
Citation: Kozlov, A.; Kapralov, F.

Angular Misalignment Calibration

for Dual-Antenna GNSS/IMU

Navigation Sensor. Sensors 2023, 23,

77. https://doi.org/10.3390/

s23010077

Academic Editor: Sandra Verhagen

Received: 9 November 2022

Revised: 10 December 2022

Accepted: 15 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Angular Misalignment Calibration for Dual-Antenna
GNSS/IMU Navigation Sensor
Alexander Kozlov *,† and Fedor Kapralov †

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia
* Correspondence: a.kozlov@navlab.ru; Tel.: +7-495-939-5933
† These authors contributed equally to this work.

Abstract: We address the angular misalignment calibration problem, which arises when a multi-
antenna GNSS serves as a source of aiding information for inertial sensors in an integrated navigation
system. Antennas usually occupy some outside structure of the moving carrier object, whilst an
inertial measurement unit typically remains inside. Especially when using low- or mid-grade MEMS
gyroscopes and accelerometers, it is either impossible or impractical to physically align IMU-sensitive
axes and GNSS antenna baselines within some 1–3 degrees due to the micromechanical nature of the
inertial sensors: they are just too small to have any physical reference features to align to. However, in
some applications, it is desirable to line up all sensors within a fraction-of-a-degree level of accuracy.
One may imagine solving this problem via the long-term averaging of sensor signals in different
positions to ensure observability and then using angle differences for analytical compensation. We
suggest faster calibration in special rotations using sensor fusion. Apart from quicker convergence,
this method also accounts for run-to-run inertial sensor bias instability. In addition, it allows further
on-the-fly finer calibration in the background when the navigation system performs its regular
operation, and carrier objects may undergo gradual deformations of its structure over the years.

Keywords: inertial sensors; multi-antenna GNSS; angular misalignment; calibration

1. Introduction

One of the key problems in using low-grade inertial measurement units (IMU) is
their inability to perceive azimuth without external aids. High-grade strapdown inertial
navigation systems (INS) do this by measuring the Earth’s rotation rate components in
their instrumental axes. Apart from direct vector matching, there exist a number of ap-
proaches [1], but the crux remains in the accuracy of angular rate sensors (gyroscopes) being
well within a small fraction of the Earth’s angular rate magnitude. For microelectrome-
chanical sensors (MEMS), run-to-run bias instability typically exceeds this requirement by
1–3 orders of magnitude, making conventional azimuth perception virtually impossible.
For sensors having better in-run stability, special gyrocompassing methods have been
developed [2], which require some special rotation of the IMU and a decent time span.
In some cases, these methods highly rely on the physical stability of the base, so that the
slightest mechanical perturbation may entirely ruin the solution. Even conventional sensor
fusion with a single-antenna global navigation satellite system (GNSS) has its capabilities
quite limited in estimating azimuth attitude error for low-grade gyroscopes.

To tackle this issue, a dual-antenna GNSS setup has become rather popular in a variety
of applications [3–8] since cheaper and more compact GNSS hardware had emerged on
the market. Its baseline vector, i.e., the vector connecting phase centers of the antennas
(see Figure 1), being both known in the body reference frame of a vehicle and measured in
a navigation reference (say, East–North–Up axes) using GNSS carrier phase observables
and an RTK (real-time kinematics) approach [9], yields two attitude angles almost instantly
as compared to MEMS gyrocompassing with no special maneuvering necessary. If the
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baseline lies sideways relative to the carrier, it provides yaw and roll angles of the body,
with pitch, i.e., the rotation angle around the baseline itself, remaining unknown. Still, the
inertial sensor provides pitch orientation, so that a full attitude solution becomes available
in this integrated sensor system.

Figure 1. An example of a dual-antenna GNSS setup (see top left corner) mounted on a vehicle with
the baseline lying sideways from one antenna to another. Image courtesy of Kragh et al. [3].

However, some use cases require a sub-degree level of attitude accuracy, which implies
both dual-antenna GNSS and inertial systems well aligned within the vehicle’s frame of
reference. For GNSS antennas with proper phase center calibration, their locations usually
match the intended positions in technical drawings. The latter generally have millimeter-
level precision, so that corresponding angular deviations on a 1 m baseline become small
fractions of a degree. They do less well with the inertial sensors. Due to the size of MEMS
gyroscopes and accelerometers being extremely small, they barely have physical features
to align them better than within some 3°. Therefore, after installation, the IMU module has
some unknown angular misalignment with respect to GNSS antennas.

Due to its rather niche application, only a few works address the above issue [4,6,10].
We have been unable to find published methods, which still may exist in the Web. From
personal communication, it appears that angular misalignment calibration either requires
a special static experiment over a long period of time when both attitude solutions are
averaged, or it emerges from the manual analysis of deviations in the integrated attitude
solution. While the first solution relies upon inertial sensor biases being stable enough
and takes a lot of time, the drawbacks of the second approach are self-evident.

In this paper, we suggest a solution to the misalignment problem via its calibration
based on sensor fusion algorithms in a special experiment. Apart from faster convergence,
this method accounts for run-to-run inertial sensor bias instability. In addition, it allows
further on-the fly finer calibration in the background when a navigation system performs its
regular operation, and the carrier object may undergo gradual deformations of its structure
over the years.

While our calibration method is based on conventional Kalman filtering and INS error
equations, we have identified four key issues that appear to be essential to solving the
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problem. They have not been self-apparent prior to approaching the problem, and therefore,
we would like to emphasize these issues for those who may be working on similar problems:

• Ensuring observability and good estimability in the underlying estimation problem
requires specific rather intensive rotations;

• For those above-mentioned rotations, attitude integration algorithms must provide
a numerical solution which conforms to the INS error equations closely enough; for
example, simplest single-step Euler integration does not do so;

• Timing delays between GNSS and IMU measurements should be a part of the es-
timation problem, since their magnitude even of a fraction of an IMU time step is
significant enough;

• In addition, gyroscope measurements should be extrapolated accordingly when trans-
forming GNSS antenna velocity into the velocity of the IMU.

