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Abstract: The Internet of Things (IoT) has risen from ubiquitous computing to the Internet itself.
Internet of vehicles (IoV) is the next emerging trend in IoT. We can build intelligent transportation
systems (ITS) using IoV. However, overheads are imposed on IoV network due to a massive quantity
of information being transferred from the devices connected in IoV. One such overhead is the network
connection between the units of an IoV. To make an efficient ITS using IoV, optimization of network
connectivity is required. A survey on network optimization in IoT and IoV is presented in this
study. It also highlights the backdrop of IoT and IoV. This includes the applications, such as ITS with
comparison to different advancements, optimization of the network, IoT discussions, along with
categorization of algorithms. Some of the simulation tools are also explained which will help the
research community to use those tools for pursuing research in IoV.

Keywords: intelligent transport system (ITS); internet of things (IoT); internet of vehicles (IoV);
vehicular ad hoc network (VANET); network optimization

1. Introduction

The Internet of Things (IoT), through which a sizable amount of physical gadgets
are connected with the web, has risen from ubiquitous computing and the Internet itself.
To make efficient use of the available network, it is important to provide solutions to
various network-related IoT problems, including routing, congestion, quality of service
(QoS), heterogeneity, energy conservation, scalability, reliability, and protection. This
paper presents a comprehensive survey on network optimization in IoT. It highlights the
background of IoT and IoV. This study also discusses about the applications of IoV which
include Intelligent Transport System (ITS) with comparison to different advancements,
optimization of the network along with categorization of various algorithms.

1.1. Intelligent Transport System

The ITS, introduced for resolving transportation problems and improving overall
effectiveness of transportation. Within the framework of smart cities, the ITS is subject
to smart mobility, which has been gaining popularity in recent decades. Hall et al. [1]
proposed that a smart city should keep track of its components (e.g., roads, buildings, etc.)
to optimise its services to the best of its capabilities, plan maintenance activities which are
preventive, and security monitoring while expanding utilities for denizens. A smart car is a
crucial component of IoT, an application of ITS. It has access to the web, shares information
with other smart devices that are inside and outside the car.

The CMSWire predicts that over 380 M vehicles are expected to be on the roads by
2020 [2]. The Business Insider anticipated 94 M connected vehicles by 2021 and 82% will
be connected to other cars, traffic lights, road side units (RSU), etc. [3]. Technologies such
as artificial intelligence, big data, and machine learning shall work towards detecting
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deterrents on roads, or unfavourable climate, to bring down road congestions and traffic
mishaps in the near future. Advanced data mining techniques can give rise to new revenue
marketing which is based on individual driver’s visited locations, vehicular entertainment,
and content choice and can also be a new source of earnings [4]. Different applications
include saved driver data profiles that will allow us to create personalized driving experi-
ences and navigation. When it senses the person’s presence near the car, smart infotainment
plays the driver’s favourite music. Radios and CD players are now being replaced with
‘Smart Infotainment Devices’ and there are infinite possibilities. Leading manufacturers
of cars, such as British Motor Works, Volkswagen, Nissan, Porsche, Audi, Mercedes Benz,
Tesla, and Jaguar, are promoting the Internet of Vehicle (IoV) [5]. Car manufacturers are
already creating major advancements in the trials of vehicular technology. One such case,
Telstra, which is in collaboration with Cohda Wireless, effectively ran Vehicle to Person
(V2P) technology trials in South Australia Auto [6]. The technology was tested using every-
day scenarios, such as a pedestrian advancing towards a blind curve. Numerous relevant
platforms already exist to discover ingenious methods to motivate separate developers
to assist in building connected car environments (such as Android Auto, Baidu CarLife,
MirrorLink, Apple car play, etc.) that provide infotainment on smartphones. Google’s
self-driving automobile venture is most likely the one with major headway. More than
five million miles of street testing has already been conducted by them. Smart technology
that is helping to reduce traffic congestion has already been equipped in 50 intersections
in Pittsburgh, Pennsylvania. As a component of its smart mobility project, the Austin
transportation division which exists in the United States has just tried experimenting with
smart parking meters.

1.2. Motivation

The motivation behind the architecture and advancement of IoV is split into three sections.

• The commercialization issues in vehicular ad hoc networks (VANET);
• Traffic issues;
• Market opportunities.

1.2.1. The Commercialization Issues in VANET

The VANET by itself was unable to ensure international and imperishable services
through ITS applications. Some of the causes of commercial issues in VANET are pinpointed
below. This is due to the ad hoc network nature and dynamic networks where some vehicles
fall out of communication range and network region, lose its services from the network
despite being on-road. In VANET, the Internet is not completely guaranteed, drivers
and passengers are not able to receive commercial applications despite the substantial
bloom of personal gadgets, the gadgets are unable to interact with VANET because of
the incompatible architecture of the network in present VANET [7]. This issue can be
attributed to the limitations on computing and storage and the non-availability of services
in automobiles [8].

1.2.2. Traffic Issues

Safety, efficiency, and pollution are related to on-road traffic which are root of concern
on the design and advancement of IoV. Reliable communication offered by ITS would suc-
cessfully bring down congestion casualties [9]. The increasing number of traffic casualties
around the globe has been mentioned in many surveys [10]. The World Health Organiza-
tion (WHO) reports that as of now, road accidents cause almost 1.24 million deaths around
the globe [11], by 2030, road accidents could represent up to 40% of all deaths [12,13]. It was
reported in [14] that the count between the time of an early cautionary alert and the motorist
doing something about it ranges between three-fourths to one and a half of a second. People
between the ages of 15 and 44 form a major share of worldwide road deaths (about 59%)
as per another report. In New Delhi, India, fuel valued at over USD 1.6 million is wasted
daily, due to vehicles idling in road congestion [14]. Traffic can lead to major drawbacks,
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such as fuel, time, economic wastage, and environmental pollution. It gives way to drastic
repercussions on travel, regional and national economies, enterprises, and people. Each
year, nearly 227 hours are spent in traffic by London drivers [15]. The reports convey that
there is an urgent need to bring down casualties on roads. For these reasons, the usage of
more dependable vehicular communication for safety applications is required.

1.2.3. Market Opportunities

The automobile industry and many more industries, including the software industry,
IT equipment manufacturers, and web access providers, were offered a market opportunity
in IoV. Autonomous vehicles are usually equipped with over 300 sensors with the capability
of producing more than 5000 GB of data daily [16]. Generated historical data are utilized
for making subsequent choices, such as forecasting congestion levels and determination
of an optimal route. There are almost three million electric vehicles in 2017 as compared
to the 0.7 million vehicles in 2014 [17]. Electric vehicles are not a dream any more but are
a fact of life [18]. More of these vehicles are expected on the roads with each passing
year. More than five million miles of road trials have been conducted by Google on its
self-driving automobiles. Tesla’s Model S, which was introduced to the market in 2012,
led the connected vehicles market in that period. The smart car sale could go up to
nearly 81 million per year; the latest cars are expected to have a form of connected drive
technologies in the next five years [10]. The prospective economic gains that can be obtained
from IoV is roughly calculated to be around 210–740 billion per annum in the next five
years [19].

1.3. Related Work

Various reviews and surveys have been completed in IoV and ITS. Cheng et al. [20] has
performed a survey on routing algorithms in IoV. They consider topology, position, map,
and path routing for their survey. They recommend that the researchers should test their
algorithms in scenarios, such as large-scale heterogeneous networks along with small-scale
homogeneous systems to enable IoV in the real-world scenario. Tuyisenge et al. [21] have
conducted a survey based on network architecture in IoV. They study some protocols and
provide some information related to the mechanism of IoV in various other networks.
Hussain et al. [22] have completed a review of QoS issues in IoV. In this review, they
have concluded that optimal solution using QoS parameters can be used for development
of IoV solutions. Ji et al. [23] have explored literature review including basic VANET
technology, various network architectures, and applications of IoV. They also proposed a
design of a vehicle–road–cloud collaborative integrated network with greater throughput,
lower latency, higher scalability and security. Mollah et al. [24] have performed a survey
on application of blockchain for ITS using IoV in which they have studied various key
challenges where blockchain is applied in IoV. Xu et al. [25] have conducted a survey
on applications of artificial intelligence (AI) for edge service optimization in IoV. They
study the edge service frameworks for IoV and explore the use of AI in server placement
and offloading of services. Kayarga and Kumar [26] have reviewed on the bio-inspired
algorithms in IoV applications, which are used between vehicles, humans, and things.
Ksouri et al. [27] have conducted a survey of routing protocols with an insight into the
design of geographical protocols. They have also studied various optimization techniques
and paradigms for efficient routing.

