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Abstract: This paper presents methods for floor assignation within an indoor localization system.
We integrate the barometer of the phone as an additional sensor to detect floor changes. In contrast
to state-of-the-art methods, our statistical model uses a discrete state variable as floor information,
instead of a continuous one. Due to the inconsistency of the barometric sensor data, our approach
is based on relative pressure readings. All we need beforehand is the ceiling height including
the ceiling’s thickness. Further, we discuss several variations of our method depending on the
deployment scenario. Since a barometer alone is not able to detect the position of a pedestrian, we
additionally incorporate Wi-Fi, iBeacons, Step and Turn Detection statistically in our experiments.
This enables a realistic evaluation of our methods for floor assignation. The experimental results show
that the usage of a barometer within 3D indoor localization systems can be highly recommended. In
nearly all test cases, our approach improves the positioning accuracy while also keeping the update
rates low.
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1. Introduction

Computer-controlled localization has been a subject of interest in computer science
over the past two decades. Especially in the upcoming world of smart things, such as
modern cars, Industry 4.0, or even smart homes, position awareness is a central problem.
Considering the self-localization of a human, GPS (Global Positioning System) has made its
way into almost all mobile devices. However, for indoor environments, the GPS signal is
attenuated by dense, sometimes reflective, construction materials such as walls or ceilings,
that interrupt the line of sight to the satellites [1]. This leads to high errors due to the
significant loss of signal strength and multipath propagation, resulting in an accuracy of
tens of meters. Such accuracy is not sufficient for most scenarios inside buildings, which is
why many alternative methods have been developed in recent years [2–4]. One of the most
important tools for estimating the possible location of a pedestrian in a building is sensor
fusion [5–7].

In recent years, a variety of sensors, e.g., Wi-Fi, magnetometer, or camera, have been
investigated for indoor localization applications [8]. Among them, one of the newest and
least known is the barometer. Especially, expensive smartphones have been equipped with
barometric sensors [9]. It measures the atmospheric pressure, and since the pressure varies
mainly with altitude, it is well suited for detecting floor changes. To account for measure-
ment errors and noise, we use a probabilistic approach that models the uncertainties of the
sensors as a probability density function. Such a probabilistic approach allows for a unified
interface for the purpose of sensor fusion, e.g., the combination of different sensor types for
state estimation [10].

Obviously, atmospheric pressure is the pressure within the atmosphere of the earth. In
a nutshell, it is generated by the weight of the air column standing on the earth’s surface or
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on an object. Therefore, as altitude increases, atmospheric pressure decreases accordingly.
Different environmental factors, such as temperature, weather patterns, and humidity,
have an impact on this relationship. In addition to these environmental factors, the MEMS
barometers built into smartphones are noisy and sensitive to rapid changes. The authors
of [11] have examined different elevation scenarios and found that even opening a window
or a door can significantly alter pressure readings. Further, different air conditioning
characteristics between two adjacent rooms can cause such a behavior. They conclude
that while pressure measurements cannot be directly converted into accurate vertical
information, such as altitude, in some cases, low-cost MEMS barometers provide very
useful information for localization applications.

In Figure 1a, a 12 h pressure trend on a single floor using a Galaxy S3 (green), having
an STM LPS331AP MEMS pressure sensor [12], and two Nexus 4 (blue), equipped with
a Bosch BMP 180 MEMS pressure sensor [13], is illustrated. The recordings are based on
the datasets provided by [9]. For the duration of the recording, all devices lay flat on a
table in a closed room. It can be seen that not only the time of day and thus a temperature
variation influences the pressure readings, but also the different devices used. This causes
an average pressure difference of 1.2 hPa (hectopascal), or ∼10 m of difference in height,
between the two Nexus devices.
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Figure 1. Recordings of absolute pressure readings for two scenarios. (a) 12 hour pressure trend on a
single floor using a Galaxy S3 (green) and two Nexus 4 (blue). The width of the lines describes the
uncertainty of the measurements. (b) Recordings of three pressure readings on three different levels
at 3 different times across 3 different days. The figures are based on the datasets provided by [9].
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Figure 1. Recordings of absolute pressure readings for two scenarios. (a) 12 h pressure trend on a
single floor using a Galaxy S3 (green) and two Nexus 4 (blue). The width of the lines describes the
uncertainty of the measurements. (b) Recordings of three pressure readings on three different levels
at three different times across three different days. The figures are based on the datasets provided
by [9].