In the following sections, we formulate misalignment calibration as an optimal esti-
mation problem for a dynamic system with measurements. Its mechanization equations
are based on INS error equations, with additional parameters being modeled as constants.
For the complete rationale and derivation, please see the sections below. We consider the
following sensor setup shown in Figure 2 with the notation listed in Table 1.

Figure 2. Sensor setup. Two antennas (A1 and A2) of a dual-antenna GNSS unit reside at locations
given by lever arms ¯̀1 and ¯̀2 relative to the inertial measurement unit with its reference point M.
IMU instrumental axes z1, z2 and z3 are fixed to inertial sensor array, while lever arm vectors are
known in a carrier body reference frame. Three components κ1, κ2 and κ3 of the Euler rotation
vector define the slight misalignment between the two reference frames.

Table 1. General notation.

Symbol Meaning

A1, A2, M GNSS antenna locations and IMU reference point, respectively
¯̀1, ¯̀2 antenna lever arm vectors, i.e., ¯̀k = MAk

b1, b2, b3 carrier body reference frame: b1 — roll axis, b2 — normal axis, b3 — transverse axis
z1, z2, z3 respective IMU instrumental axes
κ1, κ2, κ3 components of the Euler rotation vector transforming from Mb frame to Mz
x1, x2, x3 navigation frame: x1 — eastward (E), x2 — northward (N), x3 — upward (U)
L IMU attitude matrix, transforming from Mx frame to Mz
γ, θ, ψ corresponding roll, pitch and true heading angles, respectively
ωz, fz angular rate and specific force vectors as projected onto the instrumental axes
ω′z, f ′z their components as measured by respective inertial sensors
ḡ, ū the Earth’s local gravity and rotation velocity vectors
ϕ, λ, h geodetic coordinates (latitude, longitude, altitude)
V IMU velocity vector
t time



Sensors 2023, 23, 77 4 of 19

We assume every quantity as a function of time, so that t may appear as its argument,
if necessary. However, in most cases, it is omitted for brevity.

Each vector symbol may have a subscript letter denoting either a reference frame in
which its components are considered (e.g., x, b, z), or a specific axis (E, N, U, etc.) The dot
above any quantity ˙[ ] represents its derivative over time. For the vector product with any
vector v̄, we introduce a linear operator v̂ so that in its coordinate form, the vector product
becomes multiplication by a matrix:

v̂ =

 0 v3 −v2
−v3 0 v1

v2 −v1 0

, v̂[·] de f
= [·]× v

Let I be the identity matrix of the appropriate size whenever it is being used. We
consider all reference frames to be right-handed orthogonal, so that the IMU has been
calibrated with sufficient accuracy. The relation between attitude angles and attitude matrix
is as follows:

L(γ, θ, ψ)=

 cosθ sinψ cosθ cosψ sinθ
−sinθ sinψ cosγ+cosψ sinγ −sinθ cosψ cosγ−sinψ sinγ cosθ cosγ

sinθ sinψ sinγ+cosψ cosγ sinθ cosψ sinγ−sinψ cosγ −cosθ sinγ

, (1)

2. Theoretical Background
2.1. Inertial Solution

To formulate the INS error equations, one must obtain the inertial solution first. It uses
measurements from inertial sensors—angular rate sensors (gyroscopes) and accelerometers—
for integrating equations of motion and yields attitude, position and velocity solution over
time. The equations may appear in different form, and here, we use the attitude matrix and
geodetic coordinates to use the same equations not only for calibration but in INS regular
operation as well. They are as follows:

λ̇ =
VE

(RE + h) cos ϕ
, ϕ̇ =

VN
RN + h

, ḣ = VU,

V̇x =
(

Ω̂x + 2ûx

)
Vx + gx + LT fz, (2)

L̇ = ω̂zL− L
(

Ω̂x + ûx

)
,

where gx includes the centrifugal specific force component, and Ω is an angular velocity of
the navigation reference frame Mx relative to the Earth, with its components being:

Ωx =
[
− VN

RN+h
VE

RE+h
VE tg ϕ
RE+h

]
T, RE =

a√
1− e2 sin2 ϕ

, RN = RE
1− e2

1− e2 sin2 ϕ
, (3)

with a and e being the Earth’s ellipsoid semimajor axis and eccentricity, respectively.
The first three equations in (2) actually describe a radius vector rx in some Earth-centered
Cartesian reference frame. These two variants may be used interchangeably.

It is common to omit some of the terms such as Coriolis acceleration or even the Earth’s
rotation in the above equations for lower grade inertial units. In the following derivations
we will, however, keep these terms for the pure sake of mathematical rigor. In real-world
applications, the corresponding algorithms may happen to be previously implemented and
tested in navigation software or libraries. Given that for modern processors, the additional
computational burden often appears neglectable, we find it appropriate to leave for each
reader the decision of whether to simplify the equations or not.

In addition, in real navigation systems, the equations for the altitude and vertical
velocity component in (2) introduce well-known exponential instability [1]. So, instead
of integrating them, the system uses an external source for altitude. In our misalignment
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calibration, however, we may benefit from using vertical velocity measurements from
GNSS, like from using horizontal ones. We therefore keep these equations from being
integrated and use them to form INS error equations as well.

The starting position and velocity in (2) are trivial to specify, with the coordinates
of the calibration experiment known and velocity being zero. Attitude determination,
however, requires a special procedure called initial alignment.