There exist various optimization algorithms for network management in IoV to opti-
mize deterministic problems. However, those algorithms are unable to tackle the probabilis-
tic counterpart, i.e, the randomness involved in the traffic systems. Hence, to handle such
random scenarios efficiently, there is a need for a better bio-inspired optimization algorithm.
This survey mostly focuses on network optimization using bio-inspired algorithms. It also
highlights some of the simulation tools used in the IoV.
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1.4. Paper Organization

The remaining contents in this paper are arranged as mentioned. Section 2 provides
a background of IoT and and its role in ITS. Section 3 explains the movement of VANET
towards IoV and architecture of IoV. Section 4 discusses different optimization techniques
for ITS available in the literature. Section 5 discusses modelling environment and steps
involved in simulation. Finally, Section 6 summarizes the conclusions and future scope.

2. Background of IoT
2.1. IoT Evolution

Kevin coined the term IoT in 1982 [28], in the US, when a connection between a cola
vending machine and the Internet was established to inspect the amount of cola in the
machine [1]. The IoT network is a collection of interconnected physical objects, including a
data processing device, people, mechanical and digital machines embedded with software
and electronic circuitry which enables these objects provided with unique identifiers to
collect data and exchange accordingly. IoT devices will be more than seven times the present
world population, as per a report [29]. Cisco expected the number of IoT connected devices
to surpass between 50 billion in 2020. The IoT is accompanying the following advantages:

• Allows connectivity between devices to develop smarter territories;
• Making one’s life easier and comfortable through allowing automation;
• Allows organizations to maximize efficiency and bring down costs;
• Allows firms to deal with wastage and improve the deliverance of services;
• Enables firms to develop and merge business models and improve productivity.

Along with this, new technologies and mechanisms have come up and have been
advancing, such as wireless and sensor technologies, machine-to-machine (M2M) commu-
nication, big data analytics, artificial intelligence, and machine learning. With the increased
number of gadgets on the network, the connectivity of heterogeneous gadgets imposes
numerous new challenges. Such technologies and associated frameworks have given way
to many extremely attractive IoT applications [30–33].

2.2. Difference among M2M, IoT, and IoE

The Internet of Everything (IoE) emerges as an advancement of IoT and it encompasses
IoT and IoV. IoE is a connection of data, process, people, and things that are connected to
change information into actions for creating more opportunities and better experiences. It is
natural that all gadgets will be linked to the Internet in the future and all undertakings will
be linked by device to device (D2D) correspondence. The accompanying advancements are
assuming an indispensable part of the IoE. It joins communication from M2M, Machine to
People (M2P), D2D, and People to People (P2P) [34]. The IoE is used in various applications
with great execution and reaction time. Specific uses of IoE in ITS include self-driving cars,
smart parking systems, smart traffic monitoring, connected cars, smart cities, and wearables
(health monitoring of patients). Different smart wearable gadgets are distinguished to
gather different health statuses, pulse, body glucose level, internal heat level, physical
movement, etc. [35]. M2M is a subset of IoT that exist without the Internet which empowers
ubiquitous networks among gadgets. The IoT, has evolved on the basis of M2M, that
aims to offer many more functionalities, such as enabling communication among the same
kind of machines, uniting distinct devices and systems to use different technologies, and
provide interactive and fully-connected networks across varying environments. Some of
the utilization of M2M communication are home and office security frameworks, traffic
light frameworks, robotics, sensor networks in a petroleum processing plant, and so on.
The previously mentioned uses can move the data to the server or client with good reaction
time. To distinguish and accumulate diverse data from IoT gadgets, there is a requirement
for cutting edge high-speed wireless network innovations, for example, 4G to 5G Networks.
This advancement will have the option to satisfy their cases of high throughput, super-
low latency, high reliability, accessibility, and transferring data to the client and server.
This is additionally used to conquer the different issues in IoT, IoE, and M2M, such as
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network connectivity, and increase the speed of data flow between the numerous IoT
gadgets. The above cutting edge innovations, for example, IoT, IoE, M2M, and 5G network
convergence, are used to improve our lives.

2.3. IoT for Connected Vehicles

IoT is directly clearing a path for an associated future where vehicular nodes, gad-
gets, and other individual elements speak with one another in consolidated frameworks.
ITS frameworks are a coordinated gathering of advancements, for example, IoT, IoV, 4G-
LTE, 5G, RFID, and GPS. To manage the developing traffic requests in current urban
areas, ITS frameworks, in general, adjust frameworks with a decentralized design. Vehicle
information is accumulated utilizing traffic cameras, onboard sensors, radio frequency
identification, infrared sensors, and information is transferred to the smart transport man-
agement system via Wi-Fi to automate and coordinate traffic signals and traffic monitoring.
A service-centric heterogeneous vehicular network modelling for connected traffic environ-
ments is proposed in [36]. Safety and administration related applications in this area are
sorted into three kinds.

• Safety applications;
• Efficient traffic management;
• Support and infotainment applications.

2.3.1. Safety Applications

The foremost target of security and safety applications of vehicular networks is to
maintain a safe distance from road mishaps as it involves lives. These applications are
vulnerable against delay, security applications are required to work proactively to advance
the driver and, as such, ultimately prevent the disaster from happening. On the chance that
a mishap has happened, this application intends to give emergency vehicles at the earliest.
A new architecture has been suggested to prevent intersection collisions build on DSRC [37].
It focuses on establishing secure RSU communications deployed near the intersection area
where nodes exchange their status updates. Warning for traffic signal violation, i.e., at
the traffic light signal, if the driver does not stop. Notifications can be obtained when
RSUs relay traffic light signals while positioning RSUs with a traffic light controller [38].
A cooperative driving of automated vehicles using B-splines for trajectory planning has
been proposed by Van et al. [39]. Logical scenarios parameterization for automated vehicle
safety assessment in cut-in scenarios from Japanese and German highways has been
surveyed in [40]. A framework for vehicle dynamics model validation has been proposed
by Widner et al. [41]. Cao et al. has proposed an improved motion control with cyber-
physical uncertainty tolerance for distributed drive electric vehicle [42]. Some of the other
solutions are reported in the literature—mobile crowd sensing for traffic prediction in
IoV [43], and hybrid recommendation system architecture for early safety predication using
IoV [44].

2.3.2. Efficient Traffic Management

Intelligent traffic applications help by improving the progression of traffic and keeping
away from the street clog. Vehicular nodes are informed about traffic situations early based
on communication received. This may assist vehicles with changing their courses in case of
traffic congestion and minimizes travel time [45,46]. The application for road congestion
control helps ensure free flow of traffic by reducing road congestion. In addition, this
increases the flexibility of the road and prevents traffic jams [47]. As per the necessity,
before heading to a new area for direction, drivers can download maps of areas. It would
also maximise the traffic flow instead of becoming trapped on the wrong road. The portal
for accessing the content map database enables access to useful knowledge from home
stations or mobile hot spots [48]. Non-signalized intersection network management with
connected and automated vehicles is also proposed in [49]. Applications on intelligence,
surveillance, and reconnaissance missions in cooperative routing problem for ground
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vehicle and unmanned aerial vehicle has been suggested in [50]. Niu et al. has presented
an in-depth survey of space–air–ground integrated vehicular network for connected and
automated vehicles and presented challenges and solutions [51]. A cost-effective traffic
signal control was proposed in [52].

