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Abstract: Human pose estimation has a variety of real-life applications, including human action
recognition, AI-powered personal trainers, robotics, motion capture and augmented reality, gaming,
and video surveillance. However, most current human pose estimation systems are based on RGB
images, which do not seriously take into account personal privacy. Although identity-preserved algo-
rithms are very desirable when human pose estimation is applied to scenarios where personal privacy
does matter, developing human pose estimation algorithms based on identity-preserved modalities,
such as thermal images concerned here, is very challenging due to the limited amount of training
data currently available and the fact that infrared thermal images, unlike RGB images, lack rich
texture cues which makes annotating training data itself impractical. In this paper, we formulate a
new task with privacy protection that lies between human detection and human pose estimation by
introducing a benchmark for IPHPDT (i.e., Identity-Preserved Human Posture Detection in Thermal
images). This task has a threefold novel purpose: the first is to establish an identity-preserved task
with thermal images; the second is to achieve more information other than the location of persons
as provided by human detection for more advanced computer vision applications; the third is to
avoid difficulties in collecting well-annotated data for human pose estimation in thermal images.
The presented IPHPDT dataset contains four types of human postures, consisting of 75,000 images
well-annotated with axis-aligned bounding boxes and postures of the persons. Based on this well-
annotated IPHPDT dataset and three state-of-the-art algorithms, i.e., YOLOF (short for You Only
Look One-level Feature), YOLOX (short for Exceeding YOLO Series in 2021) and TOOD (short for
Task-aligned One-stage Object Detection), we establish three baseline detectors, called IPH-YOLOF,
IPH-YOLOX, and IPH-TOOD. In the experiments, three baseline detectors are used to recognize four
infrared human postures, and the mean average precision can reach 70.4%. The results show that the
three baseline detectors can effectively perform accurate posture detection on the IPHPDT dataset.
By releasing IPHPDT, we expect to encourage more future studies into human posture detection in
infrared thermal images and draw more attention to this challenging task.

Keywords: identity-preserved; human detection; infrared thermal images; human posture detection;
benchmark; IPHPDT dataset

1. Introduction

Human pose or posture estimation has a variety of real-life applications, including
human action recognition [1,2], AI-powered personal trainers [3,4], robotics [5,6], motion
capture and augmented reality [7,8], gaming [9], video surveillance [10,11]. Traditionally,
its purpose is to predict the positions of body joints from the input images, particularly in
RGB modality. However, its ill-posedness aside, this task is challenging to generalize to
those modalities short of texture information, such as infrared thermal images and depth
images, since texture as an important visual cue plays a crucial role in identifying and
localizing the joints. Human detection, as an upstream task to human pose or posture
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estimation, aims to locate all instances of human beings present in an image, usually
involving both identifying the human beings and localizing the rectangular boundary
surrounding each person. Nevertheless, despite vast applications such as safety, people
flow, and surveillance [12–14], it provides only very limited information, i.e., no more
than presence and localization, about the detected persons. In this paper, we motivate and
formulate a task that lies between human pose estimation and human detection so that
it generalizes well to broader application scenarios and provides more information as an
upstream task for other applications.

Thanks to the great success of deep learning and available large-scale training data,
human detection and localization technologies have advanced significantly in recent years.
Currently, the majority of human detection is based on RGB images [15]; however, RGB im-
ages may show the private and social environment people are in and reveal their personal
characteristics [16], severely threatening personal privacy and hindering its development
in both scope and depth. Moreover, visible light images are more sensitive to light changes,
weather changes, and other factors, which limits its application to some specific scenar-
ios [17]. Therefore, non-RGB sensors, especially infrared thermal imaging sensors, are thus
receiving increasing attention in human detection [18–21] and many other applications
as well, such as station temperature measurement systems [22], medical diagnosis [23],
and night patrol surveillance cameras [24]. Infrared thermography is a technology that
combines optical and electronic technologies to distinguish from the environment by
capturing infrared radiation from detected objects, and it can work in any environment
and has a broader range of applications than visible light [25]. It is more challenging
to perform human detection on infrared thermal images. Due to the relatively unique
imaging mechanism and characteristics of IR thermal imaging, there are disadvantages
such as blurred edge effect, fewer texture features, poor signal-to-noise ratio, and low
resolution. Nevertheless, the advantages of infrared thermal images, such as being in-
variant to illuminating conditions, and robust to light variations and weather conditions,
make infrared thermography an excellent alternative to RGB modality in many indus-
trial, military, commercial, and medical applications. Importantly, providing fewer details
makes it a good choice for applications where privacy protection matters, such as action
recognition in hospitals [26], elderly healthcare applications [27,28] and privacy-preserving
pedestrian detection [17]. Identity-preserved human detection has been attracting more
and more attention recently [17,29,30]. Unfortunately, human detection can only provide
the fundamental components of information that computer vision applications require,
i.e., the locations of persons in a scene, knowing of which is insufficient for more complex
computer vision tasks, however. For example, recognizing a person’s posture is crucial to
extract high-level semantics for the task of scene understanding [31]. Estimating the pose
of persons underpins various applications of human activity estimation, robotics, motion
tracking, and augmented reality [5,7,8,32].

Human pose estimation is a way of identifying and classifying the human body’s
joints in images. It generally uses the keypoint estimation method to select a set of most
representative points in human pose [33,34], such as head, shoulders, elbows, wrists, hips,
knees, ankles, and portray the human pose by connecting the lines. However, identifying
these joints, especially manually, requires rich texture information. RGB modality meets
this requirement very well, and plenty of algorithms have been proposed for human pose
estimation based on RGB images [1–6]. Nevertheless, it is challenging to manually identify
the joints of human bodies on modalities with less texture information, especially the
thermal images concerned here. Developing and evaluating big deep-learning models
is hardly possible without sufficient well-annotated data. Although RGB modality is
usually combined with the ones with less texture information so that the annotations can be
achieved by aligning the ones annotated on RGB images [17,30,35], the differences between
RGB and some other modalities should not be neglected. For instance, the valid depth
of field of an Intel RealSense D435 device is less than 60 m, much less than generic RGB
cameras. Thermal sensors have a relatively low resolution; e.g., the images captured by the
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FLIR Lepton v3 sensor are of size only 213× 120. These differences make the annotations by
alignment questionable. Moreover, in privacy-sensitive scenarios, RGB images are hardly
accessible. In short, human pose estimation in thermal images faces onerous challenges in
collecting well-annotated data.

