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Abstract: Connected and automated vehicles (CAVs) present significant potential for improving
road safety and mitigating traffic congestion for the future mobility system. However, cooperative
driving vehicles are more vulnerable to cyberattacks when communicating with each other, which
will introduce a new threat to the transportation system. In order to guarantee safety aspects, it is also
necessary to ensure a high level of information quality for CAV. To the best of our knowledge, this is
the first investigation on the impacts of cyberattacks on CAV in mixed traffic (large vehicles, medium
vehicles, and small vehicles) from the perspective of vehicle dynamics. The paper aims to explore
the influence of cyberattacks on the evolution of CAV mixed traffic flow and propose a resilient and
robust control strategy (RRCS) to alleviate the threat of cyberattacks. First, we propose a CAV mixed
traffic car-following model considering cyberattacks based on the Intelligent Driver Model (IDM).
Furthermore, a RRCS for cyberattacks is developed by setting the acceleration control switch and
its impacts on the mixed traffic flow are explored in different cyberattack types. Finally, sensitivity
analyses are conducted in different platoon compositions, vehicle distributions, and cyberattack
intensities. The results show that the proposed RRCS of cyberattacks is robust and can resist the
negative threats of cyberattacks on the CAV platoon, thereby providing a theoretical basis for restoring
the stability and improving the safety of the CAV.

Keywords: connected and automated vehicles; cyberattacks; mixed traffic; car-following model;
resilient and robust control strategy

1. Introduction

At present, the global innovation trend is surging, and a new round of industrial
transformation is poised to take place. Internet, mobile communication, big data, artificial
intelligence, and other new technologies accelerate breakthroughs and continue to evolve,
promoting the rapid development of mobile Internet and automated driving technology.
Connected and automated vehicles which can realize “safe, efficient, comfortable and
energy-saving” driving will also emerge as the times require. CAVs are expected to improve
the characteristics of traditional traffic flow from the micro vehicle level, and then provide
an effective way to solve the problems of traffic congestion, traffic efficiency, and traffic
pollution. Scholars have also carried out some research to demonstrate the great potential
benefits of CAVs [1–3]. However, with the help of diverse and advanced communication
technology, the “intelligent” information exchange between vehicles and the surrounding
environment/world is realized all the time. Therefore, such an open-access communication
environment system increases the risk of vehicles being exposed to cyberattacks, which is
an urgent and critical challenge to be solved [4].
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In order to effectively resist cyberattacks and improve traffic safety performance,
scholars have conducted a lot of research on cyberattacks, which helps us understand the
impact mechanism of cyberattacks on traffic flow evolution, and lays a foundation for us to
design response strategies.

In terms of efforts to reveal the impact of cyberattacks on traffic flow characteristics,
Amir et al. [5] investigated the influence of mobile reactive jamming attacks on the stability
of CACC platoon, and the results showed that this attack will reduce the stability of
traffic flow system. Wang et al. [6] proposed an extended car-following model to describe
connected traffic dynamics under cyberattacks, the results showed that the proposed
model will help to avoid collision and reduce traffic congestion under the influence of
cyberattacks. Li et al. [7] studied and evaluated the impact of slight cyberattacks on CAV
longitudinal security through modeling and simulation. The results showed that the impact
of communication location attacks is worse than that of speed attacks. In addition, the
impact of cyberattacks in vehicle acceleration phase is more severe and dangerous than that
in vehicle deceleration phase. Wang et al. [8] proposed a bi-bi-layer architecture composed
of both a vehicle layer and a cyber layer to explore the impact of cyberattacks on CAV
platoon safety and efficiency. Dong et al. [9] proposed an evaluation framework to measure
the impact of cyberattacks on traffic flow performance and analyzed and studied the impact
from the aspects of attack intensity, attack range, and traffic demand through numerical
simulation. Khattak et al. [10] used an infrastructure-based communication platform to
discuss the impact of cyberattacks on the safety and stability of connected and automated
vehicle platoons under lane changes.

Furthermore, in terms of countering the adverse impact of cyberattacks on traffic
flow, Zhai et al. [11] designed a new continuous feedback controller based on lattice
hydrodynamic model to suppress the impact of cyberattacks, and the effectiveness of the
controller in dealing with cyberattacks and reducing traffic congestion were analyzed
and verified by stability analysis and numerical simulation. Noei et al. [12] proposed a
traffic microsimulation tool that can simulate conventional, automated, and connected
and automated vehicles in a platoon under fault, failure, and cyberattack with optimized
accuracy and simulation speed to maximize throughput and without compromising safety
or string stability. Lyu et al. [13] designed a communication topology safety response system
(CTSRS), and further combined with the distributed model predictive control (DMPC) to
ensure the stability and security of the truck platoon even if the trucks suffer cyberattacks.
Cheng et al. [14] proposes a novel intelligent driving model considering cyberattacks and
heterogeneous vehicles and revealed that the traffic stability and safety under cyber-attacks
can be enhanced through the high proportion of cars and the information accepted from
cooperative vehicles ahead.

In addition, some effective and robust control strategies that are not targeted at
CAVs also need to be further studied and are worthy of being applied to deal with CAV
cyberattacks [15,16], but we will not make a further detailed summary here.

Although some studies investigated the impact of cyberattacks and put forward the
corresponding strategies, to the best of our knowledge, almost no research has been done
to deal with cyberattacks from the perspective of switching acceleration controller.

To fill this gap, this paper first takes cyberattacks and different types of CAVs into
account in the Intelligent Driver Model (IDM). On this basis, an acceleration control switch
is designed as a robust and resilient control strategy against cyberattacks, which can help
traffic flow to restore stability and enhance security. Finally, the influence of cyberattacks
on the evolution of mixed traffic flow and the role of RRCS in combating cyberattacks are
revealed by numerical simulations. In particular, we also carried out a sensitivity analysis
of the RRCS based on different vehicle type proportions and different vehicle distribution.

The rest of the paper is organized as follows. Section 2 establishes a car-following
model of CAV mixed flow under cyberattacks. Section 3 proposes the robust and resilient
control strategy against cyberattacks. In Section 4, numerical simulations are carried out to
reveal the impact of cyberattacks on the evolution of mixed traffic flow, and the feasibility
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of the RRCS is verified by comparative experiments. Finally, Section 5 gives a general
conclusion about this work and some prospects for the research direction that can be
considered for future developments.