2.3.3. Support and Infotainment Applications

Support and Infotainment utilization are intended to upgrade the client’s comfort.
Likewise, health monitoring applications give utilities to patients in crises. Gaming, file
sharing, searching for the nearest milk parlour, theatre, cafe, open parking room, internet
video streaming, carpooling, and network service provisioning are some of the examples
of infotainment technologies. As it increases network reliability and available bandwidth
with an increase in peer capacity, the peer-to-peer file sharing technology has benefits
over the client-server architecture. One of the frequently used P2P applications is Bit
Torrent. There is a recommended emergency routing protocol called VehiHealth to provide
patients with pre-medical care by providing quick communication between hospital and
ambulance [53–55]. Computationally efficient non-linear one- and two-track models for
multi-trailer road vehicles is proposed in [56]. Xin et al. [57] have proposed an AI-based QoS
optimization for multimedia transmission in IoV. They present a system for multi-modal
communication in which multimedia IoV transmission through mobile devices offers the
quality of experience optimization model. Musa et al. [58] have proposed a design of an
information-centric network with mobility-aware proactive caching scheme to provide
delay-sensitive services on IoV networks. The applications of IoT for connected vehicles
are listed in Table 1.

Table 1. Applications of IoT.

Safety Applications Efficient Traffic Management Support and Infotainment

1. In-Vehicle Signage 1. Road Clog Management 1. Intelligent Parking Route
2. Warning Turn Assistant 2. Toll Management 2. Vehicle Pooling
3. Blind Merge Warning 3. Computerized Map Downloading 3. Web access Provisioning
4. Vehicle Warning 4. Intersection Management 4. Distributed Data Sharing
5. Emergency Electronic Brake Lights 5. SOS Services 5. Clinical Applications
6. Early Detection Warning
7. Pre-Crash Sensing
8. Emergency Electronic Brake

3. Towards IoV

Wireless ad hoc networks is a class comprising wireless networks, such as (i) mobile
ad hoc networks (MANET), (ii) vehicular ad hoc networks (VANET), and (iii) wireless
sensor networks (WSN) [59]. Generally, the WSN is classified into infrastructure and
infrastructure-less networks. Based upon the geography and arrangement, ad hoc systems
might be classified as homogeneous and heterogeneous systems. A homogeneous network
is formed from similar nodes whereas a heterogeneous network is formed from dissimilar
nodes. The concept of ad hoc networks is old which began in 1972, i.e., DARPA packet
radio network, ALOHA, PRNET, etc. [60].

Infrastructure-less MANET is an organization of mobile devices, connected over a
wireless network and follow different properties, i.e., self configuring, self healing, self
protecting [60]. In MANET, because of mobility, frequent link breaks, and dynamic topology,
nodes in these networks act as routers to transfer packets. It enables spatial spectrum reuse
due to the limited bandwidth of each node, another type of ad hoc network is VANET
which is shaped by various vehicles present on the road.
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Different vehicles communicate with one another on the road and each of these
vehicles has a tool called an On Board Unit (OBU). OBU can talk to vehicles and RSUs,
which act as access points [61]. Vehicles are enabled to talk to one another in different ways.
VANET is very helpful in spontaneous data exchange and it is a key component in ITS.
It offers different applications concerning highway traffic, road congestion and accidents.
The two communications considered in VANET are vehicle-to-vehicle communication
(V2V) and vehicle-to-infrastructure communication (V2I)—between vehicles and roadside
access points. VANET looks very similar to MANET, but it is slightly different in following
route patterns, they follow predictable mobile patterns whereas MANET has unpredictable
mobile patterns. The architecture of VANET is shown in Figure 1.

NETWORK LAYER

CLOUD

TRANSPORT LAYER

MMAC IEEE802.11 LLC(LOGIC LINK CONTROL LAYER)

VANET

Figure 1. VANET architecture.

There are extensively three distinct segments of VANET, one is an OBU which is
answerable for information collection from various sensors and other vehicles. The second-
RSUs which offer an infrastructure that enables communication to the external network.
The third communication technology helps these units to talk to each other, IEEE 1609.2 is
commonly known as Dedicated Short Range Communication (DSRC) 802.11p [62]; vehicles
must be equipped with the IEEE 802.11p based OBU and DSRC, along with added sensors
to be completely aware of the condition where the vehicle find itself in [45]. A cooperative
perception technology of autonomous driving in the internet of vehicles environment
survey is reported in [63]. The VANET architecture is commonly divided into three sorts of
classes namely:

1. Mobile and wireless LAN networks which are used to direct and obtain traffic data
through fixed portals and WiMAX/Wi-Fi;

2. Pure ad hoc, that is, between vehicular nodes and defined gateways;
3. Hybrid, that is, blend of infrastructure and ad hoc networks.
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Different standard structures of vehicular networks consolidate CALM (Continuous
Air Interface for Long to Medium range) by ISO [64], and C2CNet (Car-to-Car Network) by
C2C Consortium [65], and WAVE (Wireless Access in Vehicular Environment) by IEEE [66].
The IoV is viewed to be a development pertaining to V2V network [4]. The IoT is sup-
porting the demand of traditional VANET to IoV scope, the IoV coordinates vehicular
networks with data storage and data analytics services. The IoV brought intelligence to the
communication of the vehicular network, which improves driving support for completely
autonomous driving by facilitating the AI awareness to the encompassing vehicular situ-
ation. The components of IoV include [4] vehicles (network formed by vehicular nodes),
RSU, infrastructure (street and traffic-related sensors), personal devices (smartphones and
PDAs), and people (drivers). Accordingly, the different services that are possible are listed
as follows.

• Vehicle-to-vehicle information services;
• Infrastructure and vehicle information services;
• Sensors and vehicle information services;
• RSU and vehicle information services;
• Human and vehicle information services;
• Vehicle and personal devices information services.

3.1. Architecture of the IoV

Numerous models have been proposed by researchers for IoV [4,67]. These architec-
tures are helpful to meld various kinds of interactions. The basic IoV innovation stack
incorporates three layers, namely: perception, networking, and the Internet and service
platforms. The key concept of IoV is specified by its three-layer architecture. In the litera-
ture, we can find two more layered architectures—the five-layer architecture [68] and the
seven-layer architecture [69], which also include the processing and business layers.

3.1.1. Layer 1: Perception

Sensors are implanted in the physical environment to collect and transfer data. Sens-
ing devices do not associate legitimately to the web, they can synchronize with phones
and different gadgets utilizing Bluetooth LE. Raw information was examined against the
characteristics of the global positioning framework obtained through the sensors. IoT
sensors are a fundamental aspect of IoT innovation.

3.1.2. Layer 2: Networking

Micro controllers regulate the information channeling to IoT sensors and various
actuators. Micro controllers and Internet connectivity, share information obtained at the
first layer and examine for second layer to make a further move. Networking, either
wireless or wired, is the basic and most important responsibility of this layer.

3.1.3. Layer 3: Application

Service platforms take measures to adjust, alter, maintain, and monitor physical
conditions after data investigation. Telematics, data mining, voice over Internet protocol
(VOIP), blockchain, and Cloud SaaS stages are typical utilities.

The following data were taken from scientific publications related to attribute measur-
ing using IoT sensors, methods of information transmission between smart sensors and
actuators, networks, and protocols used in communication methods. Approaches to data
storage can be seen in Figure 2.
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IOT COMPONETS

Data Transfer  Methods 

• Wi-Fi

• Radar

• SMS

• JSON serialized Messages

• NMEA messages

• Radiofrequency Signal

• Laser Radar Query messages

Data Storage

• Cloud

• RAM

• ROM

• Flash Memory

• EEPROM

• MySQL Database

• Fog

Measuring Attributes

• Speed

• Location

• Fuel level

• Distance

• Temperature

• Latitude

• Longitude

• Time

• Bus Number

• Contacts

• Acceleration

• Direction

• Contacts

• Altitude

• Humidity

Networks/Protocols

• Ad Hoc Networks

• ZigBee

• Wi-Fi

• Bluetooth

• 3G/4G

• GSM/GPRS Network

• Amazon web-service

• GSM/GPRS Network

• MQTT

• Constrained Application 

Protocol (CoAP)

• Li-Fi

• HTTP

• TCP/UDP

• iBeacon

• Bluetooth Low Energy

• Optical fiber network

• Ethernet

• WAN

Sensors/Actuators

• RFID

• GPS module

• Vibration sensor

• IR sensor

• Buzzer

• Gas sensor

• Satellite

• Interfacing sensors

• Smartphone

• Satellite

• ESP8266-06 Module

• GPS/GSM antenna

• GSM/GPRS Modem

• ArduinoMega 2560

• Arduino Uno R3

• Raspberry Pi

• Battery

• Alarm

• Camera

• Vibration sensor Arduino Uno R3

• LPC2114 Microcontroller

• NFC

• Proximity card

• GPS/GSM antenna

Figure 2. IoT components [4].