Taken together, in order to solve the above three issues, i.e., to generalize the human
detection task well to a broader range of application scenarios, to achieve more information
other than the location of persons as provided by human detection for more advanced
computer vision applications, and to avoid difficulties in collecting well-annotated data for
human pose estimation in thermal images, we formulate a new task which is a compromise
between human pose estimation and human detection. Specifically, in this paper, we focus
on human posture recognition and localization in infrared thermal images, in which the
human posture is divided into four common types, i.e., standing, sitting, lying, and bending.
Our task is Identity-Preserved Human Posture Detection in Thermal images, for which we
present a dataset to facilitate future research called the IPHPDT dataset. An illustration of
the distinction between traditional human detection and our human posture detection in
infrared thermal images is shown in Figure 1, where Figure 1a is from IPHD dataset [17]
and Figure 1b is from IPHPDT dataset. The IPHPDT dataset contains four types of hu-
man posture of bounding-box annotations collected from 75,000 infrared thermal images.
On the basis of this well-annotated dataset, we have established three baselines based on
three state-of-the-art algorithms, i.e., IPH-YOLOF, IPH-YOLOX, and IPH-TOOD. As the
posture of persons being provided, this task has great significance for the extension of
application scenarios, for example, AI-powered personal trainers [3,4], gaming [9], video
surveillance [10,11], robotics [5,6], and so on, particularly for applications with privacy
protection by the thermal modality. we believe this task also has far-reaching implica-
tions in computer vision perception, analysis, and interpretation and may lead to further
exploration of new detection tasks beyond identification and localization.

(a) Sample images of traditional human detection.

(b) Sample images of our proposed human posture detection.

Figure 1. As illustratedin (a,b), respectively, the previous method of human detection concentrated
on the identification and localization of humans; however, we also pay attention to additional
information, i.e., the human posture. Note (b) marks the postures of the human (i.e., ‘standing’,
‘sitting’, ‘lying’, and ‘bending’ from left to right, respectively.) additionally.

In this work, we formulate a new task with privacy protection that lies between
human detection and human pose estimation by introducing the IPHPDT benchmark
for identity-preserved human posture detection in thermal images. The IPHPDT dataset
consists only of human objects, and it contains 75,000 images with axis-aligned bounding
boxes and postures of the persons. Figure 2 shows some sample images in the IPHPDT
dataset. Additionally, we developed three baseline detectors, i.e., IPH-YOLOF, IPH-YOLOX,
and IPH-TOOD, based on three state-of-the-art detectors, i.e., YOLOF, YOLOX, and TOOD,
to make sense of the performance of the task and to offer comparisons for IPHPDT study
in the future.
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Figure 2. Samples images of persons with four human postures (i.e., ‘standing’, ‘sitting’, ‘lying’,
and ‘bending’ from left to right) in the proposed IPHPDT dataset. The objects are identified by blue
bounding boxes.

Our contributions are summarized as follows,

• We formulate a novel task of identity-preserved human posture detection in thermal
images, which underpins various applications where privacy matters and which may
also draw attention to more informative object detection other than identification
and localization.

• We present the IPHPDT dataset, which is the first benchmark dedicated to identity-
preserved human posture detection in thermal images.

• We develop three baseline detectors based on three state-of-the-art detectors, i.e., YOLOF,
YOLOX, and TOOD, to facilitate and encourage further research on IPHPDT.

2. Related Work
2.1. Traditional Methods of Human Detection in Infrared Thermal Images

In traditional human detection methods of infrared thermal images, many researchers
were keen on using human grayscale values for human detection and localization. For instance,
Comaniciu et al. [36] proposed an infrared human target tracking algorithm based on
the Mean Shift algorithm, which identifies the human target by the unique grayscale
value characteristics of the human and simplifies the target tracking problem by using
the solving process of the optimal solution, and the Bhattacharyya Coefficient is also
introduced as a judgment value, which measures the approximation of the current model
to the candidate model. Nanda et al. [37] proposed a human detection model based on
the grayscale value of infrared thermal images by using the values related to the human
target, such as the grayscale mean to calculate the grayscale value threshold of the human,
distinguishing the region of interest by dividing the region, and finally constructing a
grayscale value probability model for human detection. Later, combining thermal features
with other human features for human detection gradually became mainstream. Fernández-
Caballero et al. [38] proposed a thermal-infrared pedestrian ROI extraction algorithm
that fuses human thermal features and motion information. Zheng et al. [39] proposed a
mutual guidance method based on saliency propagation for infrared pedestrian images,
simultaneously using human thermal and appearance features. Zhang et al. [40] proposed
an association saliency segmentation method for infrared targets, and this association
saliency is generated by region saliency and margin contrast. A visual attention model
using the saliency detection method to improve the accuracy of target segmentation and
detection in infrared thermal images. Although these traditional methods once provided
an impetus to the development of human detection on thermal images, their performances
hardly match that of deep learning-based ones that were proposed recently.
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2.2. Deep Learning Methods for Human Detection Based on Infrared Thermal Images