2. Car-Following Model of CAV Mixed Traffic Flow under Cyberattacks
2.1. General Assumption

The schematic diagram of the research scenario is shown below (Figure 1), covering
the following three assumptions:

1. The CAV mixed traffic flow refers to different types of connected and automated
vehicles, rather than the existence of non-connected and automated vehicles;

2. Only the longitudinal car-following behavior is considered, and the lane-changing
behavior and overtaking behavior are not considered;

3. Cyberattacks may appear in every vehicle in the CAV platoon.
4. Each vehicle only has access to its own position and velocity data and has a commu-

nication device to receive the information transmitted by the preceding vehicle. No
other sensors or information sources are available (no radar, cameras, LiDAR, etc.). In
this case, the communication means is seen as a remote sensor.

5. Delays in controller switching, actuator execution, and information transmission
are ignored.
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Figure 1. Schematic diagram of mixed CAV flow for multiple types of vehicles.

2.2. Cyberattacks Types and Vehicle Types

According to different research needs, previous scholars have made different classifica-
tions of cyberattacks [17–20]. Considering that we only evaluate the impact of cyberattacks
on traffic flow from the perspective of vehicle dynamics, referring to Wang’s [8] classi-
fication, we summarize the cyberattacks as affecting the vehicle’s position, velocity and
acceleration (Table 1). Moreover, we classify vehicles into small vehicles, medium vehicles,
and large vehicles according to the vehicle length. Referring to the characteristic description
of different vehicle types in the existing literature [21,22], we make reasonable assumption
that the larger the vehicle is, the larger the safety headway is, and the smaller the maximum
acceleration, maximum deceleration, and maximum velocity are.

Table 1. Cyberattack classification.

Category Attack Consequences

Bogus messages
Tampering with velocity information

Tampering with location information

Replay/delay
Delayed transmission information

Repeat transmission information

Collusion attacks Superposition of single attacks

2.3. Car-Following Model of CAV Mixed Traffic Flow with Cyberattacks

Previous scholars have proposed many classical car-following models considering
different actual traffic factors [23–26]. In recent years, the car-following model in the
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connected and automated environment has also developed rapidly [27–31]. The general
description of the model is as follows,

.
vn(t) = f (vn(t), sn(t), ∆vn(t))
sn(t) = xn−1 − xn − ln−1

(1)

where
.
vn(t) = the acceleration of vehicle n;
vn(t) = the velocity of vehicle n;
∆vn(t) = velocity difference between vehicle n and vehicle n− 1;
xn = the position of vehicle n;
ln−1 = the length of vehicle n− 1; and
sn(t) = the gap between the front of the vehicle n and the rear of the vehicle n− 1.

The IDM is widely employed in car-following modeling for CAVs [32–34], which
was proposed by Treiber et al. [23] in 2000. The main advantage of this model is to
describe the acceleration and deceleration behavior and retain complex macroscopic traffic
phenomenon. In addition, Wang et al. [6,8] adopted IDM as the basic vehicle dynamics
model when exploring the impact of cyberattacks on CAV traffic flow. Therefore, we also
refer to and continue to select IDM, and its specific expression is as follows:

.
vn(t) = a

[
1−

(
vn(t)

v0

)4
−
(

s∗(vn(t), ∆vn(t))
sn(t)

)2
]

s∗(vn(t), ∆vn(t)) = s0 + Tvn(t) +
vn(t)∆vn(t)

2
√

ab

(2)

where

a = maximum acceleration;
v0 = desired velocity;
s∗(vn(t), ∆vn(t)) = desired headway in the current state;
s0 = minimum gap;
T = safe time headway; and
b = desired deceleration.

Combining the cyberattacks types and vehicle types described above, we re-characterize
the parameters directly affected in the IDM, and the specific expression is as follows,

.
vn(t) = am

n

1−
(

vm
n (t)
vm

0

)4

−

 sm
n
∗
(

vm
n (t), ∆

↔
v

m
n

(
t−↔τ

m
n

))
↔
s

m
n

(
t−↔τ

m
n

)
2

sm
n
∗
(

vm
n (t), ∆

↔
v

m
n

(
t−↔τ

m
n

))
= sm

0 + Tm
n vm

n (t) +
vm

n (t)∆
↔
v

m
n

(
t−↔τ

m
n

)
2
√

am
n bm

n

(3)

m =


1 vehicle n is small vehicle
2 vehicle n is medium vehicle
3 vehicle n is large vehicle

(4)

And different types of vehicle n correspond to different parameter values. Where

am
n = maximum acceleration;

vm
0 = desired velocity;

sm
0 = minimum gap;

Tm
n = safe time headway; and

bm
n = desired deceleration.
↔
τ

m
n = the delay under cyberattacks;

∆
↔
v

m
n

(
t−↔τ

m
n

)
= the velocity difference under cyberattacks;
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sm
n
∗
(

vm
n (t), ∆

↔
v

m
n

(
t−↔τ

m
n

))
= desired headway in the current state under cyberattacks;

↔
s

m
n

(
t−↔τ

m
n

)
= the gap under cyberattacks;

3. The Robust and Resilient Control Strategy (RRCS) against Cyberattacks

In order to mitigate and resist the harmful impact of cyberattacks on traffic flow, an
acceleration control switch is designed as the RRCS against cyberattacks in this section.
The specific control form is as follows:

Acceleration controller =


Controller− A i f ∆xn(t)

vn(t)
< Tg

Controller− IDM i f Tg ≤ ∆xn(t)
vn(t)

≤ Tu

Controller− B i f ∆xn(t)
vn(t)

> Tu

(5)

where
Controller− A = the control strategy in the state of “too close vehicle gap”;
Controller− IDM = the control strategy based on the Intelligent Driver Model;
Controller− B = the control strategy in the state of “too far vehicle gap”;
Tg = vehicle time headway threshold when triggering and switching to Controller-A;

and
Tu = vehicle time headway threshold when triggering and switching to Controller-B.
The core idea of this strategy mainly has two points. The first is to keep the safe

distance between vehicles under cyberattacks, and the second is to make the vehicle
dynamically adjust the acceleration and gradually restore the stability of the traffic flow.
When the vehicle returns to the steady-state position, its velocity shall also reach the steady-
state to realize seamless switching with IDM controller. Taking Controller-A as an example,
its design motivation and design steps are as follows.