2.1.1. Initial Alignment Procedure

In this section, we describe the procedure required to obtain initial estimates for
the attitude matrix L0. For doing that, the IMU remains at rest on the ground for some
time t0 with its normal axis pointing approximately upwards. While being stationary, its
accelerometers measure the ground reaction force opposite to gravity acceleration, so that

LT fz + gx = 0. (4)

From the above, after averaging accelerometer outputs over the time period t ∈ [0, t0],
one may estimate IMU roll and pitch angles, respectively, as

γ′(t0) = arctg

〈
f ′z3
〉〈

f ′z2
〉 , θ′(t0) = arctg

〈
f ′z1
〉√〈

f ′z2
〉2

+
〈

f ′z3
〉2

, (5)

with the prime [ ]′ symbol meaning a value derived from measurements, and angle brackets
〈·〉 for averaging over t ∈ [0, t0]. The two-antenna GNSS solution then provides an estimate
ψ′(t0) for the azimuth angle up to some misalignment and other errors. According to (1),
the estimated initial attitude matrix becomes:

L′(t0) = L
(
γ′(t0), θ′(t0), ψ′(t0)

)
. (6)

In addition to obtaining the initial attitude matrix, it is usually makes sense for MEMS
gyroscopes to obtain rough estimates for their in-run biases ν̃0

z1, ν̃0
z2, ν̃0

z3, since for most
devices, they exceed tens of degrees per second, being greater than or comparable to the
Earth’s angular rate of 15°/hr. Given the IMU is stationary during the initial alignment,
the simplest form for those estimates is:

[
ν̃0

z1 ν̃0
z2 ν̃0

z3
]T de f

= ν̃0
z (t0) =

〈
ω′z
〉
− L′(t0)ux. (7)

According to Section 2.1, there is one more feature to the initial alignment in our
misalignment calibration experiment. Namely, we are going to integrate the equations of
motion (2) along the vertical axis. To avoid introducing exponential instability into the
solution, we use a constant gravity model for our misalignment experiment with a gravity
acceleration value of

g0 de f
= ‖

〈
f ′z
〉
‖, so that g′x =

[
0 0 −g0]T. (8)

The model (8) certainly has some constant bias ∆gU produced by accelerometer errors.
However, this bias appears to introduce no error into calibration, being properly estimated
along with other parameters (see Section 2.4 for details).

2.1.2. Attitude Integration

For low-grade strapdown inertial systems such as MEMS-based IMUs, one usually
implements simpler versions of attitude integration algorithms such as the Euler method for
quaternions [11]. However, our simulation has shown (see Section 3.4) that motion patterns
which provide better estimability properties of the misalignment calibration should include
some kind of conical rotation. Under such motion, those simpler methods tend to introduce
significant numerical errors, which do not obey INS error equations. Being systematic, they
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in turn produce biased estimates in calibration. With that knowledge, we have decided
to use a more accurate version of the attitude integration algorithm based on the Bortz
kinematic equation [12] for a Euler rotation vector φ̄:

˙̄φ = ω̄ +
1
2

φ̄× ω̄ +
1
‖φ̄‖2

[
1− ‖φ̄‖ sin ‖φ̄‖

2(1− cos ‖φ̄‖)

]
· φ̄× [φ̄× ω̄], ‖φ̄‖ 6= πk, k ∈ Z. (9)

For (9), we use an approximation of the 4-th order Runge–Kutta integration method.
Although it may seem excessive to use it for a low-grade IMU, one should keep in mind that
its errors are either systematic and closely conformant to INS error equations or stochastic
with a nearly zero mean cumulative effect. Moreover, since we have used this algorithm for
processing simulated data, it seems consistent to use it for real experiments as well. For the
transition between two time instants ti−1 and ti with time step ∆t between them, we have:

F1 = F(ω̃z(ti−1), 0), ω̃z(ti−1) =
ω′z(ti) + ω′z(ti−1)

2
,

F2 = F
(

ω′z(ti), F1
∆t
2

)
, F3 = F

(
ω′z(ti), F2

∆t
2

)
,

F4 = F(ω̃z(ti), F3∆t), ω̃z(ti) =
3ω′z(ti)−ω′z(ti−1)

2
,

∆φ̄ =
F1 + 2F2 + 2F3 + F4

6
∆t, (10)

F(ωz, φz)
de f
= ωz +

1
2

φz×ωz +

(
1
12

+
‖φz‖2

720

)
φz×(φz×ωz),

where ω̃(ti−1) and ω̃(ti) approximate the instant rotation rate vector using gyroscope
measurements, which are the average angular rate components over the respective time
step. The function F(ωz, φz) is the fourth-order Taylor expansion of the right-hand part
of the Bortz equation with ‖φz‖�1. The calculated Euler vector increment ∆φz yields a
transition matrix C via Euler–Rodrigues’ rotation formula [12] as follows:

C = I +
sin ‖∆φz‖
‖∆φz‖

∆̂φz +
1− cos ‖∆φz‖
‖∆φz‖2 ∆̂φ

2
z . (11)

Together with the transition matrix for the navigation frame using the regular Euler
method, we perform mechanization for the attitude matrix L from a time instant ti−1 to ti:

L(ti) = C L(ti−1) BT, B = I +
sin ‖εx‖
‖εx‖

ε̂x +
1− cos ‖εx‖
‖ε‖2 ε̂2

x, εx
de f
= (Ωx + ux)∆t. (12)

Using (12), we obtain a calculated attitude matrix L′ over time, starting with L′(t0)
from the initial alignment procedure.

2.1.3. Position and Velocity Integration

For the position and velocity, the conventional modified Euler integration has proven
to work well, so that according to (2):

r′x(ti) = r′x(ti−1) + V′x(ti−1)∆t,

V′x(ti) = V′x(ti−1) +
[(

Ω̂′x + 2û′x
)

V′x + g′x
]∣∣∣

t=ti−1
∆t + L̃(ti−1/2)

T f ′z(ti)∆t, (13)

L̃(ti−1/2)
de f
=

(
I + ω′z(ti)

∆t
2

)
L′(ti−1),

with an appropriate gravity model for g′x, and L̃(ti−1/2) being an estimate for the mid-step
attitude matrix. Our calibration experiment does not include active linear motion, so (13)
may be simplified. The reason for not ignoring here the Coriolis term and the rotation of
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navigation frame (Ωx) is our future plan to use the same equations and models for in-run
system calibration in its regular operation.