Due to the high efficiency of deep learning in deep mining features of images, many
researchers are keen to use deep learning networks for infrared thermal imaging human
detection. For instance, Biswas et al. [41] proposed to apply linear support vector ma-
chines to human detection in thermal infrared scenes. They established linear support
tensor machines with LSK channels and used Local Steering Kernel (LSK) as low-level
descriptors to detect human bodies in far-infrared thermal images for fast and effective
human detection and localization. Tan et al. [42] proposed to use a Multi-scale Monogenic
Signal representation of feature descriptors and a “deep brief network” for thermal infrared
human recognition, which can improve recognition accuracy and robustness to landscape
changes. Based on deep learning, many researchers are keen to apply improved CNN to
thermal infrared human recognition to improve the accuracy of human posture recognition
in complex scenes. For instance, Akula et al. [43] proposed a deep learning approach to
recognize human actions in infrared human thermal images and designed a two-layer
convolutional neural network architecture with supervision that is capable of recognizing
six human actions. Wu et al. [44] combined temporal and spatial convolution and pro-
posed an algorithm based on a spatio-temporal dual-stream convolutional neural network,
which is able to process longer videos and fully consider video information and perfusion
information to improve the accuracy of human action recognition in infrared video. In the
CNN series, the emergence of a one-stage algorithm represented by YOLO makes object
detection faster, and it can predict the whole image, so its application to infrared images
for human detection is gradually becoming a research hotspot. For instance, Ma et al. [45]
proposed an improved YOLO v3 algorithm and applied it to infrared image pedestrian
detection. They used k-means++ [46] clustering algorithm to re-cluster anchor boxes of
the pedestrian dataset, used GIoU instead of mean squared difference as the border loss
function, and removed the convolution layer in front of the multi-scale detection end of
the network structure. Shi et al. [47] proposed an improved YOLO v4 infrared image
pedestrian detection algorithm. They used deformation convolution to improve the effec-
tiveness of target feature extraction, added coordinates to the attention mechanism module
to enhance the coordinate information, and increased a “Guided Anchoring” mechanism
to the detection layer to improve the accuracy of network localization.

Overall, in the field of object detection using a single neural network with object
detection as a regression task with spatially separated bounding boxes and associated
class probabilities, YOLO dominates and is the most widely used method with numerous
variants as a result of its quickness, accuracy, and learning capabilities. In view of this,
we adopt the two most recent YOLO variants and one TOOD variant in this paper to build
our baselines for identity-preserved human posture detection in thermal images.

2.3. Human Pose Estimation

Generally, Human Pose Estimation can be subdivided into 2D/3D Pose Estimation.
The main task of 2D human pose estimation is to locate and detect the human body
keypoint, thus obtaining the human body skeleton; however, the main task of 3D human
pose estimation is to predict the 3D coordinates and angles of the human body joints.
Indeed, these two tasks are closely related. Every 3D pose can be projected to a 2D
pose, and a 3D pose can also be inferred using 2D pose estimation [48]. Most current
Human Pose Estimation algorithms are focused on predicting the coordinates of human
keypoint, i.e., keypoint localization, which portrays the human pose by determining the
spatial location relationship between keypoints through a priori knowledge. For example,
Zhang et al. [49] designed a new network architecture to achieve high performance in
Human Keypoint Detection. They integrated contextual information to infer the human
body and hard keypoints by cascading contextual mixers (CCM) and developed two
strategies to maximize the representation capability of CCM, besides proposing some sub-
pixel refinement techniques to improve localization accuracy. However, identifying human
body keypoints, especially manually identifying them, requires rich texture information.
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Therefore most researchers are currently performing Human Pose Estimation based on
RGB images [1–6] since RGB images are more favorable in this regard. Unfortunately,
RGB images are prone to infringe upon personal privacy, hindering their application in
fields where privacy does matter. So, there is a pressing need to develop pose estimation
algorithms based on modalities that can preserve personal identity other than RGB, which
motivates us to consider human pose estimation based on thermal images that have proven
to be well identity-preserved [17]. Nevertheless, manually identifying human body joints
on thermal images is very difficult. Developing and evaluating big deep-learning models is
hardly possible without sufficient well-annotated data. Although RGB modality is usually
combined with thermal images so that the annotations can be achieved by aligning the
ones annotated on RGB images [17,35], the differences between them can not be neglected.
In view of these, in this paper, we propose a novel and privacy-preserving oriented task
that lies between human pose estimation and human detection, namely identity-preserved
human posture detection in thermal images. The comparison of our method with previous
approaches in terms of the used dataset, learning method, supervision method, use of
YOLO, attention mechanism, FPN, and posture prediction head (or not) is summarized
in Table 1.

Table 1. Comparison of advantages and disadvantages of our methods (i.e., IPH-YOLOF, IPH-
YOLOX, and IPH-TOOD) with previous methods.

Method Year Dataset Learning Method Supervisio Method YOLO Attention FPN Posture Prediction Head

[40] 2013 OSU-T
Traditional

learning
Supervised

×
√

× ×
[50] 2016 Non-public × × × ×
[39] 2019 OSU IMS DIP × × × ×

[51] 2018 Non-public Traditional
learning Semi-

supervised

×
√

× ×

[52] 2021 IRPSRL MS COCO Deep
learning × × × ×

[53] 2018 Non-public Deep
learning Unsupervised × × × ×

[45] 2020 Non-public
√

×
√

×

[41] 2017 OSU-T OSU-CT LSI KAIST

Deep
learning

Supervised

× × × ×
[47] 2021 OSU-T

√ √ √
×

[54] 2021 MPII-HPD AI-CD ×
√

× ×
IPH-YOLOF 2022 IPHPTD

√ √
×

√

IPH-YOLOX 2022 IPHPTD
√ √ √ √

IPH-TOOD 2022 IPHPTD ×
√ √ √

3. Benchmark for Detecting Posture of Human

Our goal is to develop a dataset for Identity-preserved Human Posture Detection
in Thermal images (IPHPDT). Since there exist datasets for human detection in thermal
images, we do not intend to construct our dataset from scratch, which is time-consuming,
expensive, and effort-taking. Instead, we build our dataset based on the identity-preserving
human detection (IPHD) dataset [17], which is the most extensive thermal human body
dataset to date.