First of all, we hope that the vehicles affected by the cyberattacks will return to the
equilibrium position as soon as possible after implementing the strategy. At this time, the
vehicle velocity is greater than the steady-state velocity, and the headway is less than the
steady-state headway. Therefore, from the perspective of kinematics, the vehicle needs
to decelerate first and then accelerate, resulting in the displacement difference with the
steady-state, so as to achieve the established steady-state goal, in which a velocity node
vn(t) = kve needs to be set to connect deceleration and acceleration, k is the proportional
coefficient (after preliminary simulation and verification, considering the control efficiency,
we set k = 5/6, which can be optimized in the future). The acceleration solution process is
as follows. First, the basic kinematic equation is given as follows:

x0 = vet
ve − vn(t) = an(t) · t
v2

e − v2
n(t) = 2an(t)x

(6)

where

t = time required to reach steady-state speed;
x = displacement required to reach steady-state speed;
x0 = displacement of vehicle running at steady-state velocity in time t;

Construct x− x0 , combined with Equation (6),

2an(t)(x− x0) = 2an(t)x− 2an(t)vet = 2an(t)x− 2an(t)ve ·
ve − vn(t)

an(t)
(7)

Moreover, the displacement difference is equal to the gap difference, that is:

x0 − x = se
n − sn(t) (8)
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Thus, the acceleration is:

an(t) =
(ve − vn)

2

2(se
n − sn(t))

(9)

Similarly, Controller-B controls the vehicle to accelerate first and then decelerate
to restore the steady state, and the specific expressions of the two acceleration control
strategies are as follows:

Controller− A :

.
vn(t) =

demax until vn(t) = 5
6 ve

(ve−vn)
2

2(se
n−sn(t))

when 5
6 ve ≤ vn(t) ≤ ve

(10)

Controller− B :

.
vn(t) =

acmax until vn(t) = 6
5 ve

(ve−vn)
2

2(se
n−sn(t))

when ve ≤ vn(t) ≤ 6
5 ve

(11)

where

ve = steady-state velocity;
se

n = steady-state gap;
demax = maximum deceleration; and
acmax = maximum acceleration.

In addition, we carried out the string stability analysis of the CAV platoon, see
Appendix A for details.

As shown in Figure 2, we designed an architecture with three layers to investigate the
impacts of cyberattacks and RRCS of mixed CAV flow. In the first modeling building layer,
we proposed a car-following model considering different cyberattack types for mixed CAV
flow based on IDM. RRCS was proposed to mitigate the bad effects of cyberattacks on mixed
CAV flow in the strategy construction layer. Finally, in the numerical simulation layer,
we compared spatiotemporal evolution diagrams of mixed CAV flow under cyberattacks
in two cases with and without RRCS. Moreover, sensitivity analyses were conducted in
different platoon compositions, vehicle distributions, and cyberattack intensities.
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4. Numerical Simulations and Results
4.1. Evolution of Traffic Flow under Different Cyberattack Scenarios with or without RRCS

In order to analyze the impact of cyberattacks on the evolution of mixed traffic flow
and the feasibility of RRCS application, this section selects some typical scenarios accord-
ing to the previous classification of cyberattacks for numerical simulations and makes
a comparative analysis of the evolution results with and without RRCS. We set up ten
vehicles to form a CAV platoon. The number of large vehicles, medium vehicles, and small
vehicles can be controlled according to the set proportion, and the vehicle distribution is
randomly generated. The vehicle type ratio we set in this part of the simulation is 2 large
vehicles, 2 medium vehicles, and 6 small vehicles. The initial velocity of all vehicles is
12 m/s, and the same type of vehicle has the same initial headway. Table 2 summarizes
the parameters of three kinds of vehicle adopted from the existing research and makes
appropriate adjustments [8,29,33]. It is worth noting that IDM variables are regarded as
constants in this paper for the consideration of sensitivity analysis of cyberattack-related
parameters in the later paper.

Table 2. Parameter values of different types of vehicles.

Parameter l v0 a b T τ s0 Tg Tu acmax demax

Unit m m/s m/s2 m/s2 s s m s s m/s2 m/s2

Small vehicle 5 33 2.5 3 1.3 0.1 4 1.3 3.5 2.5 4

Medium vehicle 8 27 2 2 1.6 0.15 6 1.6 3.8 2 3

Large vehicle 11 22 1.5 1 2 0.2 8 2 4 1.5 2

4.1.1. Bogus Velocity Messages

Overestimate velocity
In this scenario, the fourth vehicle was attacked from t = 40s to t = 60s, and the

velocity information transmitted to the fifth vehicle was tampered with. This velocity value
was put to 1.5 times the actual velocity of the current vehicle (4th vehicle). That is to say, the
rear vehicle overestimated the velocity of the front car. Figure 3a–c describes the evolution
of mixed traffic flow under bogus velocity messages attack when there is no RRCS. Due
to the random distribution, the leading and sixth vehicles were medium vehicles, and
the seventh and eighth vehicles were large vehicles. It can be seen from Figure 3a that
during t = 40s to t = 60s, the fifth vehicle received a false message, and it kept accelerating
to approach the vehicle in front, causing potential safety hazards. In the t = 60s, the
cyberattack ended and the traffic flow slowly returned to the steady state. Figure 3b,c show
the evolution of velocity and headway respectively, which corresponds to Figure 3a. What
is depicted in Figure 3d–f is mixed traffic flow evolution diagrams under the overestimated
velocity with RRCS. We can clearly find that in the case of cyberattacks, the vehicle still
keeps a certain distance from the vehicle in front, which ensures the driving safety. It can
also be seen from Figure 3f that the headway (platoon state with inter-distances and vehicle
positioning from the leader) has been kept in a small range under cyberattack, and the
platoon can still restore stability under this control strategy when attacks disappear, which
proves that this strategy can play an effective role in the process of resistance overestimate
velocity attack.
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Underestimate velocity
In contrast to overestimating velocity, here, the velocity information of the fourth

vehicle was tampered with a lower velocity (40% of the actual value). This attack was
applied in the time t = 40s and then transmitted to the rear vehicle, resulting in the
underestimation of the velocity of the rear vehicle to the front vehicle, which lasted 20 s
and ended in t = 60s. The distribution of randomly generated vehicles was that the
sixth and seventh vehicles were medium vehicles, and the ninth and last vehicle were
large vehicles. Figure 4a shows the running track of the CAV platoon. The fifth vehicle
mistakenly continued to decelerate, resulting in a large headway, which can also be directly
reflected in Figure 4b,c. Comparatively speaking, the impact of this kind of cyberattack
is less critical than that of overestimating velocity attack, which will not cause vehicle
collision, but it will produce unnecessary vehicle spacing, which leads to the loss and
waste of road resources. Figure 4d–f depicts the impact of the underestimated velocity
attack on traffic flow evolution under RRCS, which can be used for comparative analysis
without RRCS. It can be found that in the case of attack, the vehicle velocity still keeps
a small fluctuation, and the vehicle headway is also maintained in a good state, and the
stability and safety of the fleet are guaranteed. Therefore, we have arguments to explain
the feasibility and superiority of this RRCS.
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Figure 4. Mixed traffic flow evolution diagrams under the underestimated velocity with/without RRCS.

