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Abstract: A frequency downscaling technique for enhancing the accuracy of analog lock-in amplifier
(LIA) architectures in giant magneto-impedance (GMI) sensor applications is presented in this
paper. As a proof of concept, the proposed method is applied to two different LIA topologies using,
respectively, analog and switching-based multiplication for phase-sensitive detection. Specifically, the
operation frequency of both the input and the reference signals of the phase-sensitive detector (PSD)
block of the LIA is reduced through a subsampling process using sample-and-hold (SH) circuits. A
frequency downscaling from 200 kHz, which is the optimal operating frequency of the employed
GMI sensor, to 1 kHz has been performed. In this way, the proposed technique exploits the inherent
advantages of analog signal multiplication at low frequencies, while the principle of operation of the
PSD remains unaltered. The circuits were assembled using discrete components, and the frequency
downscaling proposal was experimentally validated by comparing the measurement accuracy with
the equivalent conventional circuits. The experimental results revealed that the error in the signal
magnitude measurements was reduced by a factor of 8 in the case of the analog multipliers and by a
factor of 21 when a PSD based on switched multipliers was used. The error in-phase detection using
a two-phase LIA was also reduced by more than 25%.

Keywords: lock-in amplifier; phase-sensitive detector; GMI sensor; subsampling; sample-and-hold

1. Introduction

The characterization of magnetic fields is fundamental in many relevant technological
sectors, namely, automotive, transport, aero spatial, etc., [1,2]. In this scenario, different
magnetic sensing principles have been proposed for the development of suitable magnetic
sensors, such as giant magneto-resistive sensors [3,4], resonant coil sensors [5], fluxgate
sensors [6,7], Hall sensors [8], spin valve sensors [9], superconducting quantum interference
devices (SQUID) [10], etc. Among them, sensors based on the giant magneto-impedance
effect (GMI) have been revealed as a powerful tool due to their faster response, smaller size,
higher stability, lower cost, and especially their generally higher sensitivity during detec-
tion [2,11]. These features have enabled their use to spread in different fields, employing
geometries and configurations such as amorphous wires, [12] ribbons [13], microwires [14],
or thin films [15,16], among others.

The GMI effect can be defined as the huge changes experienced by the high-frequency
impedance, Z = R + jX (where R is the resistance and X the reactance) of a ferromagnetic
conductor when it is exposed to a static DC magnetic field H [2,11]. The development of
magnetic sensors based on the GMI effect has been gaining importance due to the growing
necessity to tackle the detection of increasingly lower variations in the magnetic field value.
This research effort demands the optimization of the device response during the detection
procedure, a goal that can be accomplished, among other ways, through the enhancement
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of the synergetic coupling between the GMI sensing element and the signal conditioning
circuitry. This circumstance turns the lock-in amplifier into one of the most suitable choices
for signal detection in GMI-based applications.

A lock-in amplifier (LIA) is an electronic system used to recover very small AC signals
in extremely noisy environments, even with noise and interference levels thousands of
times larger than the amplitude of the target signal [17,18]. LIAs are also employed for
precision measurement in scenarios with a good signal-to-noise ratio, but where extremely
small amplitudes and/or phase variations need to be detected [17]. The core of the LIA
is based on a phase-sensitive detector (PSD), conceived for detecting the amplitude and
phase variations in a signal at a given frequency previously known. The LIA applications
include a wide range of disciplines in applied science and technology, such as spectroscopy,
biomedical measurements, complex impedance characterization, and photometry to name
just a few [17]. During the last decades, the popularization of microprocessor and FPGA-
based systems have led to the gradual substitution of traditional analog LIAs by digital
implementations [4,18–21], mainly due to their robustness and programmability without
compromising their key specifications at the expense of higher complexity and extra
computing power. This digitalization tendency is induced, in part, by the difficulty of
implementing high-performance PSD circuits based on analog multiplication.