3.1. IPHPDT Collection

The proposed IPHPDT dataset is obtained by selecting and then re-annotating thermal
images of the multimodal image dataset IPHD [17]. The thermal images in the dataset were
captured by a FLIR Lepton v3 sensor, with each pixel in thermal images representing the
absolute temperature measured (in degrees Kelvin (K) multiplied by 100). The scenarios in
this dataset include a mixture of public, private space, and wild pedestrian scenes from near
and far, in which people behave differently, covering a wider range of postures, clothing,
lighting, ambient temperature, cluttered backgrounds, and obscured spaces. Each image in
IPHD has been annotated with axis-aligned bounding boxes. In developing IPHPDT based
on IPHD, we cover the four most common human postures in daily lives, i.e., ‘standing’,
‘sitting’, ‘lying’, and ‘bending’. See Figure 2 for sample images of our dataset.
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The IPHD train set has 84,818 images, from which we selected images with clear
human target and human posture that is relatively easy to be distinguished. The IPHD
validation set and test set have 12,974 and 15,115 images, respectively; we first combined
them into one test set and then removed the images without a human target or the images
with the human posture that cannot be distinguished relatively easily. Next, we counted
the number of the four postures in the train set and test set initially divided above and
found that the distribution of postures was unbalanced. Thus, we randomly extracted some
posture data from each train set and test set and performed the swap operation to make the
ratio of the four postures in the train set, and test set balanced to form the final IPHPDT
dataset proposed by us. Finally, the IPHPDT train set has 62,010 images, and the test set
has 13,267 images. See Table 2 for comparing the number of images between the IPHD
dataset and our proposed IPHPDT dataset.

Table 2. Comparison between the IPHD dataset and our proposed IPHPDT dataset in terms of the
number of images.

Dataset Train Set Valid Set Test Set

IPHD 84,818 12,974 15,115
IPHPDT 62,010 - 13,267

3.2. Annotation

The IPHPDT dataset annotation process is described in this section. According to the
proposed task of detecting human posture, image annotations require the following attributes.

• category: person.
• bounding box: a bounding box with axis-alignment around the visible human in the image.
• human posture: one of standing, sitting, lying, and bending.

According to the annotation guidelines [55], there are three steps to our annotating
process, i.e., manual annotation, visual inspection, and box refinement. Since the IPHD
dataset has provided bounding box annotations, we only need to annotate the posture of
each person in the images in the first stage, except that we may adjust the original bounding
boxes we thought were not accurate enough. In the second stage, we send the data to a
dedicated validation team for visual inspection and send the annotations that most people
disagree with to the initial annotator for carrying out refinement operation in the third
stage. After the above three-stage strategy, it is possible to ensure high-quality annotation
of targets in the IPHPDT. Some examples of box annotations in the IPHPDT are shown
in Figure 2.

3.3. Image Processing

Since the thermal images in the IPHD dataset are registered to the corresponding
depth images, the thermal frames may contain zero-valued pixels incorrectly derived from
the depth errors, generating many unreasonable temperature readings, which would result
in an increase in the range of thermal pixels and compressing more reasonable thermal
readings. See Figure 3 for an illustration. As can be seen, the original thermal images are
visually much less informative than RGB images. Directly using original thermal images to
train a detector may incur severe domain-shift problems, as the backbone of the detector is
usually pretrained by large-scale RGB images. Therefore, image enhancement is performed
here to relieve the impact of domain shift. Our image enhancement consists of two steps.
First, we perform soft classification of the pixel (temperature) clusters using a Gaussian
Mixture Model(GMM) [56] to find the optimal temperature range for each image, cutting
out the unreasonable thermal readings and then mapping the temperatures to the RGB
color space. Second, we use the image inpainting method proposed in [57] to perform the
image restoration. we use enhanced images as the input data for training in this paper.
Some resulting examples of our image processing of the IPHPDT are shown in Figure 3.
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Note that ’Cutting and mapping’ indicates the results after the first step while ’Image
inpainting’ indicates the results after the second step.

Figure 3. An illustration of the visualization results before and after image processing. The left
column shows the original input images, the middle column shows the images after cutting and
mapping, and the right column shows the images after image inpainting.

3.4. Dataset Statistics

In order to promote training and evaluation, the IPHPDT dataset is split into two
primary subsets, i.e., train set and test set, with a ratio of 8/2. The statistics of the IPHPDT
dataset are summarized in Figure 4. Figure 4a displays the number of each human posture
in the train set and test set on the IPHPDT dataset, Figure 4b displays the average number
of each human posture per image in the train set and test set on the IPHPDT dataset. As can
be seen, the distribution of the four human postures in IPHPDT varies widely due to the
unevenness of the source IPHD data, suggesting that standing and sitting postures have
multiple targets in an image in most cases while lying and bending postures have basically
a single target or absent in one image. Although it is worrying about encountering an
imbalance problem of samples here, the imbalance of posture reflects the actual distribution
of human posture in daily life, and our experimental results dispel this anxiety.

(a) Number of each posture in IPHPDT. (b) Average number of each posture per image.

Figure 4. (a) shows the number of each human posture in the train set and test set on the IPHPDT
dataset, and (b) shows the average number of each human posture per image in the train set and test
set on the IPHPDT dataset.

4. Baseline Detectors for Detecting Human Posture in Thermal Images

To facilitate the development of human posture detection in thermal images, we pro-
pose three baseline detectors based on three state-of-the-art object detection algorithms,
i.e., variants of YOLOF [58], YOLOX [59], and TOOD [60]. we add an additional posture
prediction head to each original model to predict the per person’s posture, resulting in three
new detectors, which are dubbed IPH-YOLOF, IPH-YOLOX and IPH-TOOD, respectively.
The details of the three baseline detectors are described in detail in the following.
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4.1. IPH-YOLOF

Our proposed network structure of IPH-YOLOF is shown in Figure 5. IPH-YOLOF
uses the classical Resnet50 [61] as the backbone network, which is pre-trained on Ima-
geNet [62]. The C5/DC5 feature map output by the backbone network has 2048 channels
and a downsampling multiplicity of 32/16. These features are sent to a dilated encoder
in the neck sub-network, responsible for the encoding process. The final decoding part
contains two concurrent task-related heads for classification and regression, to which we
add an extra prediction head for human posture prediction. The following is the definition
of the total loss of training IPH-YOLOF,