3.2. Network Protocols Used in Vehicular Networks

IoV systems include a network of vehicular nodes, fixed RSU, and a central server.
Road-related alerts relevant to peer drivers are interchanged in V2V communication [70].
On the other hand, V2I communication is utilized for the collection of sensor information
and dissipation of alerts based on locations to vehicles [9]. Mobile networks, DSRC/WAVE,
Wi-Fi, and ZigBee are among the innovations for the wireless channels. DSRC and OBU
combined with extra sensors are necessary to be completely conscious of the circumstance
in which the vehicle finds itself in [71–74]. The IEEE 802.11ah long-range Wi-Fi, which can
be supportively used in vehicle frameworks, especially when vehicles are spread over 1 km
in road organisations. During conditions where the vehicles run at 160 kmph, the utilization
of WiMAX might fit better [75]. The four driving radio access technologies (RATs) for V2I
communication are 4G/long-term evolution advanced (LTE-A), 5G, Wi-Fi, and DSRC. As of
now, car companies are pursuing numerous for open RATs to empower applications both
for protection and security (primarily web access). Audi and Volvo have a lot number of
vehicles that have Internet accessibility regulated by 3G, 4G LTE, and 5G [76]. Shah et al. [77]
have proposed a novel cluster-based MAC protocol (CB-MAC) for VANETs and they have
optimized the CB-MAC protocol [78]. Karabulut et al. [79] have proposed a multiple-input
multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) based
MAC protocol which uses the advantages of both the techniques. Wu et al. [80] have
designed a self-adaptive time division multiple access (TDMA)-based MAC protocol for
VANETs to improve the stability of the time slot scheduling in VANETs. Han et al. [81]
have proposed an adaptive time slot access MAC protocol in distributed VANET which
improves the time slot access efficiency by adapting the access time slot according to the
driving direction of the vehicle and the traffic density ratio.

The various communication technologies applicable are shown in Figure 3.
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Wireless Technologies

Short Range 

Communication
Vehicular Communication Cellular Communication

WIFI

BLUETOOTH

ZIGBEE

DSRC/WAVE G5G/LTE-A

WIMAX

SATELLITE

Figure 3. Communication technologies.

3.3. Routing in IoV

Many real-life situations need different technologies for vehicle networking. For in-
stance, driving in metropolitan circumstances, drivers know the traffic conditions of urban
roads ahead and alter their route direction according to the traffic situation on their route.
By utilizing the cutting edge innovation of IoV, individuals can likewise diminish fuel
utilization and environmental pollution. A significant exploration aspect in IoV is its
routing conventions. Researchers have proposed different routing algorithms for IoV char-
acteristics, i.e., heterogeneous communication range, dynamic topology, geographically
constrained topology, mobility of the vehicles, time-dependent vehicular density, ad hoc
network, and the elements that construct the network are vehicles. In recent days, most
routing protocols on varying factors, such as energy, network lifetime, efficiency, scalability,
multi casting, reliability, and load balancing have been made to satisfy IoV prerequisites.

Depending upon the number of senders and recipients participating, routing ap-
proaches can be sorted into three kinds: geocast/broadcast, multicast, and unicast ap-
proaches. Second, we arrange them into four classifications dependent on data needed to
carry-out routing, i.e., map, topology, position, and path-based. Third, it is grouped to be
delay-sensitive and delay-tolerant. Lastly, we identify protocols based on applicability in
their various dimensions, for example, 1-dimensional, 2-dimensional, and 3-dimensional.
The target networks we talk about are heterogeneous and homogeneous. The routing con-
ventions that are often utilized (traditional routing algorithms) are dynamic source routing,
optimized link state routing, ad hoc on-demand distance vector, geographic source routing,
and greedy topology. These routing conventions are utilized to transfer the data packets
between vehicular nodes. Under these routing conventions, the proactive approach relies
on routing strategies associated with a table-driven method. Proactive routing conventions
generally rely upon algorithms related to the optimal route. They store all the gathered
information identified with the associated vehicular nodes in related predefined tables, as
well as being the primary component of routing conventions. Each table in this approach is
refreshed by its vehicular node when the network topology changes. Reactive routing con-
ventions depend upon algorithms identified with on-demand actions. At the point when
two vehicle nodes need to interact, they begin the path discovery of the route and one of its
fundamental advantages is the reduction in network traffic [82]. Geographic dependent
routing conventions are dependent on situations corresponding to the position technique
utilizing area-based applications, such as GPS. Geographic applications are used while
giving information for path selection [82]. In different scenarios, these traditional routing
algorithms performed comparatively better, but failed to provide the optimal routing so-
lution in IoV environment. To enhance the reliability of safety applications, bio-inspired
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approaches are used. Similarly, recently proposed protocols based on SI techniques, namely,
ant colony and particle swarm algorithms, etc. In comparison with traditional techniques,
these protocols have performed better individually.

4. Network Optimization

IoV, the evolving type of VANETs and MANETs, is more exceptional but more complex
to adapt. Special IoV capabilities include high-processing, high-speed data access, robust
usability, and variable network density. It is a hard job to prepare an efficient optimal rout-
ing protocol for information transmission in IoV, to hold all diverse aspects of vehicles on
the route. Heterogeneous node density and networking, inconsistent connectivity, and vari-
able mobility must be taken into account in an optimal routing protocol. Optimization
is characterized and portrayed as the innovation utilized to enhance the performance of
the network for any circumstance. Optimization is a numerical issue experienced in all
engineering disciplines. It implies finding the most ideal/desirable solution. Optimization
issues have widely occurred and, hence, various techniques for taking care of these issues
should be an active research topic. Optimization algorithms can be either stochastic or
deterministic. Strategies to tackle optimization issues require a lot of computational power,
which will generally tend to fail as the problem size increases.

4.1. Optimization Techniques

Optimization generally parts into two different classes, one is deterministic algo-
rithms and the other is stochastic algorithms. The issues that cannot be settled from the
deterministic algorithm are named as non-deterministic algorithms and, thus, the novel so-
lutions developed by stochastic algorithm assists with taking care of the non-deterministic
problems up to an optimum standard. The non-deterministic problems are solved by
meta-heuristic algorithms. Meta-heuristics are characterized as heuristics at a more sig-
nificant level of frameworks. Thus, meta-heuristics are problem-independent approaches,
though heuristics are problem specific. This heuristic technique helps with taking care of
the complex problem [83]. Biological behaviour-influenced algorithms are known as bio-
inspired stochastic algorithms. Bio-inspired stochastic algorithms have gained importance,
especially for tackling complex enhancement issues of routing. These stochastic procedures
that are created to accomplish near optimal solutions for huge scope optimization prob-
lems [84]. The traditional solution of NP-hard problems with a numerous variables and
non-linear objective functions will sometimes fail (being stuck in a local optimum), leading
to the development of alternative solutions. These techniques are moved by the characteris-
tic biological evolution, as well as the social conduct of species. These approaches rely on
natural patterns and behaviours that have the capacity for self-adaption and self-association
and are utilized as powerful optimization tools.

