
positive-free (black segmentation); in this case, TP = 0 or FP = 0, which means that it has a
specificity = 1, regardless of the value of TN. In these cases, with greater noise, positive-free
segmentation is more likely to be achieved with a higher specificity. For these reasons, more
balanced metrics (such as IoU and F1-score) are preferred for the interpretation of results.

Neural networks such as the mask RCNN [52] are endowed with a data augmentation
module [84] that improves the performance for high noise values. A series of tests were
conducted on the networks U-Net [48] and KG Network [51]. The results of these tests can
be seen in Figure 7, plotted with dashed lines. For the U-Net (Figure 7, orange dashed line)
we obtained a significant improvement in terms of performance, reaching the performance
of the KG Network. This can be explained by the fact that such a network was used
to compute the adversarial perturbation. However, significant improvements were not
observed for the KG Network (Figure 7, green dashed line). However, even with data
augmentation, the proposed method still outperformed the reference neural networks in
the case of high noise.

Moreover, for a more appropriate evaluation of the proposed method for the Neurob-
lastoma dataset, a selection of results is reported in Appendix A.1 Figures A1–A3. They
depict the average, best, and worst case for the adopted methods with three PSNRs (100.0,
32.7, and 15.7).

5.3. Results on the Nucleussegdata Dataset

Generally, the principal critique that motivates moving towards non-deep-learning
approaches is that they must be tuned on a single dataset (in the worst cases, on a single
image) to achieve performances comparable to neural networks. Therefore, further tests
were performed. These tests attempted to quantify the generalization capability of the
previously exposed algorithms. For example, the DNNs (U-Net, KG network, and R-CNN)
segmented the images of the dataset NucleusSegData [67] without fine-tuning. Such an
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effect could be a limitation; however, it is a typical process in real-life applications. Indeed,
in some cases, the DNN algorithm is connected to a camera that directly streams the
image to the algorithm [72], and then the algorithm is applied to images that could differ
substantially from the training and test sets used by the authors. In other cases, fine-tuning
has to follow strict rules [85], which would make it impractical. Similarly, the neuronal
model was used on the same dataset (NucleusSegData) without tuning any parameters.
Table A6 presents the performance of the four models with the NucleusSegData dataset.
Adversative noise was added to this dataset, with a PSNR of 100.0, 43.0, 34.5, 28.7, 22.6,
and 16.6. The results are presented in Tables A6–A10 (in the Appendix A.2) and Figure 8.
Figure 8a,b with Tables A6 and A7 show how the proposed model outperformed the NNs
with high noise values. Figure 8c and Table A8 shows that the proposed model had a
high accuracy for PSNR values greater than 16.6. However, for a PSC = PSNR equal to
16.6, the accuracy value decreased suddenly. This phenomenon was caused by the fact
that the proposed model oversegmented with high values of noise; instead, the other
networks were more prone to undersegmentation. The same phenomenon was the cause
of the values of sensitivity and specificity shown in Figure 8d,e and Tables A9 and A10,
respectively. It can be seen (as for the previous dataset) that the proposed model had, in
general, a higher sensitivity and specificity than the neural networks, with the feature that
specificity increased when the noise PSNR increased. In general, these simulations showed
better values than the Neuroblastoma case, which can be attributed to the similarity of
the Neuroblastoma dataset to real-world data [65]. By contrast, NucleusSegData [67] is
a less complex dataset. Finally, the proposed model showed a generalization capability
comparable to that of the current state-of-the-art deep learning algorithms, countering
the assumption that the explainable method implies manual parameter tuning, because
this paper introduced an algorithm that had equivalent performances on all the datasets,
without any parameter changes. This opens the way to explainable methods that would
perform well on data qualitatively close to the datasets used in this paper, without any
parameter changes required from the end user.

Moreover, for a more appropriate evaluation of the proposed method for the Nucle-
ussegdata Dataset, a selection of the results is reported in Appendix A.1 Figures A4–A6.
They depict the average, best, and worst cases of the adopted methods with three PSNRs
(100.0, 34.5, and 16.6).

Figure 8. Performances in terms of IoU (a), F1-score (b), Accuracy (c), Sensitivity (d) and Specificity (e)
for each algorithm on NucleusSegData dataset.