4.1.2. Bogus Position Messages

Overestimate position
The cyberattack set here is that the position information transmitted to the rear vehicle

by the third vehicle was 15 m further than the actual position, which caused the rear
vehicle to overestimate the position of the front vehicle, and the attack lasted for 20 s,
starting from t = 40s to t = 60s. Figure 5a–c depicts the evolution of the position, velocity,
and headway of the CAV platoon under overestimated position message attack without
RRCS. In Figure 5a,c, when the cyberattack occurs, the fourth vehicle represented by the
purple line begins to approach the third vehicle, resulting in too small headway, while in
Figure 5d,f, under the attack of false position information, the vehicle is also dynamically
adjusted, and there will be no scene of trolley headway. Comparing the evolution diagram
of vehicle velocity under the influence of overestimating position with or without the
RRCS in Figure 5b,e, we find when there is no RRCS, the velocity of the fourth cheated
vehicle changes suddenly when the cyberattack occurs in t = 40s and returns to normal
at the end of the cyberattack in t = 60s. When there is RRCS, the velocity is dynamically
adjusted to maintain an appropriate headway. However, there is also a disadvantage that
acceleration and deceleration are more frequent, which will have an adverse impact from
the perspective of passenger comfort. Overall, the RRCS can play a positive role in dealing
with the cyberattack of overestimating position information.
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Underestimate position
Similarly, we set up an attack of underestimated position, tampering with the posi-

tion information of the third vehicle in the 40th second, so that the position information
transmitted to the fourth car is 15 m closer than the actual position. Figure 6a shows the
position evolution of vehicles under the influence of cyberattacks when there is no strategy.
The purple line represents the fourth vehicle cheated by the false information of the vehicle
in the front, which is a small car. It can be seen from Figure 6b,c that the velocity of the
fourth vehicle decelerates from the steady-state velocity of 12 m/s to 8.7 m/s in the 40th
second, and the headway increases from the steady-state headway to 40 m, which has a
negative impact on the whole traffic flow system. Figure 6d–f is the evolution diagram of
position, velocity, and headway under the RRCS. Figure 6d shows that the fourth vehicle
is a medium-sized vehicle, and the wave line with minimal amplitude means the process
of the vehicle resisting the cyberattack under the influence of the control strategy. In the
process of the application of the RRCS, the velocity appears more frequent acceleration and
deceleration fluctuations, but it can ensure that under the influence of cyberattacks, the
headway can be ensured in a stable and safe range, which can be revealed from Figure 6e,f.
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Figure 6. Mixed traffic flow evolution diagrams under the underestimated position with/without
RRCS.

4.1.3. Replay Messages Attack—Replay Old Acceleration

After randomly generating a platoon of three types of vehicles, we made all vehicles
start to drive at a uniform constant speed of 12 m/s. At t = 30s, the leading vehicle started
to accelerate at an acceleration of 0.5 m/s2 and lasted for 10 s. Then, the leading vehicle
remained at its velocity. At t = 45s, the attacker recorded the acceleration message of the
subject vehicle and replayed the message to it and its followers. The attack lasted 13 s
and ended at t = 58s. Figure 7 describes the mixed traffic flow evolution under replay
acceleration attacks with/without RRCS. In Figure 7a, the purple line and the green line
corresponding to the fourth vehicle and the fifth vehicle are very close to each other from
t = 45s to t = 58s when they are attacked, so the stability is poor and the risk is high. In
Figure 7b,c, the speed of the fifth car reached 19.7 m/s, and the headway was shortened
to 16.2 m. After the RRCS was added, the evolution of position, velocity, and headway
(vehicle position states in the platoon from the leader position) was improved, as shown in
Figure 7d–f. For example, in Figure 7f, under the influence of replay acceleration attacks,
the fifth vehicle does not always approach the front vehicle or even rear end, but still
maintains a suitable headway, and under this acceleration control strategy, the vehicle can
return to the steady velocity and steady headway, showing the superiority of the RRCS.
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Figure 7. Mixed traffic flow evolution diagrams under replay acceleration attacks with/without
RRCS.

4.1.4. Collusion Attack

Overestimate the velocity of two different vehicles simultaneously (Type I)
The actual scenario corresponding to this part is that the attacker forges messages

from multiple vehicles at the same time to mislead the subject vehicle. Firstly, the first kind
of collusion attack (Type I) means that the velocity information of two different vehicles is
tampered with simultaneously. The specific setting here is that the velocity messages issued
by the third vehicle and the seventh vehicle from t = 40s to t = 60s are tampered with
1.5 times of the actual velocity, so the network information received by the fourth vehicle
and the eighth vehicle are wrong. Figure 8 shows the evolution of traffic flow under the
influence of collusion attacks with/without the RRCS. Compared with the close proximity
of the fourth vehicle and the third vehicle, the eighth vehicle and the seventh vehicle in
Figure 8a, the evolution of driving position between the vehicles in Figure 8d was better
improved, which is the role of RRCS in the cyberattack stage. In Figure 8c, the fourth
vehicle is a small vehicle and the eighth vehicle is a medium vehicle. The headway of each
vehicle decreases from its constant-state headway to 11.5 m and 14.0 m respectively, which
causes adverse interference and impact on the safety and stability of the CAV platoon.
Compared with bogus information attacks, collusion attacks generate more serious traffic
risks. Figure 8d–f shows the evolution of traffic flow under the influence of collusion attack
when the RRCS is added, which reveals that RRCS can still play a positive role under
collusion attack. However, there is also an adverse phenomenon here, that is, the frequent
velocity fluctuations in the process of resisting cyberattacks, resulting in the decline of
passenger comfort.
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Figure 8. Mixed traffic flow evolution diagrams under collusion attacks (Type I) with/without RRCS.