Apart from these, there are other optimization methods in which the researchers
have focused on vehicular congestions in urban areas. Authors proposed a centralized
simulated annealing method for alleviating vehicular congestion in smart cities [85]. They
used a novel dynamic centralized simulated annealing-based approach for finding optimal
vehicle routes using a different type of cost function. Amer et al. proposed a hybrid game
approach-based channel congestion control for IoV [86]. They developed a new hybrid
game transmission rate and power channel congestion control approach on IoV networks,
where the nodes play as greedy opponents demanding high information rates with the
maximum power level. A new congestion control approach is proposed which is based
on the concept of hybrid power control and contention window to ensure a reliable and
safe communications architecture in IoV [87]. Fu et al. proposed an IoV system assisted by
mobile edge computing which is used for cross-layer offloading to provide low latency and
abundant computation resources [88].

Bio-inspired optimization techniques, swarm intelligence (SI), evolutionary algorithms
(EAs) play a crucial part in the computer intelligence sector that has become famous over
the recent times [89,90]. EAs which depend on Darwin’s hypothesis of natural selection
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and survival of the fittest. EAs and SI are taken from biological evolution processes, which
depend on behavioural models of social animals, for example, ants, bumblebees, fireflies,
fish, flying creatures, etc., hence, they look for food substance or a better environment,
EAs commence with a collection of candidate solutions, create alternatives for offspring
recursively, and evaluate solutions till an acceptable solution is found. Genetic algorithms
(GAs) [91], evolution strategy (ES) [92], evolutionary programming (EP) [93], genetic
programming (GP) [94], estimation of distribution algorithms (EDA) [95], differential
evolution (DE) [96] are popular algorithms in this EA group. SI algorithms begin with a
group of possible candidate solutions, and in every iteration, a novel group of candidate
solutions is produced derived from verifiable and other applicable historical data. A few
models of this kind comprises of an ant colony algorithm (ACO) [97], particle swarm
optimization (PSO) [98], artificial bee colony optimization (ABC) [99], firefly algorithm
optimization (FA) [99], salp algorithm (SA) [100], bacterial foraging optimization (BFO),
artificial fish swarm optimization (AFS), etc. The bio-inspired optimization techniques are
shown in Figure 4.

BIO-INSPIRED ALGORITHMS

eEvolution

Swarm Intelligence

Ecology

Widely used 

Ant Colony Optimization

Particle Swarm Optimization

Firefly Algorithm

Artificial Bee Colony

Need Further Development

Artificial Fish Swarm Optimization

Bacterial Foraging Optimization

Grey Wolf Optimization

Pigeon Inspired Optimization

Figure 4. Bio-inspired optimization techniques.

4.2. Evolutionary and Bio-Inspired Algorithms

The SI algorithm understands the solution for the problem by learning from certain
life or natural phenomena [101]. These types of techniques consolidate the self-association,
self-learning, and self-versatile characteristics of the regular nature. In the computation
cycle, the general population is searched for the solution space through the acquired
estimated data. In the course of a search cycle, the populace advances by the fitness
function values, which are fixed beforehand. Consequently, the algorithm has certain
intelligence. Inferable from its points of advantage, when the SI algorithm is utilized to
resolve a problem, it is not important to manage the solution issue ahead of time to acquire
a detailed solution. It is, hence, conceivable to effectively tackle some highly complex
problems. The swarm intelligence has proved its efficiency in tackling the routing issues
in such self-organized systems as MANET, VANET, WSN, and IoV. ACO and PSO are
the traditional SI optimization techniques. ABC, BFO, FA, AFS, and several others are
less well-known techniques. Initially, Swarm techniques were intended for stationary
optimization problems. Among them are ACO, ABC and PSO. Bees, ants, salps, and other
swarm activity that resembles that of the nodes in the wireless ad hoc network. The most
widely used SI algorithms listed in Table 2 and are discussed below.
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Table 2. Swarm based optimization techniques.

Sl. Algorithm Publishing Year Literature

1 Genetic Algorithm Holland, 1992 [102] [103–106]

2 Ant Colony Algorithm Dorigo and Di Caro, 1999 [97] [107–109]

3 Particle Swarm Optimization Kennedy and Eberhart, 1995 [110] [111–113]

4 Artificial Bee Colony Karaboga, 2005 [99] [114–116]

5 Firefly Algorithm Yang, 2009 [117] [118,119]

6 Salp Algorithm Mirjalili, 2017 [100] [120,121]

4.2.1. Genetic Algorithms

GA portrays biological advancement as a problem-solving approach. GA operates on
the search space, i.e., population or populace [122]. Every component in the population is
labeled as a chromosome. GA begins arbitrarily with arbitrarily choosing a group of suitable
solutions from the populace. Every chromosome is an answer of its own, the chromosome
is assessed for fitness and this characterizes the solution. This algorithm utilizes an adaptive
heuristic inquiry strategy that searches the set of the finest solutions from the populace.
New off-springs are created and advanced from the chromosomes utilizing operators,
such as selection, crossover, and mutation. The fittest chromosomes are transferred to the
upcoming peer group. Weak chromosomes have a lesser possibility of moving to the future
generation. This is because GA depends on Darwin’s theory of evolution that expresses that
“survival of the fittest”. This procedure repeats up to that point at which the chromosomes
have the best fit for the given problem. The outline implies that the mean fitness of the
populace increments at every cycle, and by iterating better outcomes are found. GA gives
alternative strategies to tackle problems that are hard to unravel utilizing conventional
techniques. For instance, in [123], GA has been suggested to take care of the issue of
optimal deployment of WSN for increasing probability of searching an moving object
in the field. In [124], the authors utilized GA to tackle the multi-objective optimization
formulation utilized to attain the ideal stationing of sensors at the point of port entry to
inspect the vessels and identify the movement of illicit freight. To unravel an optimization
problem with multiple targets, a GA-based normal boundary intersection algorithm was
utilized [125]. The issue involved advancing the sensor field setup for the discovery of the
target in motion. An advancement procedure with multiple objectives has been suggested
in [126] for the task scheduling for WSN. GA-PSO (particle swarm optimization) is a
hybrid algorithm consolidating GA with PSO [103]. PSO offsets the limitations of classical
GA [104] and presents an order-aware hybrid genetic algorithm (OHGA), consolidates two
heuristics techniques to address capacitated vehicle routing problem (CVRP), which targets
setting a minimal cost course path. GA is used to unravel and develop Universiti Tenaga
Nasional (UNITEN) bus routing to restrict the time taken for all stops to cover the entire
distance and minimize transport costs, contributing to the rapid transport of students to
their locations [105]. The intelligent signal light scheduling is upgraded by many specialists
using the real-time traffic flow. The GA-based step re-allocation algorithm can deliver good
execution while retaining real-time execution, outperforms conventional methods.

4.2.2. Ant Colony Optimization

ACO mimics the searching conduct of actual ants. The objective of the ants is to
locate the shortest path from their home to their sustenance sources [127]. As they con-
tinue looking for food sources, ants glance around arbitrarily. At the point when they
discover one, they return to the home, setting out a fragrant stuff on the ground, called a
pheromone. The measure of pheromone is identified with the quality of the food source,
as determined by the amount of food and how far it is away. The other ants will search
less haphazardly, since they shall be pulled in by the pheromone trails. Numerous ants
will be pulled on tracks with more pheromone, which will, thus, prompt increasingly more
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pheromone to be set in these ways. At last, all the ants will be drawn into the best route.
The indirect communication plot through pheromone trails prompts this optimization,
this phenomenon is known as stigmergy. Diverse analogies based on ants are stated in
the literature, beginning from the original ant system (AS) [128] to later variations, sim-
ilar to the ACO [129]. Although insect-based frameworks have initially been tried on
the travelling salesman problem (TSP), numerous other combinatorial issues have been
addressed since then. In the following, the essential AS algorithm used for solving the TSP
is expressed and a portion of its variations are quickly presented [128]. Applications for
vehicle routing issues are reviewed. Dynamic route optimization which uses an algorithm
that is inspired by nature is constructed by [130]. The notable algorithms that are based
on nature are PSO and ACO for route planning in IoV, where ACO gave good results over
PSO by giving the short distance routes which need less travel time. This research [107]
centers predominantly around dynamic communication range per each vehicle in IoV
organization. Here, clustering-based ant colony optimization is proposed (CACOIOV) and
dynamic aware transmission range on local traffic density (DA-TRLD), is utilized along
with CACOIOV to give a routing model, to upgrade route discovery and maintain network
stability in IoV network. A recent ant colony optimization (ACO) algorithm [108] offers an
agent-based paradigm designed for inbound logistics to solve a capacitated vehicle routing
problem (CVRP). The model was experimented utilizing input information supplied by
Gali Group, a logistics company in Sicilia region of southern Italy. Through better routing,
fewer kilometres covered and load factor, for the logistics company to increase revenue.
This article [109] proposes a maiden look-forward preventing heavy traffic creation and
accidents, based on IoV traffic management. The suggested practice is seen via segmenting
road maps into a small number of maps. To determine the optimal path, the ant colony
algorithm is used to every small map. In turn, in this study, the Fuzzy logic-based traffic
intensity measurement feature is suggested to model heavy traffic congestion.