As for the gravity model g′x, we use a constant value obtained in the initial alignment,
as per Section 2.1.1, for our nearly static calibration experiment to avoid exponential
instability. In other cases, appropriate gravity models may be used for integration, which
are provided with an external altitude information.

2.2. INS Instrumental Errors Model

In general, the choice of mathematical model of INS instrumental errors heavily re-
lies on accuracy class of the INS. For us, the subject is a low- or mid-grade MEMS IMU.
We assume that before calibrating the angular misalignment, the inertial sensors them-
selves are pre-calibrated, so that standard parameters of an INS instrumental errors model,
i.e., constant biases, scaling coefficients, etc., are compensated using one of the known
methods [13–15]. In addition, temperature variations of inertial sensor measurements are
not considered in this research. We assume that IMU thermal calibration can be carried out
in advance [16,17], and residual errors are stochastic. Otherwise, we may suggest perform-
ing the misalignment calibration at a constant temperature. Let us define accelerometers
and gyroscopes instrumental errors as

∆ fz
de f
= f ′z − fz, −νz

de f
= ω′z −ωz, (14)

where the minus sign in the second expression of (14) originates from a tradition for
gimbaled INS. We accept the following model for instrumental errors of accelerometers
and gyroscopes

∆ fz = ∆ f 0
z + ∆ f s

z , νz = ν0
z + νs

z, (15)

where ∆ f 0
z , ν0

z are null biases of accelerometers and gyroscopes, respectively, ∆ f s
z , νs

z are
stochastic terms of the measurement error with known a priori moments. We include
null biases into the estimation process since they generally happen to be different and not
very stable in each INS run as opposed to scaling factors and other parameters. For their
instability, we accept Wiener processes:

∆ ḟ 0
z = q∆ f 0 , ν̇0

z = qν0 , (16)

where q∆ f 0 , qν0 represent independent white noise processes with known a priori moments.

2.3. INS Error Equations

The INS errors in the geodetic navigation frame are as follows:

• ∆rx = (∆rE, ∆rN, ∆rU)T is the position error;
• δVx = (δVE, δVN, δVU)

T is the velocity error;
• αE, αN indicates the deflection of virtual horizon,
• βU is the azimuth attitude error.

We further consider the behaviour of INS errors over time up to linear terms. We use
INS error equations [18] in the computed geodetic navigation frame y (My1y2y3). The INS
error equations will serve as a dynamic model in the linear estimation problem. We adapt
these equations for the case of specific calibration motions, the choice of which will be
explained in Section 3.4. The modification consists of replacing the term 2ω2

0∆rU with ω0
being the Schuler frequency, by the constant error of local gravity force ∆gU resulting from
accelerometer errors in initial alignment as described in Section 2.1.1. Thus, we have:
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∆̇rE = δVE −VUαN + VNβU +
VU

RE + h
∆rE + ΩU∆rN −ΩN∆rU,

∆̇rN = δVN + VUαE −VEβU +
VU

RN + h
∆rN −ΩU∆rE + ΩE∆rU,

∆̇rU = δVU −VNαE + VEαN,
˙δVE = +(2uU + ΩU)δVN − (2uN + ΩN)δVU − g0αN + (LT∆ fz)E,
˙δVN = −(2uU + ΩU)δVE + (2uE + ΩE)δVU + g0αE + (LT∆ fz)N,
˙δVU = +(2uN + ΩN)δVE − (2uE + ΩE)δVN + ∆gU + (LT∆ fz)U,

α̇E = −uU + ΩU
RE + h

∆rE −
ΩE

RE + h
∆rU −

δVN
RN + h

+ . . . (17)

. . . +(uU + ΩU)αN − (uN + ΩN)βU + (LTνz)E,

α̇N = −uU + ΩU
RN + h

∆rN −
ΩN

RN + h
∆rU +

δVE
RE + h

− . . .

. . . −(uU + ΩU)αE + (uE + ΩE)βU + (LTνz)N,

β̇U = +
uE + ΩE
RE + h

∆rE +
uN + ΩN
RN + h

∆rN + . . .

. . . +(uN + ΩN)αE − (uE + ΩE)αN + (LTνz)U,

∆̇gU = 0.

To make INS equations less cumbersome, we omit primes in all coefficients of the
INS errors because the equations still hold true to within linear approximation. In addi-
tion, we consider the continuous-time version of a linear dynamic system for the sake of
notation’s simplicity.

2.4. Measurements and the Estimation Problem

We use a commonly accepted loosely coupled GNSS-INS integration scheme with the
feedback into inertial solution, the reason behind being its equivalence with the tightly
coupled integration under a sufficient number of GNSS measurements. We assume that
the misalignment calibration experiment is carried out in a favorable GNSS environment.
In the estimation, we use a GNSS-derived position and velocity solution obtained from
Doppler measurements. For them, timing errors play a significant role, so they are described
separately below.

2.4.1. Time Synchronization Errors between INS and GNSS

The benefit and methods of estimating the time synchronization errors between INS
and GNSS are shown both by numerical simulation of low-cost GNSS-aided INS integration
with feedback [19] and by the processing of real data from aircraft flights with a strapdown
INS [20]. For our research, we have also performed the numerical simulation, which
supports the above results (see Section 3.4).

Let r′x(t) and V′x(t) be the calculated INS position and velocity, respectively, computed
at some time t. We then define the time synchronization errors τpos, k, τvel, k for two antennas
(k = 1, 2) between INS and GNSS solutions as follows:

• rk
x(t− τpos, k) is a GNSS-derived position of the k-th GNSS antenna computed at time t,

• Vk
x (t− τvel, k) is a GNSS-derived velocity of the k-th GNSS antenna computed at time t.