Ltotal = Lcls + Lreg + λLposture, (1)

where Lcls, Lreg, and Lposture indicate the losses of classification, regression, and human
posture prediction, and λ indicates the weight coefficient of loss for the human posture
prediction head. The following are definitions of these losses, referenced from [63],

Lcls =
1

Npos

Npos

∑
n=0

FL
(
yn

cls, pn
cls ⊗ pn

obj
)
, Lreg =

1
Npos

Npos

∑
n=0

smoothL1

(
bn

t − bn
p
)
, (2)

Lposture =
1

Npos

Npos

∑
n=0

FL
(
yn

posture, pn
posture ⊗ pn

obj
)
, (3)

where yn
cls and yn

posture indicate ground truth for the classification and human posture,
and pn

cls, pn
posture, and pn

obj indicate the predictions for the classification, human posture,
and boxes (i.e., is there any person in the box). FL(·) and smoothL1 indicate the focal loss and
the smoothL1 loss functions, respectively. The focal loss function is mainly used to solve the
problem of imbalance between difficult and easy samples by increasing the weight of the
small number of target categories and misclassified samples. The smoothL1 loss function
is insensitive to outliers (meaning points far from the center) and makes the training less
prone to the gradient explosion by controlling the magnitude of the gradient. Npos indicates
the amount of positive anchor,

⊗
p indicates the scalar product, and bn

t and bn
p indicate the

ground truth bounding box and the prediction bounding box, respectively.

Figure 5. The generalstructure of the IPH-YOLOF detector we proposed. The network structure
is a carryover from YOLOF [58] with the difference of an extra head that is utilized to predict
human posture.

4.2. IPH-YOLOX

Our proposed network structure of IPH-YOLOX is shown in Figure 6. IPH-YOLOX
uses the classical CSPDarkNet and the Spatial Pyramid Pooling(SPP) [64] layer as the
backbone network. The C3, C4, and C5 features output by the backbone network have
128, 256, and 512 channels with downsampling multipliers of 8, 16, and 32, respectively.
These features are sent to an enhanced feature extraction network PANet [65] in the neck
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sub-network. Those deep features are first fused with shallow features by a bottom-up
path and then with deep features by a top-down path. The final decoupling part contains
two concurrent task-related heads for classification and regression, to which we add an
extra prediction head for predicting human posture. The following is the definition of the
total loss of training IPH-YOLOX,

Ltotal = Lcls + Lreg + Lobj + λLposture, (4)

where Lcls, Lreg, Lobj, and Lposture indicate the losses of classification, regression, the confi-
dence of boxes, and prediction of human posture, and λ indicates the weight coefficient of
loss for the human posture prediction head. The following are definitions of these losses,
referenced from [63],

Lobj =
−1

Npos

Npos

∑
n=1

yn
obj ln

(
σ
(

pn
obj
))

, Lreg =
1

Npos

Npos

∑
n=1

(
1− IOU

(
bn

t , bn
p
))

, (5)

Lcls =
−1

Npos

Npos

∑
n=1

yn
cls ln

(
σ
(

pn
cls
))

, Lposture =
−1

Npos

Npos

∑
n=1

yn
posture ln

(
σ
(

pn
posture

))
, (6)

where yn
cls, yn

posture, and yn
obj indicate ground truth for the classification, human posture,

and boxes, and pn
cls, pn

posture, and pn
obj indicate the predictions of classification, human

posture, and boxes. σ and IOU(·) indicate the softmax activation and the IOU loss functions.
IOU can be used to determine positive and negative samples and evaluate the distance
between the prediction bbox and ground truth bbox, which has the property of scale
invariance. Npos indicates the amount of positive anchor, and bn

t and bn
p indicate the ground

truth bounding box and the prediction bounding box, respectively.

Figure 6. The generalstructure of the IPH-YOLOX detector we proposed. The network structure
is a carryover from YOLOX [59] with the difference of an extra head that is utilized to predict
human posture.

4.3. IPH-TOOD

Our proposed network structure of IPH-TOOD is shown in Figure 7. The backbone
of IPH-TOOD is also the Resnet50. The C2, C3, C4, and C5 features output from the
backbone network have 256, 512, 1024, and 2048 channels with downsampling multipliers
of 4, 8, 16, and 32, respectively. These features are sent to an FPN network in the neck
sub-network, which is used to fuse multi-scale features output from the backbone network.
There is a Task-aligned predictor (TAP) in the neck to adjust the features for task-specific
heads, which in the original TOOD consists of the classification head and the regression
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head. In IPH-TOOD, we add an extra prediction head for human posture prediction.
The following is the definition of the total loss of training IPH-TOOD,

Ltotal = Lcls + Lreg + λLpose, (7)

where Lcls, Lreg, and Lpose indicate the losses of classification, regression, and human
posture prediction, respectively, and λ indicates the weight coefficient of loss for the human
posture prediction head. The following are definitions of these losses, referenced from [60],

Lreg =
Npos

∑
i=1

t̂iLGIOU
(
bi, b̄i

)
, (8)

Lcls =
Npos

∑
i=1
| t̂cls,i − scls,i |

γBCE
(
scls,i, t̂cls,i

)
+

Nneg

∑
j=1

scls,j
γBCE

(
scls,j, 0

)
, (9)

Lpose =
Npos

∑
i=1
| t̂pose,i − spose,i |

γBCE
(
spose,i, t̂pose,i

)
+

Nneg

∑
j=1

spose,j
γBCE

(
spose,j, 0

)
, (10)

where scls and spose are the classification and human posture scores, respectively. t̂ is the
normalized t, and t denotes the anchor-level alignment and

tcls = sα
cls + uβ

and
tpose = sα

pose + uβ,

where u denotes the IoU value, and α and β are the weights, respectively. BCE and
LGIOU indicate the Binary Cross Entropy loss function and the Generalized Intersection
over the Union loss function. BCE uses the sigmoid activation function, which can ac-
count for both positive and negative sample losses. LGIOU focuses on both overlapping
and non-overlapping regions, which can solve the problem that the gap between non-
overlapping frames cannot be evaluated. Npos and Nneg indicate the amount of positive
anchor and negative anchor, respectively. i indicates the i-th anchor from the Npos positive
anchors corresponding to one instance, and j indicates the j-th anchor from the Nneg neg-
ative anchors corresponding to one instance. γ indicates the focusing parameter, and bi
and b̄i indicate predicted bounding boxes and the corresponding ground truth bounding
boxes, respectively.