The behavior of atmospheric pressure readings at various floor levels and on different
days is further explained in Figure 1b. It can be seen that pressure measurements exhibit
considerable diurnal variants, yet the difference in pressure between different floor pairs is
remarkably constant and continuous. These findings demonstrate that absolute pressure
measurements are challenging to use for floor identification, even with reference measure-
ments, when two identically constructed devices produce different readings. Therefore,
this work uses the relative difference between the barometer pressure readings over time.

Nevertheless, there are many approaches in the literature that use absolute pressure
measurements to determine a floor. For example, the authors of [14] use reference devices
on each floor. By comparing the reference and the pressure measured on the smartphone,
the floor can be determined. In order to eliminate the deviation between all involved
barometric sensors, a calibration of the to-be-localized smartphones as well as the reference
devices must be carried out. Here, environmental influences can be taken into account
via meteorological information, for example from a nearby weather station [15]. However,
for large and complex buildings, this approach may fail if the number of reference devices
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is too small. In addition, the calibration of all devices involved is complex and must be
corrected even for small changes, such as increased humidity. This requires additional
sensors per reference device for a very accurate calibration.

The authors of [16] utilize a crowd-based fingerprinting approach. Their goal is to
identify the floor level the user is currently in without absolute knowledge. For this,
a fingerprinting map is constantly updated by everyone using the system. At first, a
calibration for normalizing the barometer readings between different devices carried by
users is conducted. Based on this, the pressure measurements are then clustered, allowing
for the fingerprinting approach. Consequently, the number of resulting clusters should then
be identical to the number of floors. While this approach provides good results, updating
the fingerprinting map requires that people are continuously present in the building and
have the corresponding application installed. For many practical applications, however,
such an approach is not a viable option.

In this work, a straightforward approach is taken that imposes few conditions and
prior knowledge on the system. We do not identify the exact floor number by using some
kind of reference or crowed-based system. The presented method just recognizes if a
floor was changed. All we need beforehand is the ceiling height including the ceiling’s
thickness. Considering a sensor fusion, additional sensors will reduce the uncertainty of
being in another floor. In contrast to state-of-the-art methods, our statistical model uses a
discrete state variable as floor information, instead of a continuous one. Finally, by using
environmental information and a state transition to model the pedestrian’s movement, we
are able to determine time and position of a floor change.

The paper is organized as follows. Section 2 gives an overview of the recursive
state estimation. The basics of our indoor localization approach including the used state
transition are shown in Section 3. Section 4 presents the statistical floor assignation approach
and theoretical thoughts. Section 5 shows the experimental results, while Section 6 provides
the conclusion of this work and prospects of future work.

2. Recursive State Estimation

In indoor localization, we are interested in finding the current location of a pedestrian
inside a building using a series of observations 〈o〉t = o1, o2, . . . , ot provided at time t by
a multitude of sensors. Such a system suffers from uncertainties due to the imperfection
and incompleteness of the sensors and used methods. Therefore, we treat the localization
problem with a probabilistic representation to draw inferences about a hidden state of the
system qt. A broad class of methods that satisfies the Markov property are Bayes filters,
which provide a recursive state estimation by inferring the probability density

p(qt | 〈o〉t) = p(ot | qt)︸ ︷︷ ︸
evaluation

∫
p(qt | qt−1)︸ ︷︷ ︸

transition

p(qt−1 | 〈o〉t−1︸ ︷︷ ︸
recursion

)dqt−1. (1)

The estimation of the hidden state is then performed using the two steps state transition
p(qt|qt−1) and state evaluation p(ot|qt). The recursion starts with an initial (uniform)
distribution p(q0) and contains all information up to time t.