We assume magnitudes of time synchronization errors to lie typically within 0.1–0.2 s,
i.e., within a few GNSS time steps. Hence, we accept the following relations:
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rk
x(t− τpos, k) = rk

x −Vk
x τpos, k, (18)

Vk
x (t− τvel, k) = Vk

x − V̇k
x τvel, k, (19)

τ̇pos, k = 0, τ̇vel, k = 0. (20)

In (18) and (19) and further on, we specify only time instants different from t.

2.4.2. Angular Misalignment between Instrumental and Body Frames

In this section, we mathematically formulate the problem of the angular misalignment
between INS and dual-antenna GNSS. Let us recall the underlying assumptions:

1. Origins of the instrumental and body frames are the same;
2. Constant lever arms of two GNSS antennas A1, A2 in the body frame `1

b, `2
b are known;

3. Instrumental and body frames slightly differ.

The first proposition follows from the definition of the body frame (see Table 1). As for
the second assumption, the components `1

b, `2
b are found or calculated from the technical

documentation of the carrier object. If the angular misalignment between reference frames
is large, one can deduce its approximate magnitude from the same technical documentation,
thus reducing the problem to small angles, as the third assumption states.

From the assumptions above, for ¯̀1, ¯̀2 we have

`1
z = (I + κ̂b)`

1
b, `2

z = (I + κ̂b)`
2
b, (21)

i.e., the attitude of the IMU instrumental frame z relative to the body frame b is determined
by Euler rotation vector κb = (κ1, κ2, κ3)

T. The constancy of κb fully depends on the
carrier object being rigid and stiff enough for GNSS antennas and IMU spatial separation
to stay the same, so we believe that

κ̇b = 0. (22)

2.4.3. INS Attitude Errors

The INS error equations given in Section 2.3 imply several reference frames as per
Table 2 below.

Table 2. Reference frames.

Axes Description

x1, x2, x3 true navigation frame
z1, z2, z3 true IMU instrumental frame
x′1, x′2, x′3 computed navigation frame as a result of INS coordinate errors
z′1, z′2, z′3 computed instrumental frame as result of applying operator L′ to x′ axes
y1, y2, y3 computed navigation frame as result of applying operator L′T to z axes

The origin of true frames x, z is the IMU reference point M. The origin of computed
frames x′, y, z′ is a computed IMU position M′. Euler rotation vectors α0

x, β0
x and γ0

x
represent transformations between close reference frames x, x′, and y, so that for the
components of any vector v, we have the following:

vz = Lvx, vz′ = L′vx′ , vy =
(

I + α̂0
x
)
vx, vy =

(
I + β̂0

x
)
vx′ , vx′ =

(
I + γ̂0

x
)
vx, (23)
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with the linear relation between Euler rotation vectors α0
x, β0

x, γ0
x and INS errors represented

as follows:

α0
x =

(
αE, αN, βU +

tan ϕ

RE + h
∆rE

)
T, β0

x =
(

αE +
∆rN

RN + h
, αN −

∆rE
RE + h

, βU

)
T, (24)

γ0
x =

(
− ∆rN

RN + h
,

∆rE
RE + h

,
tan ϕ

RE + h
∆rE

)
T, α0

x = γ0
x + β0

x. (25)

Thus, introducing INS attitude errors, we follow the ideology of [18] with slightly
different notation. The complexity may seem excessive, but it keeps mathematical rigor in
our derivations.

2.4.4. Position Measurements

Let r̄k be the radius vector for the k-th GNSS antenna (k = 1, 2), as derived from GNSS
pseudoranges [9] and converted to the Earth-centered geodetic navigation frame x. The
residual position measurement for our linear estimation problem then becomes:

ζ pos, k de f
= r′x′ − rk

x(t−τpos, k) + L′T`k
b. (26)

Adding and subtracting rx′ from the right part of (26), substituting (18), (21), (24), (25)
into (26), and using the relation rx + `k

x = rk
x, yield a linearized model for the residual

position measurement at the GNSS epoch t for the k-th antenna:

ζ pos, k = ∆rx − L̂′T`k
bβ0

x − r̂k
x(t−τpos, k)γ0

x + Vk
x (t−τvel, k)τpos, k + L′T̂̀bκb + ρpos, k, (27)

where ρpos, k is a stochastic error with a priori known moments.

2.4.5. Velocity Measurements

Let Θz be the angular velocity of the frame Mz relative to the Earth so that
Θz = ωz − Lux. Having the GNSS velocity solution derived from Doppler measure-
ments [21], we introduce a residual velocity measurement:

ζvel, k de f
= V′x′ −Vk

x (t−τvel, k) + L′T̂̀k
bΘ′z. (28)

Similarly to the derivation of (27), we add and subtract Vx from the right part of (28),
substitute (19), (21), (24) into (28), and use the relation for linear velocities of two points (Ak

and M) of a rigid body Vk
x = Vx − LTΘ̂z`z. The linearized model for the residual velocity

measurement at GNSS epoch t for the k-th antenna then becomes:

ζvel, k = δVx −
(

V̂′x′ +
̂L′T̂̀k

bΘ′z
)

α0
x − L′T̂̀k

bL′û′xβ0
x − L′T̂̀k

bν0
z + . . .

