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Abstract: Parameter estimation is extremely important for a radar jammer. With binary phase shift
keying (BPSK) signals widely applied in radar systems, estimating the parameters of BPSK signals
has attracted increasing attention. However, the BPSK signal is difficult to be processed by traditional
time frequency analysis methods due to its phase jumping and abrupt discontinuity features which
makes it difficult to extract PN (PN) codes of the BPSK signal. To solve this problem, a two-step
PN codes estimation method based on sparse recovery is introduced in this paper. The proposed
method first pretreats the BPSK signal by estimating its center frequency and converting it to zero
intermediate frequency (ZIF). The pretreatment transforms phase jumps of the BPSK signal into the
level jumps of the ZIF signal. By nonconvex sparsity promoting regularization, the level jumps of
the ZIF signal are extracted through an iterative algorithm. Its effectiveness is verified by numeric
simulations and semiphysical tests. The corresponding results demonstrate that the proposed method
is able to estimate PN codes from the BPSK signal in serious electromagnetic environments.

Keywords: radar jammer; parameter estimation; binary phase shift keying; PN codes; nonconvex
total variation regularization

1. Introduction

With the development of electronic warfare, the radar jammer has become one of
the most important equipment of the modern war [1]. It senses the hostile radars and
invalidates them by radioing jamming signal to them [2,3]. The radar jammer is able
to estimate the parameters of the radar signal and generate a coherent jamming signal
based on the estimated results. Parameter estimation of the radar signal is extremely
important for radar jammer which provide guidance for radar jamming [4,5]. A large
number of parameter estimation methods for multiple types of radar signals have been
proposed [6–12].

Possessing low probability of interception and strong anti-interference ability [13–15],
binary phase shift keying (BPSK) signals are widely applied in radar. Therefore, param-
eter estimation of BPSK signals for radar jammer has attracted great attention [16,17].
Various time frequency analysis methods, such as fast Fourier transform [18], short time
Fourier transform [19], time–frequency distribution based on Ville–Wigner distribution [20],
wavelet transform [21] and cyclostationary [10–12] have been used to extract the parameter
of the BPSK signal. However, these methods only focus on estimating the carrier frequency
or chip rate of the BPSK signal and fail to extract its PN codes.

Recently, some methods for PN codes estimation of the BPSK signal have been pro-
posed. By synchronous demodulation, ref. [22] succeeds to extract the PN codes of a
BPSK signal. However, this method shows poor performance in serious environment. It
needs several priors, such as the chip rate and the center frequency of the signal. Ref. [23]
adopts the matrix eigen decomposition to estimate the PN codes of the BPSK signal, which
performs competitive in low signal to noise ratio (SNR). However, the period of the PN
codes and its chip rate must be known when adopting this method. Ref. [16] proposes a
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PN codes estimation method based on duffing oscillator. It detects the polarity changes of
the PN codes according to the state changes of the duffing oscillator. As the insensitivity of
the duffing oscillator to noise, this method performs well even in serous SNR. However, it
only detects the polarity changes of the PN codes and need the starting symbol as a prior.
Ref. [24] proposes a two-stage method based on cross-correlation function which estimates
the carrier frequency of the BPSK signal at first stage and estimates its the PN codes at
second stage. However, this method is only suitable for Barker codes 7, 11 and 13.

The difficulty of PN codes estimation lies in the lack of appropriate signal anal-
ysis methods. The phase jumping and abrupt discontinuity features of BPSK signals
lead the instantaneous frequency to an impulse function that is present at all frequen-
cies. The current signal analysis methods, such as the short-time Fourier transform,
Wigner–Ville distribution [25], wavelet transform [26], empirical mode decomposition [27],
and variation modal decomposition [28], are defined on orthogonal basis functions or in-
trinsic mode function and suffer from dealing with phase jumping and abrupt discontinuity
features. Recently, nonlinear filtering has attracted a great deal of attention in the field
of feature extraction which are able to extract the jump discontinuities of a signal based
on its sparsity [29–31]. The sparsity of a signal is always constrained by L0 norm [32].
However, the L0 norm is a NP-hard problem. Therefore, other norms, such as L1 norm, are
used to replace the L0 norm to alleviate this problem. The L1 norm regularization, which
is called LASSO, achieves excellent performance for its strongly convex and easy to be
solved. However, it tends to underestimate the amplitude of the signal discontinuities and
has poor tolerance to noise. Therefore, some nonconvex penalty functions are explored
instead of the L1 norm to overcome the shortages of the L1 norm [33–35]. The minimax
concave (MC) penalty [36], considered in our sparse optimization, falls in this nonconvex
sparsity-inducing penalty class.