In the localization system used in this work, as presented in our previous works,
the state qt−1 will be integrated in the evaluation; our probability density can be rewritten
similar to [17] as:

p(qt|〈o〉t) = p(ot|qt, qt−1)
∫

p(qt|qt−1)p(qt−1|〈o〉t−1)dqt−1. (2)

Finding analytical solutions for (1) or (2) is only possible in rare cases or requires for
further assumption [5]. We therefore used sequential Monte Carlo, namely the CONDEN-
SATION particle filter, as an approximation method [18]. The filter behaves identically to
the better known Bootstrap particle filter by using the state transition as proposal distribu-
tion and weights a set of sample (particles), which are used to approximate the posterior,



Sensors 2023, 23, 80 4 of 10

based on the evaluation density [19]. In addition, a resampling step is utilized to handle
the phenomenon of weight degeneracy [20].

3. Statistical Indoor Localization

As mentioned above, our novel approach recognizes if a floor was changed without
any initial positioning information. Considering an indoor localization system, we need to
incorporate other sensor models to determine the time and position of a floor change. By
assuming a statistical independence between all sensors and their models, we can easily
describe the sensor fusion procedure as

p(ot | qt, qt−1) = ∏
i=1

p(ot | qt, qt−1)i. (3)

Here, every component i refers to a probabilistic sensor model, providing a weight to
the samples of the particle filter. For example a combination of a sensor model for Wi-Fi
and an activity recognition is presented in [7] or the utilization of Wi-Fi FTM for absolute
positioning information and a pedestrian dead reckoning (PDR) in [21].

For describing the likelihood in (2) of observing a sensor measurement ot, the state qt is
given by

qt = (xt, yt, zt, αt, ρt)
T , xt, yt, αt, ρt ∈ R, zt ∈ N. (4)

It represents a pedestrian’s possible whereabouts, e.g., location and orientation. The
position is represented by xt, yt, zt, where zt is discrete. This results in a mixed dis-
crete/continuous state space [22]. The heading is given by αt and ρt provides the at-
mospheric pressure in hectopascal (hPa) at time t.

According to the CONDENSATION algorithm, the state transition model p(qt | qt−1)
is used to draw new states at every filter update. For this, we use a graph-based transition
model instead of some simple density function. The method was first introduced in our
previous work [23]. Based on the building’s floorplan, this model only allows for walks
that are actually feasible. The floorplan is described by an equally spaced grid of s = 20 cm
squares for each of the building’s floors. To account for walls and other obstructions, only
areas of the floorplan that do not intersect with such are designated as squares and are
thus actually walkable. Each square is represented as vertex vx,y,z ∈ V denoting its center
within a graph G = (V, E). A new state qt+1 is then randomly drawn from all valid moves
of a state qt on G. This is also known as random graph walks [24].

The undirected edges E of the graph G are described by

e
vx,y,z
vx+i,y+j,z ∈ E, i, j ∈ {−1, 0, 1}, i 6= 0∨ j 6= 0, (5)

connecting all vertices with their immediate neighbors in the x, y-plane, if such a neighbor
exists. Edges e

vx,y,z
vx,y,z′ within the z-plane are added for all (x, y) within regions of staircases or

elevators. New states qt+1 may now be sampled by:

1. Drawing a distance d from a distribution that, depending on the interval between
successive transitions, resembles the gait and speed of a pedestrian.

2. Obtaining the vertex vx,y,z in which the old state qt resides.
3. Walking randomly along adjacent edges depending on their probability p(e | qt) and

subtracting their length from d until d ≤ 0 is reached
4. Slightly scattering the final destination by picking a random position within the

square. The target vertex v′x′ ,y′ ,z′ denotes:

(xe, ye, z), xe ∼ U (x′ ± s
2
), ye ∼ U (y′ ±

s
2
). (6)

The pedestrian’s walking behavior is modeled by p(e | qt). As we assume them to walk
almost straight, each edge’s probability depends on the currently estimated heading αt:
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p(e | qt) = N (∆αt | 0, σ2
dir), ∆αt = αt −∠e. (7)

σdir is a small value of about 5 ◦, limiting the likelihood of deviating from walking a straight
line. Depending on the edge e′ drawn according to this probability, we update the estimated
heading αt = ∠e′ before drawing the next edge until d ≤ 0. This ensures a mainly straight
walking behavior while still allowing for turns and bends.