Figure 7. The generalstructure of the IPH-TOOD detector we proposed. The network structure is a car-
ryover from TOOD [60] with the difference of an extra head that is utilized to predict human posture.
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5. Evaluation
5.1. Evaluation Metrics

In the experiment, we use AP (i.e., Average Precision) and mAP (i.e., mean Average
Precision) to measure the performance of the three baseline detectors, besides using IOU
(i.e., Intersection of Union) to measure the degree of error between ground truth bbox and
predicted bbox. TP (True Positive), TN (True Negative), FP (False Positive), and FN (False
Negative) are the number of pixels in the detection that match the ground truth (for TN/TP)
or do not (FP/FN). For a detailed description, please refer to [55]. The following are the
definitions of these evaluation indicators,

AP =
1
11 ∑

r∈{0,0.1,...,1}
max
r̃:r̃≥r

p(r̃), mAP =
∑k

i=1 APi

k
, (11)

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (12)

In the general convention of computer vision, 0.5 is often set as the threshold to
determine whether the predicted bounding box is correct, while we follow the COCO
evaluation metric [66] to evaluate it. In COCO evaluation, the IoU threshold is divided
into three metrics, which are 0.5, 0.75, and 0.5 to 0.95, respectively. When IoU = 0.5 and
IoU = 0.75, the corresponding AP is expressed as AP@0.5 and AP@0.75; when the IOU
is between 0.5 and 0.95, the step size is 0.05, and the corresponding AP is expressed as
AP@[.50:.05:.95]. To assess the detector’s performance in detecting human posture, we used
the COCO mAP metric. In general object detection, precision only predicts the accuracy
of the target category. However, our task concerns the measurement of different postures
of human, which requires the combination of two tasks, i.e., the traditional task of person
detection and the new task of prediction of different human postures, which means that
the precision metric for our task has to take into account predicting both the category
and the posture at the same time. As a matter of convenience, the precision metrics for
the prediction of the human category, human posture, and the composite of the two are
represented by the APc, APp and APcp, respectively, besides by adding a prefix ’m’ we
indicate the mean AP, i.e., mAP.

5.2. Evaluation Results

Overall performance. We performed an extensive evaluation of the IPHPDT dataset using
the three baseline detectors we proposed, i.e., IPH-YOLOF, IPH-YOLOX, and IPH-TOOD.
As shown in Table 3, the precision metrics APc, APp, and APcp listed in Section 5.1 are
used to report the evaluation results. It is clear that IPH-TOOD is essentially the best
detector, except that all its APcs are slightly lower than those of IPH-YOLOX and its
APp@0.5 and APcp@0.5 are slightly lower than that of IPH-YOLOF. Compared with IPH-
YOLOX, IPH-YOLOF is overall superior, except for its APcs being slightly lower than
those of IPH-YOLOX. From Table 3, we can also observe that the average precisions of
predicting human category are greater than the prediction of human posture for all three
detectors. Specifically, the differences between mAPc and mAPp are all larger than 7.5%,
with the OS-YOLOX detector seeing the largest difference of 11.2%, which indicates that
it is more difficult and challenging to detect human posture than detect human itself in
thermal images. That may be explained by the fact that distinguishing a person from
the background is easier than distinguishing which posture a person is holding since the
latter confronts much smaller inter-class differences. Although facing more challenges,
we believe the proposed task has a broad application prospect, and our work will inspire
more researchers to work on human posture detection in thermal images.
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Table 3. Illustration of the APp difference between the three baseline detectors we proposed, i.e.,
IPH-YOLOF, IPH-YOLOX, and IPH-TOOD, on the IPHPDT dataset. Note that APc, APp, and APcp

represent the precision metric for the prediction of the human category, human posture, and the
composite of both, respectively.

{APc,APp,APcp}@0.5{APc,APp,APcp}@0.5{APc,APp,APcp}@0.5 {APc,APp,APcp}@0.75{APc,APp,APcp}@0.75{APc,APp,APcp}@0.75 {mAPc,mAPp,mAPcp}{mAPc,mAPp,mAPcp}{mAPc,mAPp,mAPcp}

IPH-YOLOF (0.944,0.833,0.867) (0.848,0.768,0.834) (0.706,0.630,0.692)
IPH-YOLOX (0.955,0.804,0.836) (0.863,0.737,0.771) (0.737,0.625,0.677)
IPH-TOOD (0.935,0.826,0.863) (0.850,0.771,0.836) (0.719,0.643,0.704)

Performance on per posture. We evaluate the performance of the three proposed baseline
detectors on each posture to further analyze and understand the performance of human
posture detection in thermal images. Table 4 displays the mAPcp of the three detectors.
It can be seen that the three detectors perform best in standing, followed by lying, with both
mAPcp above 70%, but the mAPcp of sitting and bending are all below 70%. This can be
attributed to the fact that: (1) standing is the posture of the largest amount of training data;
(2) standing and lying facing less intra-class variations than sitting and bending do due to
potentially more occlusion, and larger posture variations, for the latter. More specifically,
in the IPHPDT dataset, even if the amount of data for sitting is only second to standing,
it is subject to more occlusion and sitting posture variations, making detecting the sitting
posture very challenging. Although with the least training data, the lying posture is
basically a comparatively clear single-object present in each image, making detecting it
relatively simpler. As to the bending posture, in addition to possible occlusion, when the
bending angle is small, the detectors are prone to confuse it with the standing posture,
thus leading to poorer test results. In our future work, we will account for these factors to
develop better detectors for detecting human posture in thermal images.