. . . +V̇k
x τvel, k − L′TΘ̂′ẑ̀k

bκb + ρvel, k, (29)

where ρvel, k contains both GNSS measurement noise and the gyroscope stochastic term νs
z,

whose moments are known. The coefficient of τvel, k in (29), taking (2) into account, can be
expressed up to linear terms as

V̇k
x = L′T f ′z + g′x′ + (Ω̂′x′ + 2û′x′)V

′
x′ + L′T

(
Θ̂′ 2z − ̂̇Θ′z)`k

b − Ω̂′x′L
′TΘ̂′z`

k
b. (30)

Note that (30) may be further simplified if the IMU is stationary, so that Vx ≈ Ωx ≈ 0.
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2.4.6. Estimation Problem

Thus, we have reduced the problem of calibration of angular misalignment between
dual-antenna GNSS and IMU to a linear stochastic estimation problem with the following
23-dimensional state space vector:(

∆rx
T, δVx

T, αE, αN, βU, ∆gU, ∆ f 0
z
T, ν0

z
T, τpos, 1, τpos, 2, τvel, 1, τvel, 2,κb

T
)

T. (31)

The dynamic model for (31) consists of (16), (17), (20), and (22). Equations (27) and (29)
form the measurement model. For processing, we use the discrete-time equivalent of these
equations. The initial estimate of the state space vector is zero, and the initial covariance
matrix of the estimation error is known a priori.

There are many methods based on the Kalman filtering approach [22], which provide
estimates for the state vector components (31) either in real time or in post-processing. We
use the Potter square root filter version based on Cholesky covariance factorization [23].

3. Numerical Simulation
3.1. Motivation

After the calibration has been formulated as an estimation problem in the above Section 2.4,
we need to ensure its good estimability properties in terms of converging error covariance [24].
As it is usually the case in INS sensor fusion algorithms, its properties mostly depend on the
motion of the IMU. Time-varying coefficients ωz(t), fz(t), and L(t) in (27) and (29) define how
well components of the state vector will separate from each other in the estimation process,
or, in other words, how differently these components will manifest themselves in INS errors.
For higher-order time-varying systems such as that being under consideration, predicting its
properties analytically from the equations alone is hardly a solvable task in general. In fact,
only numerical analysis may provide practical insights for most systems of this kind. Therefore,
testing a range of scenarios for the calibration experiment, and choosing the right one to be
actually executed, become primary reasons to perform numerical simulation. The secondary
reason being mere verification of the consistency between our models and algorithms is also
important to support future conclusions.

In our case, it was the simulation that has forced us to take into account effects which
a priori seemed quite neglectable even to experts in the field. All in all, we have decided to
describe the numerical simulation as an inseparable part of our research.

3.2. Inertial Sensors

As a matter of fact, rotational motion is crucial to calibrating angular misalignment.
To simulate such motion, we have developed a virtual three-axis turntable. Each axis, being
controlled and simulated individually, can perform a number of commands. Their list
includes moving into an arbitrary pre-selected position, uniform rotation at a given rate,
harmonic oscillations and stopping the rotation.

For each axis of our virtual turntable, according to a pre-defined set of specific commands,
we create a twice continuously differentiable analytical function, representing the angle of
rotation around this particular axis over time. Combining rotations for three axes then allows
us to simulate a wide range of complex motion patterns and calibration scenarios. Using
analytic functions for rotation angles, we derive the absolute angular rate ωz(t) and the
specific force fz(t) vectors as projected onto the IMU instrumental reference frame. We then
calculate their components on a discrete time grid at a high rate. Downsampling to a desired
IMU sampling rate of, say, 250 Hz, using arithmetic average, completes the simulation process.

The higher internal frequency of the simulation allows us to properly reproduce the
integration (or averaging) which occurs in real inertial sensors. Internal frequency may be
set as high as it is required for a given rotation pattern. In practice, one should try larger
and larger values until the change in navigation solution becomes negligible. In our case,
for a 250 Hz IMU sampling rate, a 256 times higher simulation frequency of 64 kHz has
happened to be enough.



Sensors 2023, 23, 77 12 of 19

For now, the IMU reference point M remains stationary in our simulation. Inertial
sensor errors satisfy the model (15), being added when appropriate.

3.3. GNSS Measurements

Having the IMU rotation ready, so that we may assume angular rate vector components
ωz(ti) and attitude matrix L(ti) to be known at a discrete time grid, the GNSS position and
velocity of two antennas A1 and A2 need to be simulated (see Figure 2). For them, each
lever arm vector `1

b and `2
b is known component-wise in some carrier body reference frame

b. Angular misalignment angles κ1, κ2 and κ3 define an Euler rotation vector κ with the
corresponding rotation matrix D according to (11):

D = I +
sin ‖κb‖
‖κb‖

κ̂b +
1− cos ‖κb‖
‖κb‖2 κ̂2

b . (32)

Using the above matrix, the antenna coordinates in geodetic Cartesian axes become

Ak = M + LTD`k
b, (33)

with, longitude, latitude and altitude as well as radius vector appropriately calculated.
Velocity vector derivation uses Euler’s rotation formula, so that given the IMU does

not perform linear motion, for each antenna, we have

Vk
x = −LTΘ̂zD`k

b, Θz = ωz − Lux, (34)

where the instant rotation rate components ωz are either taken directly from the simulation
of inertial sensors before averaging or derived from the gyroscope output similar to (10).

When necessary, we add GNSS solution errors to the antenna position and velocity as
well. The GNSS position stochastic errors, although having a rather complicated nature
in practice, happen to have a minor effect on the estimation of angular misalignment. For
GNSS velocity derived from Doppler measurements, their stochastic errors appear to be
quite close to white noise.

3.4. Simulation Results

To demonstrate the rationale behind certain decisions accepted in our calibration
method, we have simulated the following effects listed in Table 3 below.

Table 3. Simulated effects.