4. Floor Assignation

Considering a running statistical indoor localization, the first step of our floor assigna-
tion approach is to model a new state qt. The switch of a state qt between two floors and
the fitting of the relative altitude ρt is performed within our state transition p(qt | qt−1)
presented in the previous chapter. As mentioned before, movement is only allowed on
an edge of the floor graph. The same applies for a change of the floor level. We predict
ρt using

ρt += sgn(zt−1 − zt) · N (ρz, σ2
baro), (8)

where ρz is the change of pressure between the past and current floor. We consider the
variation of pressure by drawing randomly from a normal distribution. The uncertainty of
the used barometer is described by σbaro.

There are several possible methods for calculating ρz. If environmental information is
provided the change of pressure between two floors can be calculated using the barometric
formula [25]:

ρ(h1) = ρ(h0)

(
1− a∆h

T(h0)

)Mg
Ra

(9)

The universal gas constant R is fixed and for most cases also the molar mass M and the
gravitational acceleration g can be assumed to be constant. For the sake of simplicity, we
assume a constant lapse rate a, temperature T(h0) are the same for the whole building and
do not change in the current run. Both values can of course be easily determined by using
a nearby weather station for a and the current room temperature with a simple thermostat
for T(h0). Updating them frequently would increase the stability of (9) and thus would
compensate for rapid pressure changes as discussed in the introduction of this work. Here,
h1 and h0 represent the elevation (height above sea level) of a single floor. The change of
pressure ρz would then be calculated by

ρz ≈ |ρ(h1)− ρ(h0)|. (10)

If no information about the exact elevation h0 of the building is given, a GPS-based
value or the mean sea level pressure (MSLP) could be used instead. This would affect
the accuracy again, but has the advantage that all we need beforehand is the ceiling
height including the ceiling’s thickness represented by ∆h. Another possible way to obtain
ρz, is by simply measuring the change in pressure with a reference device. Referring
to the weaknesses shown in Section 1, this could result in a difficult and complex task.
If preparation time is short and every floor has the same height, a constant value ρconst using

ρz = (zt−1 − zt) · ρconst (11)

could also be considered.
After the transition step is performed, the state is evaluated using an observation ot.

At every time step t, a measurement ρbarot of the barometer is given in hectopascal. Nearly
all consumer devices provide the atmospheric pressure above sea level. We evaluate each
possible state qt as follows:

p(ot | qt)baro = N (ρt | ρrelt , σ2
z ). (12)
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where ρrelt denotes the relative altitude difference with regard to some reference measure-
ment ρref. ρt is again the relative altitude of a state qt. We assume a normal distributed error
and thus chosen a Gaussian as density function for p(ot | qt)baro. The relative uncertainty
of being in the current floor is thus described by the standard deviation σz =

ρz
2 .

Our approach provides two possibilities for determining ρrelt : the reference measure-
ment ρref is recorded at the beginning of the localization process or using a size-limited
measurement history. The first case is pretty easy and straight forward with

ρrelt = ρbarot − ρref, (13)

where ρref = ρbaro0 . In the second case, we are also using (13), but ρref is determined
periodically. For periodical determination a circular buffer [26] with fixed memory size
(e.g., 30 s) can be used, where ρref is the oldest entry. The size depends on the average
time steps t needed for changing a floor. It should be noted, that a walk on the same floor
level, longer then the current memory size, would result in ρref = 0. Therefore, we have to
change the state transition step in (8) as follows:

ρt = (zt−1 − zt) · N (ρz, σ2
baro), (14)

The benefit of using a small history size is to counteract environmental changes on long
runs. In order to increase the stability of ρrelt a simple low-pass filter such as

ρrelt = ρrelt−1 + α · (ρrelt − ρrelt−1) (15)

could be used for smoothing purposes.

5. Experimental Results

The experiments were carried out in a building of the University of Applied Sciences
Würzburg-Schweinfurt. We included all floors (0 to 3), each about 77 m × 55 m in size.
Recordings were collected by five different subjects on two testing paths using a Google
Nexus 5 and a Samsung Galaxy S5 at the same time. The first path is 120 m meters and
takes three minutes to complete, while the second is 220 m and takes five minutes. A path
is given by markers located on the ground. Whenever a test person passes one of these
markers, he or she taps a button in the recording app, which saves the current timestamp. A
constant movement speed is assumed between two consecutive markers. The position error
can then be calculated by comparing the current position estimate with the ground truth
position interpolated at that time. This procedure does of course not provide a perfectly
accurate ground truth, but still remains within the error tolerance. If a test person forgot to
save the timestamp, the run had to be repeated because no timestamp could be assigned to
the marker in question. The computation was performed offline using 10,000 particles for
approximation. The position estimation is calculated using the weighted arithmetic mean
over all particles for every filter update at time t [27].