Table 4. Illustration of the mAPcp difference between the three baseline detectors we proposed,
i.e., IPH-YOLOF, IPH-YOLOX, and IPH-TOOD, on the IPHPDT dataset. Note that mAPcp represents
the mean average precision for predicting the composite of the human category and its posture.

Standing Sitting Lying Bending

mAPcp(IPH-YOLOF) 0.723 0.666 0.720 0.665
mAPcp(IPH-YOLOX) 0.743 0.625 0.721 0.619
mAPcp(IPH-TOOD) 0.737 0.652 0.725 0.695

Qualitative evaluation. Qualitative detection results of 16 samples by the three proposed
detectors are shown in Figure 8. The first two rows demonstrate eight examples on
which the three baseline detectors perform very well, while the last two rows show eight
examples that the detectors fail to predict human posture correctly. Where the black, blue,
and green bounding boxes indicate the detection results of TPH-YOLOF, TPH-YOLOX,
and TPH-TOOD, respectively. For the number on the boxes, e.g., 1: 0.91, the integer before
the colon indicates the predicted human posture category (i.e., 1, 2, 3, and 4 represent
standing, sitting, lying, and bending), and the decimal number after the colon indicates the
predicted score. The three baseline detectors perform well on the first two rows because
no occlusion, less background cluster, and of standard target size characterize the images
in the first two rows. However, in the images in the last two rows, human postures are
predicted incorrectly due to occlusion, background cluster, low-contrast of infrared images,
and ambiguity. we take the last row as an example to analyze the possible causes of
detection errors. From left to right, the first and the third samples are confused by the
detectors due to occlusion, lack of clear texture features, and ambiguity, leading to errors in
the detection of the posture type; the second is an example of false and missed detection,
due to cluster, occlusion, and small object, resulting in missed detection of sitting postures;
the fourth sample incorrectly detects the dog as a human, which may be due to the fact
that in the infrared thermal images, the human thermal feature is mainly used as one of the
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most effective features to characterize the human body, thus when the object temperature
is too high or even beyond the human body temperature, it may be wrongly detected
as human. These results suggest that under challenging conditions, the three proposed
baseline detectors are prone to incorrectly detect human posture in thermal images.

Figure 8. Qualitative evaluation of 16 samples in IPHPDT. The first two rows show examples of our
proposed three detectors correctly predicting human postures. The last two rows show examples
that our proposed three detectors fail to correctly predict human postures. Note that the number
before the colon indicates the predicted posture, i.e., 1, 2, 3, and 4 represent standing, sitting, lying,
and bending, respectively. GT stands for ground truth.

5.3. Ablation Study

Impact of the backbone network. In order to study the influence of the backbone network
for predicting human posture, we evaluate IPH-TOOD with different depths of backbone
network on IPHPDT; moreover, we also evaluate IPH-TOOD with different frozen_stages
in ResNet with a depth of 50 on IPHPDT. Specifically, the backbone network is a ResNet,
whose depth values can be chosen from 18, 34, 50, 101, and 152, where ResNet-18 denotes
the ResNet with a depth of 18, and whose frozen_stage values can be chosen from−1, 0, 1, 2,
3 and 4, where fs_−1 denotes the frozen_stage with a value of −1. Frozen_stages indicates
that the network stage is frozen during network fine-tuning (i.e., the back-propagation
algorithm is not performed during training), and the backbone in this experiment contains
one stem and four stages. When frozen_stages is −1, the network is not frozen; when it is
0, the stem is frozen; when it is 1, the stem and first stage are frozen; when it is 4, the whole
backbone is frozen. Tables 5 and 6 display the mAPs and the APs at fixed IoUs (i.e., 0.5 and
0.75) of IPH-TOOD on IPHPDT with respect to different backbone networks and different
frozen_stages based on ResNet-50, respectively. To aid with more intuitive understanding,
the results of the mAP metric are plotted in the bar chart shown in Figure 9. As can be
observed in Table 5, the AP is optimal when the depth equals 50, which is also the default
setting in our paper, and when the depth of the backbone network goes from 18 to 50,
all the APs and mAPs increase, but they decrease with fluctuations when the depth ascends
from 50 to 152. That may be explained by the fact that increasing the depth of the backbone
network can improve the representation power of the detector, but more training data are
required to optimize the parameters of the backbone network as it becomes larger. As can
be seen in Table 5, the AP is optimal when the frozen_stages equals 1, which is also the
default setting in our paper, and when the frozen_stages of the backbone network goes
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from −1 to 1, all the APs and mAPs increase, but they decrease with fluctuations when the
depth ascends from 1 to 4. That may be explained by the fact that the features of the first
few layers are basic general features, they can save memory and accelerate convergence
without re-training, but the last few layers have deeper features and need to be re-trained
to learn more information. Experimental results suggest that ResNet of the depth of 50 and
frozen_stages of the value of 1 are the optimal choice for finetuning the proposed detector
IPH-TOOD for the proposed task, given the scale of the proposed dataset.

Table 5. Illustration of how the AP metrics of IPH-TOOD change with regard to the depth of the
backbone network on the IPHPDT dataset.

Backbone {APc,APp,APcp}@0.5{APc,APp,APcp}@0.5{APc,APp,APcp}@0.5 {APc,APp,APcp}@0.75{APc,APp,APcp}@0.75{APc,APp,APcp}@0.75 {mAPc,mAPp,mAPcp}{mAPc,mAPp,mAPcp}{mAPc,mAPp,mAPcp}

ResNet-18 (0.912,0.771,0.804) (0.797,0.678,0.744) (0.670,0.569,0.628)
ResNet-34 (0.924,0.776,0.831) (0.820,0.694,0.777) (0.689,0.583,0.655)
ResNet-50 (0.935,0.826,0.863) (0.850,0.771,0.836) (0.719,0.643,0.704)
ResNet-101 (0.925,0.792,0.835) (0.839,0.728,0.798) (0.711,0.614,0.680)
ResNet-152 (0.933,0.796,0.840) (0.833,0.726,0.797) (0.706,0.614,0.687)

Table 6. Illustration of how the AP metrics of IPH-TOOD change with regard to the frozen_stages of
the backbone network on the IPHPDT dataset.