4.2.3. Particle Swarm Optimization

PSO mimics the conduct of fish tutoring or flocking birds. Eberhart and Kennedy [110]
introduced PSO for addressing continuous optimization issues. Each bird or particle in
swarm speaks a possible answer to the issue. To be more precise, every particle comprises
of a velocity and position vectors, these are refreshed in accordance with the best position
of a particle and swarm. PSO algorithm has two basic modelling techniques, for instance,
the global best and neighbourhood best. In the global best, the neighbourhood comprises
the particles in the entire swarm, which move and offer data. In the neighbourhood best,
the neighbourhood of a particle is determined by some fixed particles. Poli et. al [131]
expressed that the global best model converges quicker than the neighbourhood best model.
The previous model is more likely to become trapped in a neighbourhood optimum than
the latter model. PSO varieties can be found in [132,133]. The global best model has good
impact in multi-swarm [134–136], while for algorithms with a single swarm, the local best
model is mostly used [137–139]. One of the best answers for network adaptability in IoV
is a clustering-dependent model. Vijayalakshmi and Anandan [111] suggested a PSO and
Tabu hybrid algorithm called Tabu-PSO to pick the CH with the lowest energy consumption
in the cluster, to increase the capability to choose CH in IoV network. A PSO-based routing
algorithm was proposed by Wang et al. [112], which merges virtual cluster and mobile
reception technology. The algorithm considers residual energy and node location for
selecting CH compared to Tabu-PSO. Hasan and Al-Turjman put forth a version a kind
of bionic PSO fault-tolerant routing algorithm by expanding upon the current method,
multi-objective optimization, for rapid recovery from the path failure [113].

4.2.4. Artificial Bee Colony Optimization

ABC algorithm mirrors the conduct of bees’ colonies [140]. A customary ABC algo-
rithm comprises food sources, while every food source represents a possible fix for the
issue. Food sources are upgraded by bees gathering, i.e., employed, onlooker, and scout
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bees. Every honey bee in the province delivers another candidate food source position out
of its former position. If better food sources are discovered, the new courses of action have
a better fitness over the present, the better ones are revived. The relative probabilities from
fitness chosen from the employed bee stage are settled in the onlooker honey bee stage.
Then, onlooker bees choose an answer in which the best solution possesses a better chance
of probability to be picked by onlooker honey bees.

From that point forward, onlooker honey bees act similar as the employed honey bees
do. Eventually, scout honey bees haphazardly reassign solutions, that they are left behind as
if they have not been upgraded for a specific duration. There are a few progressions of honey
bee techniques, for example, ABC, bee colony optimization, virtual bee algorithm, honey
bee mating optimization, and beehive algorithm. Surveys on the various advancements
can be obtained from [8,141,142]. The ABC algorithms which have earned most of the
consideration, particularly in discrete optimization problems [142]. Just like the ACO, ABC
algorithms are highly flexible to deal with discrete optimization problems. Combinatorial
optimization, for example, routing and optimal paths have been effectively resolved by the
Honey bee and ACO. While they can solve both continuous-discrete optimization problems
(DOP). However, it must be noted that they should not be the first preference for continuous
problems. Garg et al. [114] ABC anomaly detection with a Cauchy-based mutation operator
consists of several stages: (a) collection of suitable feature set, (b) optimization of Support
Vector Machine (SVM) parameters, and (c) arrangement of vehicular traffic. Cauchy-based
ABC strengthens the optimizer’s local search capacity with faster convergence. The final
step of classification of data is then carried out with a refined set of parameters using SVM.
Alzaqebah et al. [115] introduces an algorithm for the vehicle routing problem with time
windows (VRPTW). To increase the solution efficiency of the original ABC, an updated
ABC Algorithm is suggested. The high exploration potential ABC slows down its speed
of convergence, which may replace abandoned (unimproved) solutions with new ones
because of the mechanism used by scout bees. Masutti and Castro [116] TSPoptBees
provides a better approach to the most notable problem of vehicle routing: TSP. To solve
continuous optimization tasks, TSPoptBees, another technique (optBees), was introduced
and therefore built to resolve this class of discrete optimization functions.

4.2.5. Firefly Optimization

This algorithm depends on the flashing conduct of fireflies. Contrast to ACO, where
different ants are pulled in by pheromones, fireflies utilize a flash signal system to attract
other flies. It was motivated by the flash patterns and firefly’s conduct [140,143]. A FA
depends on three assumptions:

• Every firefly can be pulled in by other fireflies;
• Every firefly’s appeal is proportional to how bright the other fireflies are;
• The problem scene determines the quality of fireflies.

In this manner, less bright firefly will advance towards a brighter one. If a firefly
cannot find a brighter firefly, it will move haphazardly. Every firefly shines relatively to its
solution quality, which, along with its appeal, directs how strongly it draws in different
individuals from the swarm. Some pre-imperative assumptions in this algorithm are
that the fireflies are uni-sexual, the appeal is proportional to how bright they are, and a
firefly will move haphazardly if there is no firefly having more prominent splendour.
The current FA has pulled in much consideration [143,144]. The NP-hard arrangement
problems [144] can be adequately addressed by a distinct form of FA, whereas a bare
basic investigation has shown the viability of FA over a extensive scope of test problems,
comprising multi-objective load dispatch issues [143,145]. The multi-objective approach to
the firefly algorithm (FA-OLSR) [118] was simulated and the outcomes of the simulation
divulged and enhanced the ratio of packet transmission, mean routing load, and end-to-end
latency. A new variant named FA with neighbourhood attraction (NaFA) was introduced.
According to Wang et al. in NaFA, each firefly is lured by other more bright fireflies chosen
from a defined neighbourhood which is already determined instead of those from the whole
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population [119]. Using many well-known benchmark features, experiments are performed
and the results show that the suggested strategy can increase the accuracy of solutions
efficiently and reduce the complexity of computational time. Dhanare et al. proposed a
hybrid optimization approach that combines modified ant colony and firefly optimization
techniques (MAF) to calculate the average speed and find the best route to the destination.
The MAF algorithm combined attractiveness and pheromones to find the optimal path and
reduce the travelling time [146].