Analog multipliers are prone to generate distortion and DC offset due to their non-
linear operation [22–24]. The magnitude of this offset increases with input amplitude and
operation frequency, potentially compromising the proper operation of the system. More
concretely, output DC offsets may be a severe problem in lock-in circuits based on analog
multipliers, since the offset will be indistinguishable from the useful DC value provided
by the PSD. Although several techniques for offset cancelation in multipliers have been
proposed in the literature [25,26], they are conceived for canceling not only offset but also
any DC component at the output, which makes them unsuitable for PSD applications. A
different approach for the DC stabilization of analog multipliers using chopper techniques
has been presented in [24]. Although it preserves the DC input components, any useful
information associated with the multiplier DC output will be lost as well. Hence, there
is no effective solution for separating the useful DC value at the PSD output from the
offset introduced by the analog multiplier, so its use in LIA design is limited to favorable
conditions in which the generated offset is negligible, i.e., low operation frequencies. For
instance, an analog LIA for phase measurement based on a PSD using the AD633 multi-
plier (Analog Devices) [27] has been presented in [28]. It provides high-resolution phase
detection operating at 77 Hz.

An alternative approach consists of implementing the multiplication function by
means of switched multiplier schemes [7,29,30]. In this case, the sinusoidal reference signal
is substituted by a ±1 square waveform of the same frequency. However, this PSD scheme
leads to additional drawbacks: on the one hand, odd harmonics associated with the square
waveform are introduced on the reference channel, which may induce misleading results if
spectral components at these frequencies are present at the PSD input; on the other hand,
the switched circuit may produce delay and jitter which may provoke synchronization
problems at high frequencies [31,32].

As can be concluded from the above, the severity of both drawbacks linked to analog
PSD design is strongly alleviated as the operation frequency decreases. In sensor-based
applications, this frequency of operation is typically constrained by the sensor excitation
frequency range. In particular, GMI amorphous wires and ribbons typically operate in the
range of hundreds of kHz to a few MHz to maximize the GMI effect [11], while other GMI
sensing elements such as amorphous microwires or thin films generally operate concretely
at larger frequencies, from several tens of MHz to even GHz values [14–16]. In these latter
cases, most of the related works in the literature employ expensive high-performance labo-
ratory or computer-aided equipment for experimental measurements [14–16], due to the
difficulty of designing low-cost, compact, and portable analog electronics at these frequen-
cies. However, the operation frequency of GMI wires is suitable for the implementation of
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simple ad hoc lock-in systems based on analog PSDs, but, in contrast, the aforementioned
problems associated with analog multiplication may begin to be significant when operating
at hundreds of kHz.

In this context, a subsampling technique for frequency downscaling in analog LIA
design using GMI sensors is proposed in this work. Specifically, both the output sensor
and reference signals at the PSD inputs, initially at 200 kHz, are frequency-downscaled to
1 kHz to exploit the inherent advantages of signal multiplication at low frequencies. In
this way, the functionality of the PSD remains unaffected if both input signals are scaled by
the same factor, while the accuracy of the LIA is strongly enhanced. As proved later, the
benefits of the proposed technique are evident both for conventional analog and switched
multipliers. This frequency downscaling process is carried out by utilizing a subsampling
process [33,34] employing sample-and-hold (SH) circuits [35].

Although the proposed technique has been applied to GMI sensors in this work, it
is theoretically extensible to any LIA using an analog PSD. A practical limitation may
arise from the growing complexity of implementing a precise SH block as the operating
frequency increases. However, accurate SH circuits can be easily assembled using discrete
components for working at frequencies of hundreds of kHz.

The paper is organized as follows: a brief review of the LIA fundamentals is provided
in Section 2. In Section 3, the proposed subsampling technique for frequency downscaling
in analog LIAs is presented. The complete experimental setup including the GMI wire,
sensor interface, laboratory instrumentation, and the assembled LIA circuits is explained in
Section 4. The experimental results are presented and discussed in Section 5, and finally,
some conclusions are drawn in Section 6.

2. Fundamentals of LIAs

An LIA can be understood as a measurement system for signal recovery operating
on the PSD principle, also supported by amplification and processing stages [17]. The LIA
approach requires, by definition, some previous knowledge about the signal that must be
detected, and the parameters of the reference signal must be adjusted accordingly. The
principle of operation of a PSD is shown in Figure 1a.
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Let’s assume that the input signal Vin is formed by the sum of the signal of interest
Ai·sin(ωi·t + φi) and a generic signal n(t) that contains unwanted components at other
frequencies. Using a sinusoidal reference signal Vref1 = Ar·sin(ωr·t + φr), whose frequency
is precisely synchronized with the target signal (ωr = ωi), the multiplier output Vmult1 will
be given by

Vmult1 =
Ai·Ar

2
cos(φr − φi)−

Ai·Ar

2
cos(2ωit + φr + φi) + n(t)·Ar sin(ωit + φr) (1)