Frozen Stages {APc,APp,APcp}@0.5{APc,APp,APcp}@0.5{APc,APp,APcp}@0.5 {APc,APp,APcp}@0.75{APc,APp,APcp}@0.75{APc,APp,APcp}@0.75 {mAPc,mAPp,mAPcp}{mAPc,mAPp,mAPcp}{mAPc,mAPp,mAPcp}

fs_−1 (0.924,0.791,0.835) (0.824,0.723,0.794) (0.690,0.603,0.666)
fs_0 (0.932,0.811,0.851) (0.847,0.751,0.817) (0.715,0.630,0.692)
fs_1 (0.935,0.826,0.863) (0.850,0.771,0.836) (0.719,0.643,0.704)
fs_2 (0.934,0.804,0.847) (0.847,0.744,0.814) (0.714,0.622,0.686)
fs_3 (0.923,0.773,0.818) (0.820,0.695,0.769) (0.686,0.580,0.645)
fs_4 (0.902,0.718,0.740) (0.785,0.622,0.678) (0.662,0.523,0.574)

Figure 9. Illustration via bar chart of the effect of the backbone network (left) and frozen_stages
(right) on the mAP metric on the IPHPDT dataset.

Weighting the loss of predicting human posture. In order to understand the effect of the
weighting coefficient for the loss of predicting human posture, we assess IPH-TOOD on
IPHPDT with regard to the weighting coefficient, i.e., λ in Equation (7), which varies from
0.2 to 2.0 in steps of 0.2. Table 7 shows the mAPs and the APs at fixed IoUs (i.e., 0.5 and
0.75) of IPH-TOOD on IPHPDT. The trend of the average of the three metrics as the weight
changes from 0.2 to 2.0 is plotted in Figure 10 to provide a more intuitive grasp of the
influence of this weight. Note that the average of the three metrics is plotted by the gray
dotted line. It can be observed that the best AP emerges between 0.6 and 1.6, yet all the best
APs cannot be obtained concurrently at a fixed λ in IPH-TOOD. Overall, the change of λ
has basically little effect on APc as the difference between the maximum and minimum of
APc is not more than 0.5%. However, obvious variations can be observed on both APp and
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APcp as λ varies, and the changes of APp and APcp are basically synchronized, indicating
that APc is closely associated with APcp. we can also observe that the optimal APp and
APcp occur when λ ranges from 0.6 to 1.0, and overall the maximum values are at λ = 1.0,
which is also the default setting. In summary, we can conclude that APcs all reach the
maximum when λ = 1.6, whereas APps and APcps basically reach their optimal value at
λ = 1.0. This suggests that localizing humans and identifying human postures counteract
when these two tasks are combined as a composite task. Better methods that are able to
diminish this counteracting are desirable, which will be an important consideration in our
future work.

Table 7. Illustration of how the AP metrics of IPH-TOOD change with regard to the weighting
coefficient for the loss of predicting human posture on the IPHPDT dataset.

λλλ {APc,APp,APcp}@0.5{APc,APp,APcp}@0.5{APc,APp,APcp}@0.5 {APc,APp,APcp}@0.75{APc,APp,APcp}@0.75{APc,APp,APcp}@0.75 {mAPc,mAPp,mAPcp}{mAPc,mAPp,mAPcp}{mAPc,mAPp,mAPcp}

0.2 (0.934,0.805,0.843) (0.848,0.751,0.815) (0.716,0.622,0.682)
0.4 (0.935,0.827,0.860) (0.846,0.764,0.825) (0.715,0.640,0.696)
0.6 (0.935,0.828,0.862) (0.848,0.766,0.829) (0.716,0.643,0.700)
0.8 (0.935,0.822,0.857) (0.850,0.768,0.833) (0.720,0.643,0.702)
1.0 (0.935,0.826,0.863) (0.850,0.771,0.836) (0.719,0.643,0.704)
1.2 (0.936,0.811,0.853) (0.848,0.753,0.822) (0.717,0.630,0.693)
1.4 (0.935,0.820,0.857) (0.850,0.769,0.833) (0.717,0.641,0.701)
1.6 (0.937,0.805,0.852) (0.850,0.756,0.830) (0.720,0.632,0.698)
1.8 (0.935,0.815,0.855) (0.849,0.754,0.824) (0.718,0.630,0.693)
2.0 (0.935,0.814,0.853) (0.849,0.759,0.825) (0.719,0.634,0.695)

Figure 10. Illustration of trends in the values and means of the three indicators relative to the
weighting coefficient for the loss of predicting human posture on the IPHPDT dataset.

6. Conclusions

In this paper, we formulate a new task for identity-preserved human posture detection
in infrared thermal images, which is a compromise between human pose estimation and
human detection for a threefold purpose. The first is to establish an identity-preserved
task with thermal images; the second is to achieve more information than the location of
persons as provided by human detection for more advanced computer vision applications;
the third is to avoid difficulties collecting well-annotated data for human pose estimation
in thermal images. This task underpins various applications where privacy matters and
may also draw attention to more informative object detection other than identification
and localization. we present the IPHDT dataset for infrared human posture detection
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and establish three baseline detectors based on state-of-the-art object detection models,
i.e., IPH-YOLOF, IPH-YOLOX, and IPH-TOOD, to promote further exploratory research
on this problem.

We believe that our work will attract greater attention to the study of human posture in
the field of infrared thermal images, which is important for advanced application scenarios
such as human detection based on privacy protection, elderly guardianship system, hospital
care, etc. Nevertheless, there are some limitations of our work worthy of note. Although
the posture types considered here are the most common ones, covering more posture
types will be desirable in applications where more specific posture information is needed.
In addition, the network architectures proposed for predicting human posture is relatively
simpler, and more effective structures should be explored for better performance. In our
future work, we will consider more types of human postures and explore better methods to
diminish the counteracting between the tasks of localizing humans and identifying human
postures and develop better detectors for detecting human posture in thermal images based
on more state-of-the-art object detectors.
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