Overestimate the velocity of one vehicle and the position of another vehicle simultane-
ously (Type II)

Another type of collusion attack we tested is called Type II, which means that the
velocity information of one vehicle and the position information of another vehicle are
tampered with simultaneously. Specifically, the velocity information of the third vehicle is
tampered with 1.5 times the actual velocity and transmitted to the fourth vehicle, and the
location information of the seventh vehicle is tampered with to be 17 m farther than the
actual distance and transmitted to the eighth vehicle. The whole collusion attack lasted
20 s, from t = 40s to t = 60s. Comprehensive comparative analysis of Figure 9 shows that
the application of RRCS can play the following three roles when vehicles are attacked: the
first is to make fewer vehicles have a greater impact on velocity fluctuations; the second is
to make the attacked vehicles keep a reasonable headway; the third is to make the CAV
platoon return to a stable state faster. Therefore, this also shows that the RRCS can also deal
with different forms of collusion attacks.
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Figure 9. Mixed traffic flow evolution diagrams under collusion attacks (Type II) with/without RRCS.

4.2. Sensitivity Analysis for RRCS

In order to study the effect of RRCS on traffic flow stabilization when vehicles are
subjected to cyberattacks, we observed and analyzed the distribution of headway of all
vehicles with or without RRCS over time. It is worth noting that considering the different
steady-state headway of different vehicle types, it is unreasonable to directly calculate the
variance of all headway at all times for analysis. Therefore, we first calculated the deviation
between the headway of all vehicles at all times and their own steady-state headway,
and then analyzed the variance of this deviation as an index. The specific expression is
as follows,

∆xe
n(t) = se

n(t) + ln(t)

∆xdev
n (t) = ∆xn(t)− ∆xe

n(t)

c1 = t1
∆t

c2 = t2
∆t

∆xdev
mean =

c2
∑

k=c1

10
∑

n=1
∆xdev

n (k)

10∗(c2−c1)

VAR =

c2
∑

k=c1

10
∑

n=1
(∆xdev

n (k)−∆xdev
mean)

2

10∗(c2−c1)−1

(12)

where

∆xe
n(t) = steady-state headway;

∆xdev
n (t) = the deviation between actual headway and steady headway;

c1 = count start position;
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c2 = count end position;
t1 = the start time of the evolution phase used to calculate the variance, t1 = 40s;
t2 = the end time of the evolution phase used to calculate the variance, t2 = 60s;
k = number of discrete time steps;
∆t = time step, 0.01 s for each step;
∆xdev

mean = average of all deviations;
VAR = variance.

4.2.1. Sensitivity Analysis of Different Platoon Composition

Furthermore, due to the necessity of exploring the universality of RRCS to deal with
cyberattacks in different scenarios, we carried out numerical simulation covering more
generally applicable traffic flow composition scenarios, mainly including different vehicle
distribution types and proportions.

Firstly, our simulation object is still a platoon composed of 10 vehicles, then 25 different
proportion combinations are randomly generated by Gaussian mixture distribution for
the proportion composition of large, medium, and small vehicles, and then 4 vehicle
distribution types are randomly generated for each proportion combination. Therefore,
100 different platoon composition scenarios are randomly generated here, as shown in
Table 3. In addition, the seven cyberattack types and specific forms are also consistent with
the cyberattacks in the simulation in Section 4.1.

Table 3. CAV platoon composition types (100 in total).

Vehicle Proportion (Small:Medium:Large) Vehicle Distribution

7:1:2

S-S-S-L-S-S-L-S-S-M

S-S-S-S-L-S-L-S-S-M

S-S-S-S-S-S-M-S-L-L

S-M-S-S-S-S-L-S-S-L

2:6:2

M-M-M-M-M-S-M-S-L-L

S-L-S-L-M-M-M-M-M-M

M-M-M-S-M-M-M-L-L-S

M-M-L-M-L-S-M-S-M-M

5:1:4

L-S-S-S-S-L-S-L-L-M

S-L-S-S-S-L-S-L-L-M

S-L-L-S-S-L-L-S-S-M

L-M-S-L-L-L-S-S-S-S

.

.
.

.

.
.

6:3:1

S-M-S-S-M-L-S-M-S-S

M-S-M-S-M-S-S-L-S-S

S-M-M-S-S-L-S-S-S-M

M-S-S-S-S-M-S-S-M-L
S means the small vehicle, M means the medium vehicle, L means the large vehicle.

In the case of 100 randomly generated platoon compositions, we calculated the vari-
ance of headway deviation value with or without RRCS in different cyberattack scenarios,
and drew the results into the box plot that can directly reflect the distribution characteristics
of all variances shown in Figure 9 for comparative analysis. The relevant result data are
shown in Table 4 below.
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Table 4. Box plot data of variance distribution of headway deviation with or without RRCS under
different vehicle proportion and vehicle distribution.

Cyberattack
Type RRCS Upper

Quartile Median U-IV M-IV U-IP M-IP

Overestimate
velocity

Y 28.09 16.87
24.35 8.08 46.43% 32.38%

N 52.44 24.95

Underestimate
velocity

Y 19.78 3.48
42.26 28.71 68.12% 89.19%

N 62.04 32.19

Overestimate
position

Y 17.64 10.85
0.74 4.7 4.03% 30.23%

N 18.38 15.55

Underestimate
position

Y 3.96 3.59
17.84 15.73 81.83% 81.80%

N 21.80 19.23

Replay old
acceleration

Y 25.42 20.13
3.00 4.63 10.56% 18.70%

N 28.42 24.76

Collusion
attack Type I

Y 36.48 23.71
32.50 18.43 47.12% 43.74%

N 68.98 42.14

Collusion
attack Type II

Y 41.57 33.24
2.23 3.30 5.09% 9.03%

N 43.80 36.54

Y indicates the presence of RRCS, N indicates the absence of RRCS, U-IV means upper quartile improvement
value, M-IV means median improvement value, U-IP means upper quartile improvement percentage, M-IP means
median improvement percentage.