Hence, the multiplier performs a synchronous detection that leads to an output voltage
with a DC component corresponding to the first term of (1). This DC term can be straightfor-
wardly obtained by using a very low-frequency low-pass filter (LPF), resulting in:

VDCout1 =
Ai·Ar

2
cos(φr − φi) (2)

Note from (2) that amplitude and phase variations cannot be detected at the same time
by the PSD of Figure 1. On the one hand, variations in φi can be precisely measured if the
amplitude of the input signal Ai remains constant. In this case, the PSD output voltage will
be proportional to cos(φr − φi). On the other hand, amplitude variations can be faithfully
detected if a zero-phase difference between Vref1 and the signal of interest is forced, i.e.,
φr = φi. The implementation of the equivalent PSD employing switched multipliers is
illustrated in Figure 1b. The sinusoidal reference signal Vref1 has been substituted by a ±1
square wave of the same frequency (Vref2), whose Fourier series is given by

Vre f 2 =
4
π

∞

∑
n=1

1
2n− 1

sin[(2n− 1)(ωrt + φr) ] (3)

In this case, assuming again that ωr = ωi, the following multiplier output Vmult2
is obtained:

Vmult2 = 2Ai
π cos(φr − φi)− 2Ai

π cos(2ωit + φr + φi) + n(t)· 4
π sin(ωit + φr)

+ 4
π {Aisin(ωit + φi) + n(t)}·

∞
∑

n=2

1
2n−1 sin[(2n− 1)(ωrt + φr) ]

(4)

Despite the complexity of (4), note that the final low-pass filter of the multiplier of
Figure 1b will remove most of the terms as occurred with (2), just keeping the first DC term:

VDCout2 =
2Ai
π

cos(φr − φi) (5)

Although Equation (5) is ideally similar to Equation (2), it must be considered that if
n(t) contains spectral components at odd multiple frequencies of ωi, they will be multiplied
by the corresponding harmonic of the square reference signal according to the last term of
Equation (4). Hence, undesired DC terms will be added to Equation (5) and the accuracy
of the PSD will be degraded. Moreover, another limitation may arise from the potential
delay, td, that the switch SW of Figure 1b may introduce. If this delay, td, is low enough to
become negligible against the period of the PSD input signal (td << 2π/ωi), then Equation
(5) will remain unaffected in practice. However, if td provokes a significant phase-shifting
on the reference signal, the effective value of φr will be modified, leading to a source of
error in VDCout2.

Once the PSD fundamentals have been addressed, a basic LIA architecture for ampli-
tude detection is shown in Figure 2a. It operates as follows: a device-under-test is excited
by an input sinusoidal signal Vi. Although in some applications the signal of interest might
be related to higher harmonics or intermodulation products [36,37], its own fundamental
frequency is targeted in most of the cases, so the reference signal Vref can be directly gener-
ated from the input signal. A phase-shifting block is included to ensure a phase matching
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between both PSD inputs so that the final DC output, Vrec, is proportional to the amplitude
of the signal of interest. Specifically,

Vrec =
G·ADUT ·Ai

2
(6)

where ADUT is the amplitude at the frequency of interest at the device-under-test output,
Ai is the amplitude of the excitation signal, and G is a generic gain introduced by the filter,
multiplier or amplifier blocks throughout the system.
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and (b) two-phase lock-in amplifier.

An alternative approach providing simultaneous detection of amplitude and phase
variations is shown in Figure 2b. This circuit incorporates two PSDs operating with in-phase
and quadrature reference signals, so the corresponding output voltages VIrec and VQrec can
be understood as the cartesian representation of the recovered signal Vrec. Therefore, its
instantaneous amplitude and phase can be straightforwardly calculated as:

|Vrec| =
√

V2
Irec + V2

Qrec (7)

φrec = tan−1
(

VQrec

VIrec

)
(8)

The performance of practical lock-in systems may also be limited by different tradeoffs
between the parameters of the LIA, such as dynamic range, linearity, dynamic reserve, or
output stability [17], which must be adapted to each final application.