5.4. Results on the ISBI 2009 Dataset

This last evaluation was introduced to avoid the uncertainty regarding the accuracy of
the method. As in the previous evaluation, adversative noise was adopted with the dataset
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with the following PSNR values: 100.0, 43.0, 34.5, 28.7, 22.6, and 16.6. The same trend was
observed in the analysis of the ISBI dataset [70], as depicted in Tables A11–A15 (in the
Appendix A.2) and Figure 9a–e. The results show how the proposed model outperformed
the NNs for high noise values and it had a high accuracy and sensitivity with PSNR
values greater than 16.6. Moreover, it showed a phenomenon were the proposed model
oversegmented for high values of noise; instead, the other networks were more prone to
undersegmentation.

Figure 9. Performances in terms of IoU (a), F1-score (b), accuracy (c), sensitivity (d), and specificity (e)
for each algorithm on the ISBI 2009 dataset [70].

Moreover, for a more appropriate evaluation of the proposed method for the ISBI 2009
Dataset, a selection of results are reported in Appendix A.1 Figures A7–A9. They depict
the average, best, and worst case for the adopted methods with three PSNRs (100.0, 33.3,
and 16.6).

Although our method has formal correctness and a high performance, it requires
computational improvements because it has a computation time approximately 10 times
that of the DNN algorithms. However, in defense of this method, it must be noted that
the neural networks run on hardware optimized for this task (GPUs). It has been shown
that the speed increase of using a CPU instead of a GPU can reach a factor of 100 [86].
However, our neuronal agents are fully parallel and run on a CPU, which opens the way
for GPU implementation. To date, the most promising approach has been neuromorphic
computing [87]. This approach could reduce the number of iterations required to compute
the neuron model using a hardware circuit that reproduces neuron behavior, drastically
reducing the time required. Such hardware has already been successfully tested for a
multitude of tasks [88]. For these reasons, computation times have been inserted to make
the paper as complete as possible, but they are not representative of the performances that
will be achieved on more targeted hardware in the following years.

6. Conclusions

From an investigation of new methods in image analysis, it can be noted that there has
been a explosion of techniques based on machine learning and its high level of flexibility.
However, comprehension of these results is usually obscure. Researchers have taken
significant steps toward the direction of an explainable deep neural network. Frameworks
such as SHAP [89] and LIME [90] can explain the most significant input variables that led a
DNN to a classification. However, they do not solve particular problems linked to certain
specific inputs. For example, if a NN is affected by adversarial noise, methods such as those
previously described would tell us which pixels led the model to this decision. However,
this gives us no insight into how to fix the problem itself. The only thing that can be done
is to train the NN again and hope that the problem will not occur with another problematic
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input. This evidence suggests that methodologies based on machine learning, deep learning,
and general methods oriented toward artificial intelligence are not a panacea for any
problem present in the computational sciences.Nonetheless, many researchers continue to
direct their research towards models that, on the one hand, do not involve the classic models
of machine learning and, on the other hand, meet the performance of ML and have results
that are more comprehensive. Hence, some efforts have been made to formulate formal
methods that are detached from any reference to artificial intelligence and are comparable to
the best performing and current artificial intelligence techniques. The planned contribution
(NeuronalAlg) highlights a computational model based on deterministic foundations and
not on a neuronal network. Our primary purpose was to demonstrate its formal correctness,
easy exploration, and comparable results to the best-performing AI models in the presence
of adversative noise. We demonstrated good qualitative results, and a more accurate
analysis was carried out with a set of quantitative indicators (see IoU, F1-Score, accuracy,
specificity, and sensitivity indexes in Tables A1–A10), which was necessary to compare
them with the most common models of neuronal network. The analysis performed on the
original images and modified with different noise models demonstrated reliable and robust
results. The graphs and tables extracted from the experiments indicate inessential nature
of the use of AI techniques, even when the application context requires formally correct
models with demonstrable results. The indicators in the graphs and the data in the tables
indicate an equivalence between the methods based on AI and methodologies containing
neurophysiological models. Moreover, the explainability of the model comes from the fact
that most parameters are semantically understandable. It is easy for a human to understand
what is happening during the execution of the method. Therefore, we propose a model
that appears to be a valid alternative to NN methods in contexts where reliability and
robustness must be formally verifiable, even for negligible percentages of error, which is
necessary to understand the reasons for their occurrence.
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Figure A1. Average, best, and worst case for the Neuroblastoma Dataset with PSNR = 100.0.
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Figure A2. Average, best and worst case for the Neuroblastoma Dataset with PSNR = 32.7.
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Figure A3. Average, best, and worst case for the Neuroblastoma Dataset with PSNR = 15.7.
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Figure A4. Average, best, and worst case for the dataset NucleusSegData with PSNR = 100.0.
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Figure A5. Average, best, and worst case for the dataset NucleusSegData with PSNR = 34.5.
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Figure A6. Average, best, and worst case for the dataset NucleusSegData with PSNR = 16.6.
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Figure A7. Average, best, and worst case for the dataset ISBI 2009 with PSNR = 100.0.
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Figure A8. Average, best, and worst case for the dataset ISBI 2009 with PSNR = 33.3.
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Figure A9. Average, best, and worst case for the dataset ISBI 2009 with PSNR = 16.6.