Besides the barometer, we incorporated the following sensor models presented in
our previous works: Wi-Fi, iBeacons, step and turn detection. The fusion of the sensors is
performed using (3) as follows:

p(ot | qt, qt−1) =p(ot | qt, qt−1)turn p(ot | qt, qt−1)step

p(ot | qt)baro p(ot | qt)ibeacon p(ot | qt)wifi.
(16)

The Wi-Fi model p(ot | qt)wifi and the iBeacon model are using a multilateration based on
received signal strength indications (RSSI) [20,28]. A probability is obtained by comparing
RSSI measurements with an RSSI estimation. The RSSI estimate between the transmitter
and the potential position is obtained using a radio propagation model, such as the log-
distance model. On each floor there are five commercial Wi-Fi access points (access-points)
installed. Furthermore, we use six iBeacons in the respective staircases for stabilization,
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as Wi-Fi is strongly shielded there by the reinforced concrete walls. Unfortunately, for legal
and security reasons, we are not allowed to add the positions of the Wi-Fi access-points to
the figures or provide further detailed information about them. The model parameters for
Wi-Fi and iBeacons were P0wifi = −40 dBm, γwifi = 2.7 and γibeacon = 1.9. P0ibeacon was set
according to each iBeacon’s configuration. For uncertainties we used σwifi = σibeacon = 8.0
both growing with each measurement’s age. The models for step and turn detection are de-
scribed in [23]. To briefly explain, both models compare the measured values, i.e., distance
and heading, with the trajectory of a sample between time t and t− 1 resulting from the
transition step. The step evaluation uses the parameters dstep = 50 cm, σstep = 10 cm if a
step was recognized and dnostep = 0 cm, σnostep = 5 cm if not. To evaluate the heading, we
use σheading = 50 ◦.

Figure 2a shows a typical localization result for the first path using all sensors except
the barometer. The walk starts on the right side of the second floor, walking up to the third
floor and so on. The ground truth path is marked as a dotted line. By entering the first floor
on the left-hand side of the picture, we rotated the phone into landscape mode. This is the
reason for the prolonged curve at this position. The update time is set on 500 ms, since it is
approximately the time a person need to make one step. The height of the 1st, 2nd, and
3rd floor is 3.4 m including the ceiling’s thickness. It can be clearly seen that the first floor
change (cf. red square) was detected quite late. This can be explained by the poor Wi-Fi
coverage in this area. The average of the error between ground truth and approximation is
x̄noBaro = 345 cm with a standard deviation of 193 cm.

(a) (b)

Figure 2. A typical localization results for the first path using (a) all sensors except the barometer
model and (b) including it. The path is 220 m long and it takes 5 min to walk it.

By incorporating the barometer, we are now able to recognize the correct position
for this floor change. This can be seen in Figure 2b. Here, we determined ρz using the
barometric formula, where ρ(h0) was set to the MSLP and σbaro = 0.005. The reference
value ρref was recorded at the beginning of the walk. Due to the smoothing behavior of
our approach, the approximated path was slightly straightened. Now the average has
improved to x̄Baro = 312 cm with a standard deviation of 219 cm. Comparing Figure 2a,b,
it is only logical that no huge improvement could be expected, but nevertheless a better
overall approximation. Since all visited floors are the same height, a constant value ρz = 0.3
or a size-limited measurement history for ρref supply similar results.

Another example of our approach can be seen in Figure 3. Here, we are using the
same setup as above. The route starts on the left side of the third floor. Walking alongside
the same floor until the starting point of the first path, which is on the right side of the
building in the second floor. After doing a 180 ◦ turn, we walk down to the first and then
to the zeroth floor. The route ends by walking the zig-zag staircases back to the start.
Again, a visible improvement of the floor changes and also the position awareness can be
seen by comparing Figure 3a,b. However, looking at the error between ground truth and
approximation the localization result without barometer provides x̄noBaro = 315 cm with
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a standard deviation of 222 cm, whereas x̄Baro = 323 cm and 283 cm. This is a result of a
series of timing errors during the long stair descent at the end of the second path.