3. Proposed LIAs Using Subsampling for Frequency Downscaling

The proposed frequency downscaling technique based on subsampling and using SH
circuits is explained in this Section. It has been conceived in general for analog LIA design,
with the purpose of alleviating the aforementioned drawbacks associated with the PSD
design at moderate and high frequencies. Nevertheless, the implementation presented in
this work is focused on GMI sensor applications operating at frequencies of hundreds of
kHz. Firstly, the linearity of analog multipliers is enhanced as the operation frequency
decreases [22,32], while the output offset is strongly reduced. Secondly, the delay and jitter
introduced by switched multipliers on the reference channel become negligible if the period
of the signal of interest becomes large enough [31,32].
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On this basis, an SH block has been included in the LIA topologies presented in
Figure 3 for frequency reduction by means of a subsampling process. Both circuits are based
on the general schemes of Figure 2 and have been adapted for detecting the fundamental
harmonic at the output of a GMI sensor interface operating at 200 kHz. The PSD of the LIA
in Figure 3a is based on the switched multiplication principle. In this case, the reference
square wave is extracted from the sensor output signal itself through a comparator, leading
to a simplified version of the scheme in Figure 2a. Specifically, the phase-shifting block
has been excluded to avoid complicating the system beyond our purpose of validating the
benefits of the proposed technique. Furthermore, the circuit of Figure 3b is a straightforward
implementation of the scheme in Figure 2b using analog multipliers. Note that the SH
blocks are properly placed for down-converting the operation frequency at both PSD inputs.
A sampling frequency fs = 199 kHz has been employed so that the subsampled output
signal is scaled down to fin − fs = 1 kHz. The fundamental of this subsampling process is
explained in detail below.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

LIA in Figure 3a is based on the switched multiplication principle. In this case, the refer-
ence square wave is extracted from the sensor output signal itself through a comparator, 
leading to a simplified version of the scheme in Figure 2a. Specifically, the phase-shifting 
block has been excluded to avoid complicating the system beyond our purpose of validat-
ing the benefits of the proposed technique. Furthermore, the circuit of Figure 3b is a 
straightforward implementation of the scheme in Figure 2b using analog multipliers. Note 
that the SH blocks are properly placed for down-converting the operation frequency at 
both PSD inputs. A sampling frequency fs = 199 kHz has been employed so that the sub-
sampled output signal is scaled down to fin − fs = 1 kHz. The fundamental of this subsam-
pling process is explained in detail below. 

Sensor 
interface S&H

Vin
(fin = 200 kHz)

+1

−1

SW

Vctrl

LPF

GMI sensor

Sampling clock
(fs = 199 kHz)

VDCout

 
(a) 

Sensor 
interface S&H LPF

GMI sensor

Sampling clock
(fs = 199 kHz)

VIout

S&H

90o

LPF VQout

Analog
 multiplier

Vin
(fin = 200 kHz)

 
(b) 

Figure 3. Block diagrams for the proposed LIA topologies using subsampling for frequency 
downscaling: (a) single-output LIA employing a switched multiplier; and (b) dual-output LIA using 
analog multipliers. 

3.1. Fundamentals of Subsampling 
Subsampling can be defined as the sampling process of a bandpass signal using a 

frequency below the Nyquist frequency. Considering that the signal bandwidth (BW) is 
generally much lower than the center frequency fc, the subsampling may be carried out 
without aliasing between spectrum replicas [34]. Specifically, the spectrum of a sampled 
signal is given by  𝑋௦(𝑓) = (1/𝑇௦) ∙ ෍ 𝑋(𝑓 − 𝑛𝑓௦)ஶ௡ୀିஶ  (9)

where X(f) is the spectrum of the original signal, and fs and Ts are, respectively, the sam-
pling frequency and period. As explained in detail in [33], when a bandpass signal is sub-
sampled at a frequency fs < fc, spectrum replicas are generated at −m·fs + fc, while mirrored 
replicas appear at (m + 1)·fs − fc, where m is an integer. A low-frequency replica of the 
original signal will be obtained at  

Figure 3. Block diagrams for the proposed LIA topologies using subsampling for frequency downscaling:
(a) single-output LIA employing a switched multiplier; and (b) dual-output LIA using analog multipliers.