Appendix A.2

Table A1. Intersection of Union values of the algorithms for different PSNR values of adversative
noise (Neuroblastoma).

IoU 100.0 40.1 32.7 26.9 21.1 15.7
Neuronal Alg. 0.695 0.700 0.695 0.673 0.614 0.549
UNetRNet34 0.718 0.559 0.503 0.406 0.192 0.060
KG network 0.712 0.704 0.664 0.593 0.319 0.025
Mask R-CNN 0.682 0.645 0.576 0.489 0.348 0.207
UNet DAug. 0.7238 0.6829 0.6492 0.5518 0.1612 0.0784
KG DAug. 0.7281 0.7159 0.6584 0.5622 0.3323 0.1038
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Table A2. F1-score values of the algorithms for different PSNR values of adversative noise (Neuroblastoma).

F1-score 100.0 40.1 32.7 26.9 21.1 15.7
Neuronal Alg. 0.805 0.808 0.802 0.785 0.739 0.683
UNetRNet34 0.815 0.678 0.623 0.523 0.297 0.111
KG network 0.796 0.787 0.754 0.688 0.435 0.047
Mask R-CNN 0.787 0.755 0.695 0.606 0.457 0.287
UNet DAug. 0.8229 0.7918 0.7648 0.6812 0.2662 0.1421
KG DAug. 0.8092 0.7976 0.7497 0.6688 0.4491 0.1751

Table A3. Accuracy values of the algorithms for different PSNR values of adversative noise (Neuroblastoma).

Accuracy 100.0 40.1 32.7 26.9 21.1 15.7
Neuronal Alg. 0.938 0.938 0.936 0.929 0.910 0.879
UNetRNet34 0.955 0.926 0.915 0.895 0.845 0.811
KG network 0.953 0.952 0.945 0.932 0.873 0.804
Mask R-CNN 0.943 0.936 0.923 0.908 0.881 0.849
UNet DAug. 0.9552 0.9473 0.941 0.9221 0.8266 0.8117
KG DAug. 0.9559 0.9546 0.9449 0.9249 0.8729 0.8221

Table A4. Sensitivity values of the algorithms for different PSNR values of adversative noise (Neuroblastoma).

Sensitivity 100.0 40.1 32.7 26.9 21.1 15.7
Neuronal Alg. 0.848 0.855 0.853 0.849 0.816 0.778
UNetRNet34 0.751 0.576 0.518 0.416 0.194 0.061
KG network 0.801 0.779 0.732 0.637 0.331 0.026
Mask R-CNN 0.751 0.699 0.626 0.530 0.377 0.221
UNet DAug. 0.7625 0.7142 0.6769 0.5685 0.1633 0.0805
KG DAug. 0.8161 0.7877 0.7354 0.6223 0.3512 0.1053

Table A5. Specificity values of the algorithms for different PSNR values of adversative noise (Neuroblastoma).

Specificity 100.0 40.1 32.7 26.9 21.1 15.7
Neuronal Alg. 0.953 0.954 0.952 0.942 0.926 0.903
UNetRNet34 0.988 0.993 0.993 0.995 0.998 0.999
KG network 0.973 0.976 0.976 0.981 0.991 0.999
Mask R-CNN 0.975 0.979 0.979 0.980 0.981 0.989
UNet DAug. 0.9868 0.9886 0.9895 0.9925 0.9983 0.9969
KG DAug. 0.9732 0.9762 0.9738 0.9763 0.9897 0.9977

Table A6. Intersection of Union values of the algorithms for different PSNR values of adversative noise
(NucleusSegData).