Description Parameters Typical Values

Different spatial configurations of sensor setup `k
b ∼ 1 m,

Angular misalignment between b and z frames κb ∼ 3°
Initial alignment errors ∆ψ(t0) = βU ∼1°
Inertial sensor errors ∆ fz, νz ∼1 cm/s2, 10°/h
GNSS velocity solution bias 1 cm/s
Time delays of GNSS solution τpos, k, τvel, k ∼10 ms

Before proceeding to choose the class of rotational motion for the calibration, one should
note that in measurement model (27), (29) the coefficients of the desired κb parameters
contain constant factors ̂̀k

b, and for them, we have rank
(̂̀1

b
̂̀2

b
)
≤ 3, so it can be potentially

less than the dimension of κb. Therefore, the choice of two GNSS antenna locations (`1
b, `2

b)
with respect to the IMU has a direct impact on the estimability of all three parameters κ1,
κ2, κ3. The necessary conditions for them to be estimable is `1

b 6= c`2
b for any non-zero

constant c. In the simulation, this condition is satisfied at all times, unlike the next argument
in Section 4 dedicated to real data processing, where the actual sensor setup did not allow
for that.
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For the misalignment calibration problem, we suggest using so-called conical motions.
They comprise simultaneous rotations around two perpendicular axes. For them to be
carried out on a turntable, two of its axes perform harmonic oscillations out of phase by a
quarter of a full period with each other. The term conical arises from one of the instrumental
axes moving along the generatrix of a certain circular or elliptical cone (depending on
amplitudes of the above harmonic oscillations).

Figure 3 demonstrates the difference in estimation process for two different rotation
types in terms of κb. The first type of motion (see the left inset) is a sequence of four
rotations by 90° around vertical axis x3, which approximately coincides with the second
instrumental one z2. After each rotation by 90°, there is a static position. Axes z1 and z3
lie near the horizontal plane x1x2. As a result, two GNSS antennas move along horizontal
circles. Rotations such as these, so that the IMU has different heading angles with a
roughly 90° increment, are similar to maytagging—a conventional technique used for
gyrocompassing using low-grade inertial sensors [2]. The second type of rotation (see the
right inset of Figure 3) is the conical motion described above. The figure clearly shows that
conical rotation provides a strictly monotonic decrease of the estimate error covariance
converging to zero over time, while the maytagging does not do so.

The second point which the numerical simulation has given us an insight into refers
to the timing errors between inertial and GNSS information while performing the angular
misalignment calibration. Although it is almost self-evident that these should be taken into
consideration, the actual figures have become a surprise even for experienced engineers
working in the field. Figure 4 indicates that even 12-millisecond timing errors τvel, k,
(k = 1, 2), which correspond to only 3 IMU samples at 250 Hz, can be critical. The dashed
lines stand for the errors in estimating τvel, k (left plot) and κb (right plot) when calibration
models include the timing skew. Solid lines represent the case when τvel, k is omitted under
simulated 12-millisecond delay in GNSS measurements. It apparently becomes an issue for
estimating κ2, κ3, with their estimates swaying away from reference values. In addition
to Figure 3, the plots below confirm that once the conical rotation starts, the estimated
misalignment errors immediately begin to converge. Timing errors τvel, k appear to have
good estimability right away from the very first rotation.

Figure 3. Estimated standard deviations (SD) for κb, βU in two types of rotation: maytagging-like
(left), and conical (right), showing the advantage of the latter one with steady convergence to lower
SD values for all components.
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Figure 4. The left plot shows errors of τvel, 1, τvel, 2 estimates (dashed lines) and their corresponding
2-σ intervals (semitransparent). The right plot contains errors of κb estimates in two cases: with
GNSS-derived velocity delays τvel,k = 12 msec included in the estimation problem (dashed lines)
and without them (solid lines). The latter have an κ3 estimate converging to a wrong value and an
κ2 error decreasing much slower than it should. For a smaller magnitude of τvel,k, the estimation
errors still may remain significant.

From the same assessment, it follows that even phase delays of a fraction of the inertial
time step in angular rate measurements should be accounted for in both simulation (34)
and estimation (30), since they produce significant calibration errors, albeit not as large as
in the example that Figure 4 illustrates.

Another issue that the numerical simulation has revealed appeared to be a substantial
difference between attitude integration methods. Although simpler integration methods
are usually considered sufficient for MEMS gyroscopes, Figure 5 indicates that replacing
the method alone changes the estimation error completely once conical rotation starts. For
conventional Euler integration, which accounts only for the first term in the Bortz kinematic
Equation (9), estimation errors of κ2 and βU shown in green and yellow, respectively, do
not converge to zero over time. We believe that this is due to the fact that a more accurate
attitude integration algorithm provides errors much more closely conforming to the INS
error Equation (15) for their systematic parts.

In this section, we deliberately do not show any results with sensor errors containing
stochastic terms, because qualitative analysis does not depend on them. In fact, such
simulations with Gaussian noises were carried out as well to test our processing software.
Overall, our experience has shown that estimation problems of this kind are barely solvable
in practice without proper simulation.
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Figure 5. Errors of κb, βU estimates using (a) conventional Euler attitude integration (solid lines),
and (b) our algorithm described in Section 2.1.2 (dashed lines). Replacing the attitude integration
algorithm alone changes the convergence from non-existing to very good.

4. Experimental Results

For preliminary validation, two similar calibration experiments have been performed
using the setup shown in Figure 6.

Figure 6. An experimental setup used for preliminary validation of the calibration method. Two GNSS
antennas and a 6 DoF MEMS IMU are fixed to a single base plank. After initial alignment, the whole
structure undergoes series of rotations of different types performed by hand.

In these experiments, we used high-precision GNSS equipment, namely Javad™
Prego® receivers and AirAnt® antennas. For inertial sensors, we took an iSense™ AIST-350
thermally stabilized MEMS IMU based on LPY510 gyroscopes and ADXL326 accelerome-
ters by ST Microelectronics™ and Analog Devices™, respectively. GNSS receivers were
operating at 10 Hz, while IMU records had a 250 Hz sampling rate. Both experiments,
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after the 4 min initial alignment phase, included three types of rotation for approximately
6 min each, with 4 min static intervals between them:

1. Oscillations around the roll axis (referred to as γ(t) oscillations below) with amplitude
up to 10° and nearly constant yaw ψ(t) and pitch θ(t) angles;

2. Oscillations around the yaw axis (referred to as ψ(t) oscillations below) with am-
plitude around 15° with nearly constant roll γ(t) and pitch θ(t) angles, both close
to zero;

3. Conical rotations, in which IMU performed minor linear motion, and GNSS antennas
were traveling along circles in anti-phase with each other, antenna lever arm vectors
sweeping along generatrix lines with 40–50° aperture, at a period of around 2–4 s.
These motions may be considered as a composition of the previous two.