3.1. Fundamentals of Subsampling

Subsampling can be defined as the sampling process of a bandpass signal using a
frequency below the Nyquist frequency. Considering that the signal bandwidth (BW) is
generally much lower than the center frequency fc, the subsampling may be carried out
without aliasing between spectrum replicas [34]. Specifically, the spectrum of a sampled
signal is given by

Xs( f ) = (1/Ts)·∑∞
n=−∞ X( f − n fs) (9)

where X(f ) is the spectrum of the original signal, and fs and Ts are, respectively, the sampling
frequency and period. As explained in detail in [33], when a bandpass signal is subsampled
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at a frequency fs < fc, spectrum replicas are generated at −m·fs + fc, while mirrored replicas
appear at (m + 1)·fs − fc, where m is an integer. A low-frequency replica of the original
signal will be obtained at

fL = fc − fs· f loor
(

fc

fs

)
(10)

This signal replica at fL can be extracted without aliasing if the following condition
holds [33,38]:

2
(

fc − BW
2

)
nr − 1

< fs <
2
(

fc +
BW

2

)
nr

(11)

where nr is the number of replicas of the spectrum of the signal between 0 and fc-(BW/2).
Note that at this point, the circuits in Figure 3 employ a sinusoidal excitation signal whose
bandwidth ideally tends to zero, so the constraints stated in Equation (11) are relaxed in
this application. As indicated in Figure 3, a frequency fs = 199 kHz has been chosen for
sampling the signal at the sensor excitation frequency (200 kHz), so a low-frequency replica
at fL =1 kHz would be obtained according to Equation (10).

To provide some insight, an illustrative example of the subsampling of a sinusoidal
signal with a generic frequency fc is depicted in Figure 4. The spectrum of the original
sinewave is plotted in Figure 4a, assuming the presence of second and third harmonics. A
sampling frequency fs slightly lower than fc has been established. According to Equation (9),
the spectrum shown in Figure 4b is obtained for the ideally subsampled signal. A low-
frequency replica of the original signal is obtained at fL = fc − fs, as stated in Equation (10).
Note also that replicas of the second and third harmonics appear at frequencies 2·fL and
3·fL, respectively, so a whole downscaling of the spectrum in Figure 4a has been obtained.
It is worth mentioning that a subsampling frequency of fs = 4·fc/nr (with nr an odd natural
number) is recommended in communication systems for obtaining a signal replica at fs/4,
thus relaxing the subsequent filter requirements for signal recovery [33,38]. However, a
different criterion has been employed in the current application, since the benefits of the
proposed downscaling technique enhance as fL decreases. Hence, the lower limit of fL
is uniquely determined in practice by the electronics’ flicker noise, which may become
dominant at frequencies below the kHz range [18], and by the possible requirements in
terms of measurement speed, which depends on the target application.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 17 
 

 

𝑓௅ = 𝑓௖ - 𝑓௦ · 𝑓𝑙𝑜𝑜𝑟 ቀ௙೎௙ೞቁ (10)

This signal replica at fL can be extracted without aliasing if the following condition 
holds [33,38]: 2(𝑓௖ − 𝐵𝑊2 )𝑛௥ − 1 < 𝑓௦ < 2(𝑓௖ + 𝐵𝑊2 )𝑛௥  (11)

where nr is the number of replicas of the spectrum of the signal between 0 and fc-(BW/2). 
Note that at this point, the circuits in Figure 3 employ a sinusoidal excitation signal whose 
bandwidth ideally tends to zero, so the constraints stated in Equation (11) are relaxed in 
this application. As indicated in Figure 3, a frequency fs = 199 kHz has been chosen for 
sampling the signal at the sensor excitation frequency (200 kHz), so a low-frequency rep-
lica at fL =1 kHz would be obtained according to Equation (10).  

To provide some insight, an illustrative example of the subsampling of a sinusoidal 
signal with a generic frequency fc is depicted in Figure 4. The spectrum of the original 
sinewave is plotted in Figure 4a, assuming the presence of second and third harmonics. A 
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3.2. Sample-and-Hold Considerations

The previous analysis based on Equation (9) assumes that an ideal sampling is performed,
i.e., the original signal is multiplied by a unit impulse train. However, when the basic SH
architecture in Figure 5 is employed in practice, the original signal is multiplied by a train
of rectangular pulses, as illustrated in Figure 6. The system operates as follows: an input
amplifier buffers the input signal (Figure 6a) to charge the capacitor CHOLD. During the track
mode (switch SW closed), the capacitor voltage follows the input signal, while in the hold
mode (switch open) the sampled voltage is retained in CHOLD. A second amplifier with a very
high input impedance is employed for driving the CHOLD voltage, as well as preventing the
capacitor from discharging prematurely [35]. As a result, a pulse-amplitude-modulated (PAM)
signal with a pulse duration equal to the sampling period TS is obtained [39], as depicted in
Figure 6b. Under this assumption, Equation (9) becomes