Figure 10a–d shows the box plot of variance distribution of headway deviation value
in 100 traffic flow scenarios with or without RRCS under bogus messages attack. The attack
type in Figure 10a is overestimated velocity information. In the absence of RRCS, the upper
quartile and median of variance distribution are 52.44 and 24.95, respectively, while in the
presence of RRCS, the upper quartile and median decreased to 28.09 and 16.87, respectively.
Looking at Figure 10b, the simulated cyberattack form is overestimated position infor-
mation attack. The upper quartile and median of variance with RRCS are 19.78 and 3.48,
respectively, which is also obviously lower than that without RRCS. Figure 10c represents
the cyberattack scenario corresponding to underestimated velocity information. Compared
with the upper quartile and median of 18.38 and 15.55 without RRCS, the presence of RRCS
significantly reduces the upper quartile and median to 17.64 and 10.85, respectively. The
comparison in Figure 10d describing the cyberattack scenario of underestimating position
information is significant, and the upper quartile and median of variance decrease from
21.80 and 19.23 without RRCS to 3.96 and 3.59 with RRCS. In addition, the more prominent
and interesting findings are as follows: first, in the cyberattack scenario with overestimated
position information, in the case of 100 different traffic flow compositions randomly gener-
ated, RRCS will play a negative role in coping with cyberattack in a few cases. Second, the
effect of RRCS in the attack scenario of underestimating velocity information and underesti-
mating position information is better than the other two scenarios of overestimating vehicle
information. Overall, the above four figures reflect the positive role of RRCS proposed in
this paper in dealing with the cyberattack type of bogus messages, that is, RRCS can resist
the damage of cyberattack to the stability of traffic flow and help the traffic flow develop in
a stable direction.
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Figure 10. Variance distribution of headway deviation under different cyberattacks scenarios with
different vehicle proportion and distribution.

Secondly, we discuss the impact of RRCS on traffic flow stability under cyberattack
scenarios of replay old acceleration information. The box diagram on the left in Figure 10e
shows the variance distribution of headway deviation without RRCS, and its upper quartile
and median are 28.42 and 24.76, respectively, while the box diagram on the right is obtained
after RRCS plays a role when the vehicle platoon is attacked by the network, and its upper
quartile and median are reduced to 25.42 and 20.13, respectively. Although the improve-
ment effect is not very significant in terms of variance distribution, it also means that RRCS
can also play a favorable role in resisting the cyberattack of replay old acceleration and
promote the stability of the platoon.
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The cyberattack scenarios corresponding to Figure 10f,g are two types of collusion
attacks described in Section 4.1.4. In Figure 10f, the upper quartile and median of the left
box graph without RRCS are 68.98 and 42.14, respectively, which are higher than 36.48 and
23.71 of the right box diagram with RRCS. The overall trend of Figure 10g is similar to that
of Figure 10f. Compared with the case without RRCS, the upper quartile and median of
variance distribution with RRCS are reduced from 43.80 and 36.54 to 41.57 and 33.24. The
results of the above two figures confirm the feasibility of the RRCS proposed in this paper in
resisting collusion attacks and improving the resilience and robustness of vehicle platoon.

4.2.2. Sensitivity Analysis of Different Attack Intensity

In the above numerical simulation, the respective cyberattack intensity under different
cyber-attack scenarios considered is a fixed value, such as overestimated velocity attack
of 1.5 times the actual velocity and underestimated velocity attack of 0.4 times the actual
velocity. In this section, we further explore the variance distribution of headway deviation
under different cyberattack scenarios when the cyberattack intensity follows the linear
distribution, so as to verify that the effectiveness of the RRCS proposed in this paper
in resisting cyberattacks is not accidental in individual attack intensity scenarios. The
cyberattack intensity of different attack types subject to linear distribution is shown in
Table 5 below.

Table 5. Linearly distributed cyberattack intensity in different cyberattacks scenarios.

Cyberattack Type Specific Distribution of Cyberattack Intensity

Overestimate velocity Actual Velocity × (1.1~3.5)

Underestimate velocity Actual Velocity × (0.1~0.9)

Overestimate position Actual Position + (5~45)

Underestimate position Actual Position − (5~25)

Replay old acceleration Replay lasts for (1~10 s)

Collusion attack Type I Actual Velocity × (1.1~3.1) and Actual Velocity × (1.1~3.1)

Collusion attack Type II Actual Velocity × (1.1~3.1) and Actual Position + (5~30)

Here, we set the composition of the platoon as two large vehicles, two medium vehicles,
and six small vehicles, and the vehicle distribution was randomly formed. Figure 11 is a set
of variance distribution box diagrams of headway deviation obtained by setting different
cyberattack intensities under different cyberattack scenarios. Table 6 shows the specific
data of the box diagram corresponding to Figure 11 and some intuitive comparison data,
including the improvement value and improvement proportion of the upper quartile value
and median value in the box diagram.

On the premise that the multiple of overestimated velocity attack obeys the linear
distribution of 1.1 to 3.5 times, Figure 11a shows the box diagram of variance distribution
of headway deviation with or without RRCS. An important discovery is that the upper
quartile values of the two box graphs are equal, which actually means that when the
attack velocity reaches a certain multiple, RRCS will not continue to play a role, which
will need further research. Nevertheless, the median with RRCS is still 22.81% lower
than that without RRCS, which shows the positive role of RRCS in overestimated velocity
attack to a certain extent. Figure 11b is the box diagram drawn by setting a group of
linearly distributed underestimated velocity attacks. Obviously, the upper quartile of
the right box graph is even smaller than the lower quartile of the left box plot, which
conveys the universal effectiveness of RRCS in resisting cyberattacks under the scenario
of underestimated velocity attacks. Then, we focus on Figure 11c,d. These two box
charts correspond to overestimated position attack and underestimated position attack
respectively. The overestimated position satisfies the linear distribution of 5 m to 45 m away
from the actual position, and the underestimated position satisfies the linear distribution of
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5 m to 25 m closer to the actual position. In Figure 11c, compared with the case without
RRCS to resist cyberattacks, the upper quartile and median of the box chart on the right
when RRCS plays a role are reduced to 5.81 and 5.03, respectively, which significantly
enhances the stability. In Figure 11d, the upper quantile and median of the box graph
without RRCS are 20.07 and 10.89, which are significantly higher than the indicators of the
box graph with RRCS, showing that RRCS can enhance the stability of the platoon when
underestimated position attack occurs.
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Figure 11. Variance distribution of headway deviation under different cyberattacks scenarios with
different cyberattack intensities.
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Table 6. Box plot data of variance distribution of headway deviation with or without RRCS under
different cyberattack intensities.