All rotations were performed manually. Lever arms for both antennas had their
lengths around 0.8 m. Note that in our experiment, lever arm vectors ¯̀1 and ¯̀2 happen
to be collinear, so that the IMU reference point M lies on their baseline A1 A2. Hence,
parameter κ3 is not estimable under the given geometry. From this point on, we consider
the estimability of only two parameters κ1 and κ2 for the angular misalignment between
IMU and dual-antenna GNSS reference frames. Their true values, as described in the
Introduction, remain unknown, and there exist no reasonable means of measuring them
directly. However, since between the two experiments, our instrumental setup has not
changed, we expect estimates for κ1 and κ2 to repeat.

Figure 7 illustrates the estimation process over time for both experiments throughout
different types of rotation. Estimates for κ1 and κ2 appear as solid lines along with their
predicted 2-σ confidence intervals. The latter seem to well overlap by the end of the calibra-
tion, indicating that the estimates are consistent with each other in two experiments at a
sub-degree precision. Experimental data used in this Section are available in Supplementary
materials for processing.

Figure 7. Estimates for κ1 (top), κ2 (bottom) and their corresponding 2-σ confidence intervals
(semitransparent) in two similar experiments. The intervals eventually overlap with a desired
sub-degree level of precision, indicating consistent results.

Performing the first two types of rotation in our experiment was motivated by the
potential possibility of replacing conical motion, being more difficult to implement in
practice, with two of its constituents, namely rotations around each axis individually. To
address this, let us refer to Table 4 with Figure 7 serving for further clarification.
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Table 4. Estimation results prior and after the conical rotation.

Numerical Values κ1 (exp. №1/2) κ2 (exp. №1/2)

1-σ before conical motion 0.15°/0.16° 0.61°/0.72°
1-σ after conical motion 0.10°/0.11° 0.23/0.28°

Estimate before conical motion −0.23°/−0.12° −0.93°/+2.00°
Estimate after conical motion −0.33°/−0.25° +0.16°/−0.24°

The estimated error covariance for κ1, κ2 noticeably decreasing after the execution of
conical motion implies that rotations around roll and yaw axes separately do not provide
proper convergence. So, from the covariance analysis, we recognize that conical rotation is
the preferred type of motion ensuring estimability for the angular misalignment calibration
in real experiments and further supporting the results of numerical simulation.

5. Discussion

We have reduced the problem of angular misalignment calibration between the instru-
mental reference frame associated with an IMU, and the carrier body reference frame with
known locations of two GNSS antennas in it, to a conventional linear stochastic estimation
problem. The research is relevant to all applications aimed at tracking orientation using
a low-grade IMU and dual-antenna GNSS within a sub-degree level of precision. Appro-
priate measurement models have been derived to extend conventional loosely coupled
GNSS/INS sensor fusion filtering for including parameters required for the misalignment
calibration. It uses a GNSS position solution and velocity derived from Doppler observ-
ables. Since the algorithm has inertial sensor biases in its state vector subject to estimation,
it is expected to be immune to run-to-run bias change inherent to most lower-grade inertial
sensors. Presumably, after compensating for the initial misalignment, the estimation may
continue running in the background to account for slower structural deformations over
time. This, however, requires additional research for confirmation.

The numerical simulation in Section 3.4 has shown that:

1. The preferred motion pattern for calibrating angular misalignment includes conical
rotation;

2. The following key issues appeared to be essential to successful estimation:

• Taking the time synchronization error between IMU and GNSS data into account
at the few-millisecond-level;

• The above includes phase delay inherent to integrating (or averaging) gyroscopes;
• Modifying the attitude integration algorithm to produce errors properly obeying

the INS error equations.

The processing of real experimental data has shown the feasibility of the proposed
calibration method, and it produced consistent results in agreement with the numerical
simulation. The final predicted standard deviation of the misalignment error does not
exceed 0.25°.

However, more extensive validation is planned for the future, since the real mis-
alignment angles, i.e., the “ground truth”, seem to be practically unavailable in real ap-
plications that use MEMS sensors. The validation may be achieved through a variety of
approaches, the first being increasing the number of experiments to a statistically signifi-
cant amount. The second option is to perform the calibration using a high-grade inertial
sensors. A navigation-grade INS is able to produce attitude angles autonomously, so that
its instrumental frame may be directly aligned to GNSS antennas within some few arc
minutes. After that, MEMS gyroscope and accelerometer data may be used to simulate
low-grade IMU output for our calibration algorithm to be applied to. The third approach
is an indirect one, the idea behind being to show that the navigation solution becomes
more accurate after compensating for the estimated misalignment angles. Having its own
importance in itself, this approach will become our primary focus for future research.
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In this work, we used the GNSS-derived position and velocity obtained from code
pseudoranges and Doppler measurements, respectively, since there exists GNSS equipment
not able to record phase measurements. The first two measurement types seem to be
available for an external processing in a wider range of GNSS devices rather than phase
measurements. For many general applications, lower-accuracy GNSS sensors are preferable
due to their smaller cost and size. Still, using phase measurements, and developing the
corresponding extension to the estimation problem, including INS-aided carrier phase
ambiguity resolution on-the-fly (i.e., deeply-coupled GNSS/INS for MEMS) is the next
possible development branch in our research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23010077/s1, Archive imu.zip: IMU gyroscopes and accelerome-
ters data; Archive gnss.zip: dual-antenna GNSS data in RINEXv3.04 format; Photo setup-overview.jpg:
overview of the experimental setup; Photo setup-geometry.png: scheme of setup geometry; Text file
experiment-info.md: detailed description of experiment.
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