4.2.6. Salp Swarm Optimization

A recent meta heuristic, salp algorithm (SA) is influenced by the swarming behaviour
of slaps in the oceans. It is an optimization method based on population, put forward
by [100]. By the following statement, the SA’s actions can be convinced, i.e., the objective
of this swarm is a food source in the search space, and the salp chain helps to search
for optimal food sources. In SA, the end-to-end individuals in the salp swarm are split
into two groups to model the salp chain formed by individuals. The individuals in the
swarm are classified into two parts: leaders or followers. The salp chain starts with a
leader who decides the direction of travel and forages the population’s route and directs
the salps chain toward the food and the rest go after a leader to guide them to establish
a chain structure. The followers will arrive at a position which is better as compared to
the present best solution (food) in the procedure of going after the leader to upgrade the
position. The food is placed to the better position at this stage, and the updated leader
directs the followers towards food. The aim of the optimization problem is to determine
the global optimal value, so the global optimal value is utilized as the food that needs to be
identified by the salp chain. The position of the global optimal value in the optimization
problem is not known. The salps Chain model can be pushed closer to the target value by
considering the optimal value in the current iteration as the global optimal value. The entire
salps chain can be taken closer to the food chain, according to the leader’s position of the
food update. The SA algorithm is used in this paper [147] for route planning, which
is an NP-hard optimization problem. Its outcome is compared with deterministic and
other nature-inspired algorithms. The findings show that SA is better than all the other
meta-heuristic algorithms in route planning. This approach improves the average cost
and total time taken when compared to other algorithms. Route planning is utilised in
several real-life instances, such as self-driving car, robot navigation, autonomous UAV
for search and rescue operations in dangerous ground-zero situations, surveillance of
civilians, military combat, and commercial services, such as package delivery through
drones. To optimize coverage and the radio energy model to minimize consumption of
energy, the paper [148] proposes a weighted distance location update called weighted salp
swarm algorithm (WSSA). The optimal problem with sensor deployment is known to be a
multi-objective problem. The majority of the previous research work is based primarily on
solving only a single objective of the problem. This paper aims to address both the coverage
and energy issue at the same time. The WSSA algorithm has been found to outperform all
the other stochastic algorithms in maximising coverage and energy efficiency of WSN.

5. Modelling Environment

Simulation modelling plays an important part in scientific research. Researchers often
apply it in the design tool to understand the protocol’s behaviour and to evaluate the net-
work productivity. One of the most crucial tasks is to identify a suitable network simulator.
Many network simulators are available for research. They are providing platforms for test-
ing, modifying, and evaluating protocols in IoV. The following combination of simulation
tools were utilized for better performance, such as Open Street Maps (OSM), Objective
Modular Network test bed in C++ (OMNeT++) version 6.0, Simulation of Urban MObility
(SUMO), Vehicles in Network Simulation (VEINS) version 5.2, Network Simulator (NS)
version 3, and MATLAB. All the systems mentioned above are used for modelling IoV
Networks and allow:
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• Enhancing efficiency in implementation;
• Experimenting real network deployment in simulators;
• Conducting scientific examinations in this field;
• Reducing implementation and deployment cost of real network.

Integrated framework is provided by IoV simulators to provide simulation execution
without running another software and therefore inter-dependencies are solved. Catego-
rization of simulators can be performed in three ways: (i) mobility generators, (ii) network
simulators, and (iii) integrated software for mobility generators and network simulators.

OSM, an open source tool [149], where clients can alter the map data. Geo-information
assembled by the clients shall be viewed as the essential project. Since 2004, the quantity
of OSM clients has expanded more than 2M. Each enlisted client can alter the OSM data.
The OSM sent information is utilized in creating paper maps, electronic maps, route
planning, and geo-coding. While it cannot be considered as a simulator, but it can be seen
as a tool that supplements simulations. To use real-world maps, the client can import
data into simulators, while importing geo-data from a free-source database. If simulations
use real maps, hours spent on manual creation of a map can be lowered, allowing more
practical simulation.

Objective modular network testbed C++ (OMNeT++) [150], C++ discrete event sim-
ulator based on open source component with GUI help. To form the simulation set-up,
a few modules are stuck together. OMNeT++ output text files (CSV, JSON, or SQLite
Scalar or Vector), can be processed with other software (MATLAB or R). OMNeT is avail-
able for scholastic and non-benefit use. OMNeT works to optimize network simulators
of different types, but it really does not provide highlights of digital transformation for
vehicle development.

Simulation of urban mobility (SUMO) [151] is designed primarily to model large
road networks. The simulator contains settings for various road types (i.e., parking, road
surfaces, highways). Using few files, setting speed limits, road network model can be built
together with adjoining structures to program routes in simulation for different vehicles.
It is possible to manually delegate traffic flows, calculate them based on demand data,
or produce them entirely at random. The application has different plug-ins that can be
used to upgrade the simulator, that works well for importing maps across the globe with
OSM [152]. The traffic control interface (TraCI) [152] enables new functionality to be added
to SUMO or to be linked to other software. Installing and simulating road networks is
easy, but it can not simulate communication in network. To personalize visualization of
vehicles, real-world road networks are imported with SUMO using TraCI to customise
car visualization.

Vehicles in network simulation (VEINS) [153] is an open-access software designed to
model IoV, since OMNeT++ is a simulator of network but lacks vehicle movement and
SUMO is a simulator of the road network but lacks vehicular communications. VEINS
is related between network and traffic simulators. For instance, on receiving an alert
message created by the network simulator, vehicles need to divert itself or reduce its
speed (changing the mobility pattern). Using TCP, message sharing takes place between
the mobility generator and the network simulator. For road development plans, actual
maps may be used. Although VEINS does not simulate the network itself, it connects two
programmes, when running IoV simulation with SUMO and OMNeT++ [154].

A discrete-event network simulator (NS) [155] supports algorithms for routing, queu-
ing, and introduction of IEEE 802.11p with respect to IoV. The simulator is applicable as it
helps researchers to understand processes, along with the documentation and logs, at a
deeper level for the application of protocols. NS requires multiple packages to run in
connection with itself (i.e., NAM, CCC compiler, Tcl/Tk files). It is designed for the simu-
lation of networks, which is important for IoV experiments to be carried out. NS-2 [156]
is also used for simulation modelling; the C++ simulation kernel and object-oriented tool
command language (OTCL) are used. It is open source; it is simple to incorporate new
modules into it. It also provides wireless assistance includes node mobility, radio commu-
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nication modelling, and protocol 802.11p. NS-3 [157] is the substitution for NS-2 to fulfil
the advanced research criteria for the network. For simulation modelling, TCL is no longer
necessary, and Python script is allowed. NS-3 does not endorse backward compatibility
with NS-2. The other open-source network models have expanded device integration.

MATLAB [158] is a tool that is widely used for database evaluation and analysis. When
using the built-in graphics expertise of MATLAB, simulation is usable and easy. Different
circulations of data, 2-D, 3-D graphs, and animations are common investigative techniques.
There’s also an extension to MATLAB-Simulink. It takes MATLAB input datasets [159]
and continuously uses them to generate some output. The findings will yield to MATLAB
visualization at that point. MATLAB is hierarchical, where it is easy to conduct large-scale
operations and numerous people can function in it at the same period. Additionally, also
available in MATLAB is versatility, as there are collections in scripting languages other than
R (e.g., Python, Java, C++).

In particular, given that the software is not legitimately built as a simulator, ThingS-
peak [160], an IoT analytics tool, it shows similarities in its ability to direct visualisation. It
is possible to import C++, thereby allowing the inclusion of some languages. A comparison
of VANET simulations is presented in [161,162]. Table 3 lists the use of various simulation
tools reported in the literature.

Table 3. List of research articles and simulation tools used.

Author(s), Year Reference Simulation Tools Used

Yang et al., 2013 [163] MATLAB
Babu et al., 2015 [164] NS-2, SUMO, and MATLAB
Babu et al., 2016 [165] OMNET++ and SUMO
Kim et al., 2017 [166] SUMO and OSM
Abbas et al., 2018 [167] NS-3 and MATLAB
Lopez et al., 2018 [152] SUMO and TraCI
Gawas et al., 2019 [168] OSM, NS-2, VANET MobiSim
Senouci et al., 2019 [169] NS-2
Shah et al., 2020 [78] SUMO and MATLAB
Attia et al., 2021 [170] OMNET++, OSM, and SUMO
Han et al., 2022 [81] NS-3 and SUMO
Shah et al., 2022 [171] SUMO and MATLAB

5.1. Simulation Using NS3, OSM, and SUMO

OSM provides the ability to save street data in the OSM file format. This file format
is OSM-specific, XML-coded, and contains organized and ordered geographical data.
Through OSM, we can select our own street structure, Google maps can also be used to
validate or used for naming of streets. After downloading the map from OSM, atcl file is
created from OSM output, which is already in the format of osm .sumocfg, converted into
.xml format. SUMO has a traceExporter.py file, this file is processed to obtain a trace file out
of the XML input file.