Cyberattack
Type RRCS Upper

Quartile Median U-IV M-IV U-IP M-IP

Overestimate
velocity

Y 370.38 118.96
0 35.18 0% 22.82%

N 370.38 154.14

Underestimate
velocity

Y 2.95 1.49
81.42 42.71 96.50% 96.63%

N 84.37 44.20

Overestimate
position

Y 5.81 5.03
83.73 41.27 93.51% 89.14%

N 89.54 46.30

Underestimate
position

Y 8.09 2.14
11.98 8.75 59.69% 80.35%

N 20.07 10.89

Replay old
acceleration

Y 52.28 49.46
80.18 78.89 60.53% 61.46%

N 132.46 128.35

Collusion
attack Type I

Y 22.44 13.65
14.42 6.85 39.12% 33.41%

N 36.86 20.50

Collusion
attack Type II

Y 13.87 10.61
44.61 28.55 76.28% 72.91%

N 58.48 39.16

Y indicates the presence of RRCS, N indicates the absence of RRCS, U-IV means upper quartile improvement
value, M-IV means median improvement value, U-IP means upper quartile improvement percentage, M-IP means
median improvement percentage.

Then, we move to the cyberattack scenario of replay old acceleration and the replay
duration is determined to obey the linear distribution of 1 s to 10 s, the box diagram is
shown in Figure 11e. After RRCS played a role, the upper quartile and median of the
variance distribution of headway deviation decreased by 60.53% and 61.46%, respectively,
which shows that RRCS can slow down the negative impact of replay old acceleration
cyberattack on the platoon.

Next, we analyze the variance distribution of the headway deviation with or without
RRCS when the collusion attack obeys the linear distribution. The collusion attack corre-
sponding to Figure 11f is that the overestimated multiple of the overestimated velocity
attack suffered by two vehicles follows a linear distribution of 1.1 to 3.1 times the actual
velocity. It is worth noting that by comparing the left and right box graphs in Figure 11f, we
can find that RRCS cannot play a positive role in the scenario of few attacks, but from the
two indicators of the upper quartile and median, RRCS can resist collusive attacks (Type I)
as a whole. Finally, the premise of drawing Figure 11g is to meet the collusion attack that
the velocity attack multiple obeys the linear distribution of 1.1–3.1 times and the position
attack information obeys the linear distribution of 5–30 m away from the actual position.
By observing and comparing the Figure 11, it can be seen that the upper quartile decreased
from 58.48 without RRCs to 13.87 with RRCS, and the median decreased from 39.16 to 10.61,
down 76.28% and 72.91%, respectively, which significantly shows that RRCS can maintain
good stability when the platoon is subjected to collusive attacks (Type II).

One-way analysis of variance (ANOVA) was carried out to further test whether there
is significant difference in the variance distribution of headway deviation with or without
RRCS as shown in the Table 7 below. In most scenarios, the p-values are less than 0.05,
which shows that there is significant difference in the variance distribution of headway
deviation with or without RRCS under the simulation premise that the cyberattack intensity
follows the linear distribution. It proves that RRCS could effectively alleviate the threat
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brought by cyberattacks in most scenarios with different cyberattack intensities. Moreover,
the p-values of overestimate velocity attack scenario and collusion attack type I scenario are
0.9234 and 0.7215, respectively, which indicates that there is no significant difference in the
deviation distribution of headway with or without RRCS in different cyberattack intensities.
RRCS could not mitigate the negative impacts of cyberattacks in some cases of these two
scenarios. More complementary strategies need to be further explored in the future.

Table 7. One-way ANOVA with or without RRCS under different cyberattacks scenarios.

Scenarios Source SS df MS F p-Value

Overestimate
velocity

Columns 212.1 1 212.1 0.01 0.9234

Error 538,997.7 24 22,458.2

Total 539,209.8 25

Underestimate
velocity

Columns 20,369.7 1 20,369.7 24.49 2.30386 × 10−5

Error 26,612.2 32 831.6

Total 46,981.9 33

Overestimate
position

Columns 25,993.6 1 25,993.6 27.4 5.58769 × 10−6

Error 37,942.6 40 948.6

Total 63,936.2 41

Underestimate
position

Columns 295.68 1 295.683 4.93 0.0434

Error 839.2 14 59.943

Total 1134.88 15

Replay old
acceleration

Columns 33,146.9 1 33,146.9 1065.52 8.0089 × 10−19

Error 622.2 20 31.1

Total 33,769.1 21

Collusion
attack Type I

Columns 49.23 1 49.23 0.13 0.7215

Error 5982.45 16 373.903

Total 6031.68 17

Collusion
attack Type II

Columns 8345.4 1 8345.39 21.05 2.8538 × 10−5

Error 20,612.5 52 396.39

Total 28,957.9 53

5. Conclusions

Under the background of possible cyberattacks in the future connected and automated
vehicles environment, this paper first builds a CAV mixed traffic flow car-following model
considering cyberattacks. This will help us to understand the evolution characteristics
of CAV mixed traffic flow under cyberattacks. Furthermore, we design an acceleration
control switcher as a robust and resilient control strategy, so that the vehicle can switch the
lower layer control strategy according to the current state under the cyberattack scenario.
Finally, traffic numerical simulation experiments are carried out to study the impact of
cyberattacks on the evolution of CAV mixed traffic flow with or without RRCS, and to
verify the feasibility of the RRCS proposed in this paper. The conclusion mainly includes
the following five points:
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• The threat of cyberattacks to CAV mixed traffic flow is significant, and the stability
and security of the CAV platoon are adversely affected;

• Different forms of cyberattacks will cause different forms and different degrees of
harmful effects. For example, vehicles will suddenly accelerate or brake, resulting in too
small or too large headways between vehicles, and may even lead to vehicle collisions;

• Collusive attacks have the greatest adverse impact on the CAV platoon, as they involve
multiple vehicle attacks;

• The RRCS proposed in this paper is feasible. It can not only dynamically switch the
acceleration control strategy when the vehicle is under cyberattacks, so as to maintain
a safe and appropriate headway, but also ensure that the CAV platoon can gradually
return to a stable state after being attacked.

• The results of the sensitivity analyses indicates that RRCS could effectively alleviate
the threat brought by cyberattacks in most scenarios with different platoon composi-
tion, vehicle distribution and most different cyberattack intensities, which shows a
strong robustness.