XS( f ) = (1/Ts)·∑∞
n=−∞ X( f − n fs)·H( f ) (12)

where H(f ) is the Fourier transform of the rectangular pulse shape, in turn, given by

H( f ) = Ts·sinc( f Ts)e−jπ f Ts (13)
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Returning to the example of Figure 4, the spectrum in Figure 4c corresponds to the
subsampling process of the original signal using rectangular pulses with a duration of
Ts. Note from Equation (12) that the multiplication in the frequency domain of an ideally
sampled signal by a sinc shape will distort the original spectrum proportionally to its
bandwidth. However, in the particular case of a sinusoidal signal, the sinc multiplication
just introduces an attenuation Ts·|sinc(fL·Ts)| at the fundamental frequency, and even the
relative magnitude ratio with respect to the second and third harmonics (further attenuated)
is increased, as can be observed in Figure 4c. Anyway, both effects become negligible if the
ratio fc/fL is high enough.
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Figure 6. Illustration of the operation principle of the SH circuit in Figure 5 in the time domain.
A sinusoidal signal is subsampled with a sampling frequency slightly lower than the sinewave
fundamental frequency. The three voltages indicated in Figure 5 are plotted: (a) analog input of the
SH, Vi; (b) analog SH output Vo with frequency downscaling; and (c) filtered output signal Vf.

4. Complete Experimental Setup

The implementation of the LIAs in Figure 3 together with the experimental setup are
addressed in detail in this Section. The complete schematic of the final circuit is shown in
Figure 7. It comprises the GMI sensor, the electronic interface, and both LIA architectures.
The LIAs have been tested with and without the SH blocks to confirm the benefits of the
proposed frequency downscaling technique. A dual-supply voltage of ±5 V provided by
an Agilent E3630A DC power supply was employed. The input voltages in Figure 7, Vin
(sensor excitation signal) and VSH (control signal of the SH switches) were produced by an
Agilent 33,522A waveform generator. A USB oscilloscope, Digilent Analog Discovery 2,
was employed to capture both the voltage signal at the output of the GMI sensor (Vsens) and
the DC output voltages of the proposed LIAs (VSMout, VIout, and VQout). The circuit was
assembled on a breadboard and the FET-input operational amplifier AD823 from Analog
Devices [40] was used in all cases in Figure 7.
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4.1. GMI Sensor and Electronic Interface

An amorphous Co66Fe2Si13B15Cr4 wire (3 cm in length, and 90 µm in diameter) ob-
tained by the in-rotating-water quenching technique [11] was employed as a GMI sensing
element for testing the proposed LIAs. The wire was excited under optimal conditions for
maximizing the GMI effect (15 mApp at 200 kHz). The transimpedance amplifier shown
in the upper left corner of Figure 7 was employed for ensuring a constant current Vin/R1
flowing through the sensor [41], where the sinusoidal input voltage Vin had an amplitude
of 1.5 Vpp at 200 kHz. Under these conditions, the sensing wire impedance variations were
analyzed under the effect of a magnetic field generated by a neodymium magnet. For the
sake of accuracy and reproducibility, an adapted commercial 3D printer motor (Artillery
Sidewinder x1) controlled by LabView was used to precisely vary the relative distance, x,
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between the sensor and the magnet. Specifically, the GMI sensor was placed on the mobile
surface of the device while the magnet remained fixed. As a result of x diminution, the
mean magnetic fields acting on the GMI sensing element increased, resulting in a constant
impedance decrease [11]. Concretely, a maximum relative change in the impedance of
around 75% was achieved within the applied magnetic field interval, i.e., 10 kA/m to
250 A/m. Two photographs of the setup are shown in Figure 8.
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Figure 8. Photographs of the GMI sensor experimental setup: (a) general view of the sensor and
magnet installation on the 3D printer motor; and (b) detail of the fixed neodymium magnet and the
mobile GMI sensor.

4.2. Sample-and-Hold Schematic

The schematic of the blocks SH1 and SH2 in Figure 7a is depicted in Figure 7b. It has
been developed from the basic SH scheme of Figure 5 including some extra improvements.
On one hand, the two complementary switches (chip MAX4528 from Maxim Integrated [42])
provide a constant input impedance that prevents the input signal from coupling to the
output during the hold period. On the other hand, the DC errors introduced by the switches
are minimized by the feedback loop [35]. Moreover, the hold-capacitor C4 is also placed
in the feedback path of the amplifier A7, so that the switching block always sees a virtual
ground. In this way, the charge removed from the negative input of A7 by the parasitic
capacitances of the switches remains constant regardless of the voltage at the output of
A7 [32]. Finally, a 4th-order Butterworth bandpass filter was chosen for the output filtering.