(a) (b)

Figure 3. A typical localization results for the second path using (a) all sensors except the barometer
model and (b) including it. The path is 120 m long and it takes 3 min to walk it.

One reason for the timing errors is the non-optimal ground truth model. For example,
as shown in Figure 2, the ground truth path (dashed line) runs in a vertical straight line
from floor 3 directly to floor 1 , but it obviously does not model the architecture of the
staircase. This actually consists of several zigzag staircases, each with a level between two
floors and on each floor. As described in Section 3, the transition draws particles based on
a constant walking speed between the floors and thus behaves identically to the ground
truth model. In contrast, when including the barometer evaluation model each sample
is weighted based on real measurements, which is directly proportional to the vertical
movement speed of the subject. Since the speed of movement on a staircase is very different
from the speed of movement on a plane surface, as assumed for the movement on the
graph, the above mentioned timing problems occur. Assuming a more realistic ground
truth model, the localization with barometer should lead to a lower approximation error or
at least not worsen it further.

The above discussion reveals a more general problem of the approach presented here,
namely the discrete representation of the floors. Moving between floors on a discrete
basis essentially ignores any stairs and is therefore more like jumping between them. It
is therefore also not possible to model positions between two floors. If a user is in the
center of a stairwell, the measurement of the atmospheric pressure may confirm this,
but the transition is not able to model the density in this area, which is why an incorrect
approximation of the posterior results even after weighting with the evaluation model.
Put more simply, the particle filter does not have samples on the stairs that are weighted
according to the barometer readings and thus cannot provide a suitable approximation of
the state-space model.

Another problem was noticed in the experiments, which can be traced back to the
discrete floor changes. When changing floors, the pressure changes proportionally to the
vertical height and is therefore directly dependent on the walking speed of the test person.
During the first half of a staircase, the evaluation therefore ensures that samples in the
floor that has just been left are still rated higher than in the one to be entered. However,
the step detection as well as the transition continue for every filter update and causes the
entire density to shift in the direction of the specified heading. Especially with high floors
or if other sensor models such as Wi-Fi also consider the previous floor as more likely,
this can lead to an under-representation of samples of the particle filter on the new floor.
Ultimately, this leads to the fact that all samples of the particle filter are past the stair, so
that no transition between floors is possible anymore and thus ultimately the floor change
has failed. This problem is also known as sample impoverishment [20].
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In contrast to the other, the zeroth floor is 70 cm higher. Nevertheless using a con-
stant pz or a size-limited measurement history for ρref results again in a similar position
estimation. This is no surprise since we have chosen a very wide σ2

z in (12) due to the
fluctuating measurements of the phone’s barometric sensor and thus 70 cm is not a great
deal. Considering even higher floors these methods are very likely doomed to failure.

6. Conclusions and Future Work

We successfully presented the integration of the phone’s barometer within an indoor
localization system. Our method is able to detect floor changes and thus increase the
accuracy of the estimated position. It could be seen that absolute pressure readings are
highly affected by different influences such as temperature, weather patterns, or the used
hardware, which confirms our relative approach. By using a recursive state estimation an
unified interface for incorporating highly different sensor types is also given. To enable a
realistic evaluation, we additionally incorporate Wi-Fi, iBeacons, Step, and Turn Detection
statistically. It could be seen that the barometer is a very good addition to those sensors.
Especially, the timing of floor changes as well as the approximated path has improved
visibly. In addition, the very limited method for floor estimation using a constant change
of pressure for every floor provides similar results. The same applies for the size-limited
measurement history. The usage of both methods still depends heavily on the area of
application. At this point in time, the presented approach only allows discrete floor
changes, i.e., de facto jumps over several meters. However, extending this to a continuous
representation for the map, for example a navigation mesh, should be straightforward,
but requires more precise specifications for the barometric formula as previously discussed.
An additional use of the accelerometer to detect vertical movements could stabilize this
approach and possibly even remove the requirement that the heights of the floors must be
known. Statistically integrating the detection of the transportation mode, namely elevator,
escalator, or stairs, is another prospect of future work. This would provide additional
position awareness.
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