Inspired by the previous works, a novel two-step PN codeS estimation method based
on nonconvex total variation regularization (NCTVR) is introduced for BPSK signal. The
NCTVR-based method first pretreats the BPSK signal by estimating its center frequency
with an interpolation to Fourier coefficients (IFCs) frequency estimator [37] and converting
it to ZIF. Then, an NCTVR filter is adopted to extract the PN codes from the ZIF signal.
Different from the L1 norm-based regularization, we introduce a MC function as the
penalty to promote the strong sparsity of the PN codes which also improves its tolerance
to noise. An iterative algorithm based on the forward–backward splitting algorithm is
proposed to solve the NCTVR optimization problem. Finally, we verified the effectiveness
of the NCTVR-based method by numeric simulations and semiphysical tests. The main
contributions of this paper are as follows:

1. A novel PN codes estimation method based on NCTVR is proposed, and its corre-
sponding optimization function is established.

2. An iterative algorithm based on the forward–backward splitting algorithm is proposed
to solve the NCTVR.

3. The proposed method is verified by numeric simulations and semiphysical tests.

To make the novelty of the proposed method more clearly, the difference among our
method and the previous works are given in Table 1.

The remainder of this paper is organized as follows. The mathematical model is
given in Section 2. The principle of the NCTVR-based method proposed in this paper
and a detailed outline of the iterative algorithm are presented in Section 3. In Section 4,
the essence and performance of the NCTVR-based method are described. In Section 5,
simulations and semiphysical tests are shown. Conclusions are formed in Section 6.
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Table 1. Summary of existing methods.

Existing Methods Principle Limitations

Methods proposed in [10–12] and [18–21]
They adopt time frequency analysis to estimate

the chip rate and carrier frequency of the
BPSK signal

They are unable to estimate the
PN codes.

Two-stage method proposed in [24] It adopts the cross correlation to estimate the
PN codes of the BPSK signal in serious SNR.

It is only suitable for Barker codes 7,
11 and 13.

Method proposed in [23] It adopts matrix eigen decomposition to
estimate the PN codes of the BPSK signal.

It needs to know the chip rate and
period of the PN code as a priori

Method proposed in [16]
It uses the state changes of the duffing

oscillator to estimate the PN codes of the BPSK
signal in serious SNR

It only detects the polarity changes
of the PN codes and needs to know
the polarity of starting symbol as a

priori.

Our two-stage method.
It uses the sparsity of the PN codes in time

domain to estimate the PN codes of the BPSK
signal in serious SNR

\

2. Mathematical Model

In modern electronic warfare, the radar jammer is widely applied for protecting owned
units from the detection or guidance of the hostile radar systems. The principle of the
radar jammer is shown in Figure 1. When capturing a radar signal, the radar jammer first
converts it to digital intermediate frequency signal with the local oscillator and high-speed
A/Ds. Then, the parameters of the radar signal are estimated from the digital intermediate
frequency signal. Based on the parameters of the radar signal, a jamming signal is generated
and upconverted to radio frequency. By accurate parameters estimation, the radar jammer
is able to invalidate the hostile radar.
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When the receiver of the jammer captures a radar signal, it first quadrature down-
converts the captured signal into intermediate frequency with a local oscillator. Then, a
pair of high-speed analog-to-digital converters (ADCs) with sampling rate fs is used to
convert the analogue intermediate frequency signal to a digital intermediate frequency
signal. Assuming the captured signal is a BPSK signal, and the sampling interval of the
ADCs is Ts =

1
fs

, the digital intermediate frequency signal obtained from sampling can be
expressed as

sdi f (n) =
K−1
∑

k=0
ckrect(n− k Tc

Ts
)ej2π fidn+ϕ0 + w(n),

n = 1, 2 · · ·N
(1)

where ck = {+1,−1} denote PN codes with length K, Tc is the chipping width, N is the

number of samples, rect(n) =

{
1, 0 < n < Tc

Ts
0, else

is a rectangular window function, j2 = −1,
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fid is the center frequency after downconversion and w(n) is environmental clutter and
noise.