The voltage VSH controlling the sampling and holding periods was a 199 kHz square
wave. The signal VSH swung between 0 and 5 V with a duty cycle of 10%, i.e., the tracking
period had a duration of 0.1·Ts and the holding period was 0.9·Ts. Note that the duration
of the track mode must be large enough to allow the capacitor voltage to follow the input
signal accurately. In the same way, the settling time must be also considered after switching
to the hold mode, since the output voltage takes some time to settle within a specified
error margin [32]. Nevertheless, the previous considerations are not a severe constraint in
the proposed subsampling approach, since a very low sampling rate was employed, and
consequently (since fs is very close to fc) the voltage gap between consecutive samples was
generally small.

4.3. Considerations for LIA Implementation

The ±1 switched multiplier of the single-output LIA in Figure 3a was implemented in
Figure 7 by using the phase-reversal analog switch MAX4528 [42]. Switching between the
positive and negative inputs of the operational-amplifier-based subtractor (formed by A5
and resistors R7–R10) alternates the sign of the amplifier gain. One chip 4116R-1-103FLF of
integrated thick film 10 kΩ matched resistors was used for implementing R7–R10 since a
high-resistance matching was required to obtain a precise ±1 gain.

Regarding the two-output LIA in Figure 3b, the integrated circuit AD633 from Analog
Devices [27] was chosen to perform the analog multiplication. As mentioned in the Intro-
duction Section, DC offsets at the multiplier inputs may seriously degrade the quality of the
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signal detection, as the corresponding output DC values would be indistinguishable from
the readout of the signal of interest. For this reason, two AC-coupled buffers (amplifiers A2
and A4) were placed at the multiplier inputs. Moreover, the voltages at the offset-control
pins of both AD633 chips were adjusted by the potentiometers POT1 and POT2 to ensure a
zero-voltage output when the inputs were grounded. The integrator circuit in the bottom
left corner of Figure 7a was used for introducing the 90o phase-shifting on the quadrature
branch of the LIA. Different values for the potentiometer POT3 and the capacitor C2 were
chosen for each operation mode of the circuit, i.e., with and without SH blocks, since the
pole of the circuit at ωp = 1/(C2·R4) must be adapted to guarantee the integration function-
ality at each operation frequency (200 kHz and 1 kHz, respectively). The potentiometer
POT3 was adjusted in each case to obtain the same amplitude in both the in-phase and
quadrature reference signals.

Finally, the schematic of the output LPF blocks in Figure 7a is shown in Figure 7c. It
consists of two RC sections with a non-inverting gain in between. The lower the LPF cutoff
frequency, the better the recovery accuracy and the noise rejection of the LIA, which may lead
to a challenging task in the design of fully integrated LIAs where the size of capacitances is
strongly constrained [43]. However, the use of large RC time constants is not a limitation
in discrete systems (or integrated systems with external capacitors), so the tradeoff between
precision and measurement speed is the only consideration. In this case, 100 kΩ resistors and
capacitors of 1µF were employed for the 2nd order LPF implementation.

5. Measurement Results

The voltage Vsens at the output of the sensor interface in Figure 7a was monitored
by the digital oscilloscope. The magnitude of the fundamental harmonic was accurately
calculated and averaged using the FFT function of the device software, while the phase
variations were extracted from the time domain signal employing the same device. Both
parameters were taken as references for evaluating the precision of the proposed LIAs. The
LIA topology of Figure 3 (implemented according to Figure 7) was tested with and without
the SH blocks, i.e., using frequency downscaling at the PSD inputs (to 1 kHz), and with
the conventional PSD (at 200 kHz). The distance between the neodymium magnet and the
GMI sensor was varied from 50 mm to 12.5 mm in steps of 2.5 mm.