A tcl file is created with different inputs from vehicles in IoV environment. In next
step, the tcl file is integrated with .cc file which consists of network parameters and protocol
settings for which following tcl file works. The following simulations are performed for
various standard routing protocols OLSR, DSDV, AODV, DSR, and analysed for different
metrics, such as receive rate, packets received, MAC physical overhead, packet loss and
throughput, etc. The output files generated from the above simulations are .tcl (metrics
generation), .tr (ASCII trace), .flowmon (flow monitor) [172], .xml (for netanim) [173], and
.pcap (wireshark) [174]. Based on the requirement, it is used for further analysis.

STEP 1: To Create SUMO-GUI or SUMO configuration file from OSM output.

$ export SUMO$_$HOME=/home/harika/sumo/
$ cd sumo/ t o o l s
$ python osmWebWizard . py
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Once the data are generated from OSM as shown in Figure 5, move to Step 2.

Figure 5. Open street map view.

STEP 2: To create mobility.tcl file (How to create?).

$ sumo −c osm . sumocfg −−fcd −output t r a c e f i l e . xml
$ cd
$ cd sumo/ t o o l s
$ python t r a c e E x p o r t e r . py − i t r a c e f i l e . xml
−−ns2mobil i ty −output=mobi l i ty . t c l

Now check the number of nodes in the mobility.tcl file which is very important. Move
the mobility.tcl into the /home folder. The vehicular nodes are shown in Figure 6.

STEP 3: Run mobility.tcl file with total number of nodes, duration, log file etc. The pro-
gram is already in the scratch folder. The resulting simulation view is shown in Figure 7.

$ cd ns−a l l inone −3.29/ ns −3.29
$ ./ waf −−run " s c r a t c h /ns2−mobil i ty − t r a c e −− t r a c e F i l e
=/home/mobi l i ty . t c l −−nodeNum=1815 −−duration =100
−− l o g F i l e =ns2−mob . log "

Figure 6. SUMO configuration.



Sensors 2023, 23, 555 20 of 30

Figure 7. Vehicular traffic in SUMO.

A window will be opened and select the vehicularmobility.xml file and run the simula-
tion. You can do the network performance like wire shark, ASCII trace metrics using trace
metrics, GNU plot for plotting the characteristics, etc. Vehicular movement, states, and
packets transferred as analysed using a network animator, as shown in Figure 8.

STEP 4: Include netanim header file and run the simulation. Run the following
command and include the line as below:

\# include " ns3/netanim−module . h"
Animat ionInterface anim ( " v e h i c u l a r m o b i l i t y . xml " ) ;
Simulator : : Run ( )

Figure 8. Stats generated in network animator.

In order to run NetAnim, the following steps have to be performed.

$ cd
$ cd ns−a l l inone −3.29/ netanim −3.108/
$ ./NetAnim
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5.2. Simulation Using OMNET++, VEINS, and INET

The VEINS–INET framework together helps to understand full feature set of INET
framework in a VEINS simulation [153,175]. With this we can access full ipv4, ipv6 stacks,
wired networking, mobile ad hoc network protocols, bit-precise PCAP traces or network
emulation. So using this VEINS–INET we can also model libraries based on the INET
framework. Additionally, we can use things such as simuLTE which is a 4G simulation.

STEP 1: Take map from OSM and turn it into SUMO simulation.

(i) Open www.openstreetmap.org (shown in Figure 9).
(ii) Export the map by manually selecting the area, i.e., downloaded map is in .osm file.

Figure 9. Open street map view for the sample execution.

STEP 2: Java Open Street Map Editor (JOSM) for editing map information. Sometimes
data from OSM is not completely ready for traffic simulation; information from OSM can
be enhanced using JOSM, which is a java tool for editing maps shown in Figure 10.

(i) Open .osm file in JOSM, dataset will be rendered.
(ii) Export the map by manually selecting the area, i.e., downloaded map is in .osm format.

Figure 10. Java open street map editor.

We can manually edit the properties and remove unwanted information from the map,
usually lot of information will be deleted automatically when using netconvert. Here, we

www.openstreetmap.org
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will run netconvert operator, we can use use specific options to run .osm file on highways
and motorways under different speed settings.

$ netconvert −−osm− f i l e map . osm −−ouput− f i l e map . net . xml −−geometry
−remove −−roundabouts . guess −−ramps . guess −− j u n c t i o n s . j o i n
−− t l s . guess − s i g n a l s − t l s . d iscard . simple −− t l s . j o i n

These are standard options while converting osm file to sumo network file. The gener-
ated network file is shown in Figure 11.

Figure 11. SUMO view.

After creating SUMO network based on osm, we use random_trips Python file with
network file .net.xml, which is used to obtain the trips file and route file.

$ randomTrips . py −n map . net . xml −e 1000 −o map . t r i p s . xml

After creating trips file, we need to convert them to obtain the route file by taking
.net.xml and .trips.xml. After creating trips.xml, trips file is converted into route file, such as
those shown below:

$ duarouter −n map . net . xml −−route − f i l e s map . t r i p s . xml
−o map . rou . xml

We can see the output file as .rou.xml, here all these files, i.e., .net.xml, .trips.xml,
and .rou.xml are required to create SUMO configuration file. The last step is to create
SUMO configuration. Along with .net, .route, and .trips, manual file is created in name of
map.sumo.cfg, following XML code is added in to file.

<conf igurat ion >
<input >
<net − f i l e value ="map . net . xml"/>
<route − f i l e s value ="map . rou . xml"/>
</input >
<time >
<begin value ="0"/ >
<end value ="1000"/ >
</time >
</conf igurat ion >

We can see above simulation setup in Figure 12, map scenario and simulation of
vehicular movement can be observed.



Sensors 2023, 23, 555 23 of 30

Figure 12. OMnet++ view.

The VEINS–INET sample application is shown in Figure 13. The start application
checks if the node is the first node and sets the display to be red and then sets the speed to
0 to stop it is how it actually accesses the vehicle to stop it and then that host will create a
VEINS–INET sample map with the size of hundred bytes it sets the road id and then creates
a packet called accident and then sends that packet along it calls the send packet which
is the part of the VEINS–INET application base when it receives a packet which process
packets which color the vehicle as green and then it will change the route to what ever road
ID was given it is just a very simple application that shows you how you can manipulate
different items in VEINS and INET. The application base extends our INET UDP socket and
also INET’s application base, so this is doing all the UDP and networking for us. In order
to run INET application first we need to make sure that we are running SUMO. For that
we need to launch Python and SUMO application and only it will be listening to port 9999
which was set in VEINS–INET manager. The startup of the simulation, i.e., radio medium
and manager is shown in the figure. We can see the vehicle transmission information in the
OMNET setup.

Figure 13. VEINS–INET sample application.
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6. Conclusions

Effectual communication in IoVs is troublesome task because of fast-moving vehicles
on streets and the impact on data delivery conveyance. By building up our novel thoughts,
we will succeed achieving our goals towards local optimum problems and staying away
from network dissemination issues. The proposed algorithms in the literature show optimal
performance to make proficient and qualitative vehicles to any node communications and
confirm reliable data delivery to every vehicle. The significant prerequisite for a technique
that is methodical and productive to modify the limits of routing is required. In network
optimization, the SI algorithm is motivated by the biological phenomena in the common
world, yet there is no development directing numerical hypothesis, including analysis and
verification of the convergence of the algorithm. SI techniques are still at the underlying
stage. This study has recorded several SI techniques. The ACO in the vehicle routing
problem still has greater potential. The stochastic nature of vehicles in IoV can be studied
using SI techniques and the networks can be optimized for efficient message communication
within the network of vehicles. Additionally, some tools are discussed to help the research
community to use those tools, such as OSM, SUMO, and NS3 in traffic scenarios.

There are still some challenges in the efficient routing protocols in IoV and can be
focused to improve the message communication during real-time scenarios and use of AI
and machine learning techniques can also be incorporated.
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