IoU 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.798 0.799 0.801 0.794 0.740 0.510
UNetRNet34 0.778 0.722 0.680 0.622 0.516 0.337
KG network 0.802 0.790 0.760 0.659 0.400 0.081
Mask R-CNN 0.712 0.672 0.622 0.510 0.235 0.037

Table A7. F1-score values of the algorithms for different PSNR values of adversative noise (NucleusSegData).

F1-score 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.881 0.886 0.888 0.883 0.838 0.608
UNetRNet34 0.873 0.834 0.802 0.758 0.669 0.491
KG network 0.889 0.882 0.863 0.789 0.550 0.142
Mask R-CNN 0.830 0.801 0.761 0.664 0.357 0.070
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Table A8. Accuracy values of the algorithms for different PSNR values of adversative noise (NucleusSegData).

Accuracy 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.982 0.982 0.982 0.982 0.966 0.864
UNetRNet34 0.982 0.978 0.975 0.970 0.962 0.948
KG network 0.983 0.982 0.980 0.973 0.953 0.928
Mask R-CNN 0.977 0.973 0.969 0.959 0.938 0.917

Table A9. Sensitivity values of the algorithms for different PSNR values of adversative noise (NucleusSegData).

Sensitivity 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.853 0.838 0.841 0.836 0.824 0.795
UNetRNet34 0.796 0.735 0.690 0.630 0.521 0.340
KG network 0.842 0.827 0.784 0.637 0.406 0.081
Mask R-CNN 0.755 0.703 0.657 0.545 0.249 0.046

Table A10. Specificity values of the algorithms for different PSNR values of adversative noise
(NucleusSegData).

Specificity 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.995 0.996 0.996 0.996 0.979 0.875
UNetRNet34 0.998 0.999 0.999 0.999 0.999 0.999
KG network 0.996 0.996 0.997 0.998 0.999 1.0
Mask R-CNN 0.996 0.996 0.995 0.995 0.997 0.990

Table A11. Intersection of Union values of the algorithms for different PSNR values of adversative
noise (ISBI 2009).

IoU 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.842 0.845 0.841 0.823 0.744 0.610
UNetRNet34 0.773 0.588 0.431 0.244 0.080 0.039
KG network 0.815 0.825 0.791 0.660 0.238 0.007
Mask R-CNN 0.795 0.780 0.746 0.630 0.308 0.047

Table A12. F1-score values of the algorithms for different PSNR values of adversative noise
(ISBI 2009).

F1-score 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.914 0.916 0.914 0.903 0.851 0.752
UNetRNet34 0.871 0.732 0.583 0.360 0.130 0.070
KG network 0.898 0.904 0.883 0.792 0.356 0.012
Mask R-CNN 0.886 0.876 0.853 0.766 0.439 0.080

Table A13. Accuracy values of the algorithms for different PSNR values of adversative noise
(ISBI 2009).

Accuracy 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.958 0.959 0.958 0.953 0.930 0.885
UNetRNet34 0.940 0.890 0.849 0.800 0.759 0.749
KG network 0.952 0.954 0.945 0.911 0.799 0.741
Mask R-CNN 0.946 0.941 0.930 0.898 0.814 0.750

Table A14. Sensitivity values of the algorithms for different PSNR values of adversative noise
(ISBI 2009).

Sensitivity 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.854 0.857 0.853 0.838 0.770 0.660
UNetRNet34 0.777 0.591 0.433 0.245 0.081 0.040
KG network 0.821 0.833 0.798 0.665 0.239 0.007
Mask R-CNN 0.807 0.797 0.782 0.666 0.320 0.048
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Table A15. Specificity values of the algorithms for different PSNR values of adversative noise
(ISBI 2009).

Specificity 100.0 43.0 34.5 28.7 22.6 16.6
Neuronal Alg. 0.995 0.995 0.995 0.994 0.987 0.965
UNetRNet34 0.998 0.999 0.999 0.999 0.999 0.999
KG network 0.998 0.996 0.997 0.998 0.999 1.0
Mask R-CNN 0.995 0.992 0.984 0.982 0.993 0.997
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