The measurement results of the amplitude of the fundamental harmonic of Vsens (see
Figure 7a) are plotted in Figure 9. In Figure 9a, the black solid line corresponds to the
reference value of Vsens provided by the FFT function at 200 kHz, while the outputs of
both LIAs using frequency downscaling are drawn in blue (single-output LIA) and red
(two-output LIA) dashed lines, respectively. Note that the curves of both LIAs have been
plotted with a scale factor such that the voltage swing between maximum and minimum
values is the same as for the reference curve. In this way, a precise comparison in terms
of offset can be performed. The same procedure is used in Figure 9b for the outputs
of the conventional LIAs without frequency reduction. To provide more insight, the
LIAs measurement error with respect to the FFT reference values is shown in Figure 9c
for all the previous cases. Regarding the two-output LIA, the signal magnitude was
externally calculated from the two captured output voltages (VIout and VQout) according to
Equation (7). Note that the error introduced by the analog multipliers was considerably
reduced when frequency-downscaled input signals were employed. Specifically, the mean
voltage deviation throughout the experiment decreased from 628.1 µV to 74.9 µV, which
corresponded to a reduction factor of 8.39. The benefits of the proposed technique are even
more noticeable in the case of the single-output LIA, in which the delay of the switches
seriously deteriorated the accuracy of the PSD when the conventional topology was used.
In this case, the effect of the switch delay was strongly alleviated thanks to the frequency
downscaling, reducing the mean deviation of the voltage VSMout in Figure 7a by a factor of
21.15, i.e., from 3.743 mV to 177 µV.
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the FFT function of the digital oscilloscope, versus separation between GMI sensor and magnet:
(a) amplitude detected by the proposed LIAs using SH blocks for frequency downscaling; (b) ampli-
tude detected by the conventional LIAs without frequency downscaling; and (c) amplitude error for
both LIA architectures with and without frequency downscaling.

Furthermore, the effect of the proposed technique on the phase response of the two-
output LIAs (scheme in Figure 3b and outputs VIout and VQout in Figure 7a) were studied.
In this case, a specific point needed to be established as a phase reference value (0◦), so
phase variations could be measured and compared. A sensor position 50 mm away from
the magnet was arbitrarily set as the reference. From this point, the phase variation was
monitored as the magnet and sensor approach, leading to the results plotted in Figure 10a.
The reference black solid line was obtained by the phase function of the digital oscilloscope,
which calculated the phase difference between Vsens in Figure 7a and the input signal
Vin, which served as a stable reference sinewave. A digital bandpass filtering centered at
200 kHz was also performed over both signals in order to attenuate possible higher-order
harmonics that might have degraded the measurement accuracy. On the other hand, the
blue and red dashed lines were obtained by applying Equation (8) to the LIA output
voltages (calculations are performed externally), with and without employing the proposed
technique. The representation of the phase errors is provided in Figure 10b.
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Figure 10. Phase variation measurements of the two-output LIAs compared with the reference value
provided by the digital oscilloscope, versus the separation between the GMI sensor and magnet. The
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phase variation with and without frequency downscaling; and (b) phase error.

The benefits of the proposed technique concerning phase measurement accuracy are
not as significant as for the magnitude, as can be seen in Figure 10. This result was expected
since if the same DC offset is added to both LIA output voltages, VIout and VQout, the error
in the tan−1(VQout/VIout) operation may be partially compensated. In fact, this error will
be ideally zero if both in-phase and quadrature components have the same value initially.

Nevertheless, the proposed technique also had a positive effect on the precision of
the phase variations measurement. Note that the mean errors obtained from both lines in
Figure 10b were conditioned by the arbitrary choice of the reference position (phase = 0◦).
For the sake of reliability, the mean phase deviation was calculated N times for N different
reference points from the data in Figure 10, where N = 16 is the total number of points
for each curve. These N mean values were subsequently averaged, leading to final mean
error values of 0.130◦ for the conventional circuit and 0.097◦ for the circuit using frequency
downscaling. Hence, the proposed technique reduced the phase measurement error by
>25% compared to the conventional lock-in topology.

6. Conclusions

A subsampling technique for downscaling the signal frequency at the PSD inputs
in analog LIA design, using analog and switched multiplication, respectively, has been
proposed in this paper. Two LIA architectures conceived for GMI sensor applications
operating at several hundreds of kHz have been assembled using discrete components
on a breadboard. The accuracy of both LIA topologies using the proposed technique was
compared with their conventional versions, obtaining a strong precision enhancement. In
particular, the accuracy of the signal magnitude measurements increased by a factor of
8.39 when analog multipliers were employed, while an improvement factor of 21.15 was
obtained when a PSD based on switched multiplication was used. Moreover, the error
in-phase measurement using a two-phase LIA topology was also reduced by >25%.
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