Of course, there are still some deficiencies in this paper and the following aspects could
be further explored in the future: First, there are common lane changing and overtaking
behaviors in real traffic scenarios, which should be considered in the vehicle dynamics
model to better describe the characteristics of traffic flow. Secondly, some parameters such
as safe headway could vary rather than a fixed value, which will help to improve the
universality and persuasion of the model and strategy. Thirdly, more sensor data could
be considered such as LIDAR and camera. In this way, it could be possible to merge the
proposed approach (RRCS) with the perception outputs and a risk assessment system. Last
but not least, the effectiveness of the RRCS proposed in this paper should be verified in
various car following models. It is worth mentioning that we also preliminarily confirmed
the effectiveness of RRCS in PATH’s CACC car-following model [35,36], and the specific
modeling and simulation results are shown in the Appendix B.
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Appendix A

The equilibrium state is described as follows:

fn(ve, se, 0) = 0 (A1)

where ve is the uniform velocity that is the same for all vehicles, se stands for equilibrium
gap which varies with the different types of vehicles.

Defining the small perturbations about speed and headway as δvn and δsn, we can
obtain:

vn = ve + δvn, sn = se + δsn (A2)
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Expand δvn and δsn Fourier and take the complex form of monochromatic component:

δvn(t) = Vneinω+λt, δsn(t) = Sneinω+λt (A3)

where Vn and Sn are amplitudes of monochromatic component, ω represents the reciprocal
of the propagation velocity of the disturbance. λ is assumed to be the eigenvalue of the
vehicle response to interference.

According to
.
sn = vn−1 − vn, yield:

Sn = Vn
e−iω − 1

λ
(A4)

For the control strategy proposed this paper, taking Controller-A as an example, the
other half of Controller-B is corresponding.

Controller− A :

.
vn(t) =


demax until vn(t) = 5

6 ve

(ve − vn)
2

2(se
n − sn(t))

when 5
6 ve ≤ vn(t) ≤ ve

(A5)

We only need to get the stability condition of the second control mode in Equation (A5),
substituting Equations (A3) and (A4) into it, and we can get the following results:

2e−iω − 1 = 0 (A6)

Therefore, the stability condition is independent of λ, and the traffic flow can remain
stable.

Appendix B

Firstly, an extended car following model considering mixed traffic flow and cyberat-
tacks is constructed based on the PATH’s CACC car following model. Secondly, based on
the extended model, we selected three cyberattack scenarios (overestimate velocity, overes-
timate position, and collusion attack) to carry out numerical simulation experiments. The
results show that RRCS can resist cyberattacks and avoid dangerous events such as vehicle
rear end collision under different scenarios, which preliminarily proves the effectiveness of
RRCS in the PATH’s CACC car following model to a certain extent. The specific modeling
and simulation results are shown in the next.

Table A1. PATH’s CACC car-following model.

Model Expression Parameter Description

ek = xk−1 − xk − thwvk

vk = vkprev + kpek + kd
.
ek

xk the current position of the subject vehicle

xk−1 the current position of the preceding vehicle

thw the current time-gap setting

vk the current speed of the subject vehicle

vkprev the speed of the subject vehicle in the previous iteration

kp the control coefficient of vehicle gap error

kd the control coefficient of vehicle gap error differential
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Table A2. Extended PATH’s CACC car-following model considering mixed flow and cyberattacks.

Model Expression Parameter Description

↔
e k = ∆

↔
x

m
k (t−

↔
τ

m
k )− tm

hwvm
k↔.

e k = ∆
↔
v

m
k (t−

↔
τ

m
k )− tm

hwam
k

vk =
↔
v

m
kpre + kp

↔
e k + kd

↔.
e k

m the different vehicle types, small-medium-large

∆
↔
x

m
k the gap under cyberattacks

↔
τ

m
k the delay under cyberattacks

tm
hw the current time-gap setting under cyberattacks

vm
k the speed of subject vehicle under cyberattacks

∆
↔
v

m
k the speed difference under cyberattacks

am
k the acceleration of subject vehicle

↔
v

m
kpre the speed in the previous iteration under cyberattacks

RRCS (corresponding to PATH’s CACC car-following model):

Acceleration controller =


Controller− A i f ∆xk(t)

vk(t)
< Tg

Controller− PATH i f Tg ≤ ∆xk(t)
vk(t)

≤ Tu

Controller− B i f ∆xk(t)
vk(t)

> Tu

(A7)

Controller− A :

.
vk(t) =

demax until vk(t) = 5
6 ve

(ve−vk)
2

2(se
k−(xk−1−xk−lk−1))

when 5
6 ve ≤ vk(t) ≤ ve

(A8)

Controller− B :

.
vk(t) =

acmax until vk(t) = 6
5 ve

(ve−vn)
2

2(se
k−(xk−1−xk−lk−1))

when ve ≤ vk(t) ≤ 6
5 ve

(A9)

Table A3. Simulation conditions.

CAV platoon vehicle proportion S: M: L = 5: 3: 2

CAV platoon vehicle distribution S-M-L-M-S-S-S-S-L-M

Scenarios

Attack period t = 40 s to t = 60 s

Overestimate velocity overestimated the speed of the 4th vehicle by 1.5 times

Overestimate position overestimated the position of the 4th vehicle by 20 m

Collusion attack overestimated the speed of the 4th and 7th vehicles by 1.5 times

Table A4. Parameter values of simulation.

Parameter l Tg Tu acmax demax kp kd tm
hw ve

Unit m s s m/s2 m/s2 / / s m/s

Small vehicle 5 1.3 3.5 2.5 4 0.45 0.25 0.6 25

Medium vehicle 8 1.6 3.8 2 3 0.45 0.25 0.8 25

Large vehicle 11 2 4 1.5 2 0.45 0.25 1.0 25
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Simulation result:
Under the three cyberattack scenarios, the attacked vehicle quickly approaches the

front vehicle after receiving the false information, resulting in a dangerous situation of
almost rear collision or rear collision with the front vehicle. After comparing Figure A1a,c,
Figure A2a,c of Figure A3a,c, we can clearly find that the vehicle still keeps a certain distance
from the vehicle in front after adopting RRCS, which ensures the driving safety. Overall, the
simulation results can prove that RRCS can play an effective role in the process of resistance
overestimate velocity attack, overestimate position attack and collusion attack, which also
preliminarily confirms the effectiveness of the RRCS in PATH’s CACC car-following models
to a certain extent.
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