For a BPSK signal, parameter estimation can be performed with a minimum mean
square error estimator

(ĉk, ˆfid, ϕ̂0) = argmin
c(n) = {−1,+1}
f ∈ R
ϕ ∈ [−π, π]

1
2
‖c(n)ej2π f n+ϕ0 − sdi f (n)‖

2
2 (2)

where ĉk, ˆfid, ϕ̂0 and c(n), f , ϕ are the estimated value and hypothetical variable of the PN
codes, center frequency and initial phase, respectively. In (2), there are three parameters
that need to be estimated and they are coupled with each other. It is difficult and complex
to solve (2) with a direct searching method. Therefore, we consider two step method which
decouples the three parameters by estimating its center frequency and converting it to zero
intermediate frequency (ZIF).

3. PN Code Estimation Based on NCTVR

In this paper, a novel NCTVR-based PN code estimation method is proposed instead
of the minimum mean square error estimator shown in (2) to reduce the complexity of the
parameter estimation of a BPSK signal. The proposed method, whose diagram is shown
in Figure 2, implements PN code estimation in two steps. First, it pretreats the digital
intermediate frequency signal expressed in (1) by estimating its center frequency and
convert it to ZIF by secondary downconversion. After pretreatment, the center frequency
of the digital intermediate frequency is removed, and the phase jumps is transformed into
the level jumps of the ZIF signal. Then, a minimax-concave function-based NCTVR filter is
applied to extract the PN codes from the ZIF signal.
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3.1. Pretreatment

Here, we select an IFC estimator to estimate the center frequency of the digital inter-
mediate frequency signal. To decouple the center frequency and phase jumps of the BPSK,
the digital intermediate frequency signal is frequency doubled by subtracting the square of
the real part of the digital intermediate frequency signal from the square of its imaginary
part. The frequency doubling signal is denoted as

sFD(n) = cos 4π(2 fidn + ϕ0) + wim(n)p(n) cos 2π( fidn

+ϕ0) + wre(n)p(n) sin(2π fidn + ϕ0) + [wim
2(n)− wre

2(n)]/2
(3)

where p(n) =
K−1
∑

k=0
ckrect(n− k Tc

Ts
), p(n) cos 2π( fidn + ϕ0) and p(n) sin(2π fidn + ϕ0) are

the real part and imaginary part of the digital intermediate frequency signal, respectively,
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and wre(t) and wim(t) are the noise accompanied by the real part and imaginary part of the
digital intermediate frequency signal, respectively. According to (3), the frequency doubling
signal only includes one frequency component 2 fid and the last three terms are noise. After
frequency doubling, an IFCs estimator is adopted to estimate the center frequency. The
IFCs frequency estimator, shown in Figure 3., divides frequency estimation into two steps.
First, a coarse search is performed based on an FFT, which returns the index of the bin with
the largest magnitude. After the coarse search, two DFT coefficients at the bin edges are
then calculated and used to interpolate the true center frequency.
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Assuming the total number of samples N is an integral power of 2 (This can be
achieved by zero padding), the index of the bin with the largest magnitude after FFT is m̂.
Then, the result of the course search is m̂

N fs. Denoting the true frequency of the frequency
doubling signal is 2 fid N

fs
= m̂ + δ, and |δ| ≤ 0.5 is a residual. The goal of the fine search

is to obtain an estimation of δ. For this purpose, the two DFT coefficients between m̂ are
calculated by

X(m̂± 0.5) =
N−1
∑

n=0
sFD(n)e−j2π(m̂±0.5) fs

N n =
N−1
∑

n=0
cos 4π(2 fidn + ϕ0)e−j2π(m̂±0.5) fs

N n + W(m̂± 0.5)

=
N−1
∑

n=0
cos 4π(2 m̂

N fsn + δn + ϕ0)e−j2π(m̂±0.5) fs
N n + W(m̂± 0.5)

=
N−1
∑

n=0
ej2ϕ0 e−j2π(δ±0.5 fs

N )n + W(m̂± 0.5) = ej2ϕ0 1+ej2πδn

1−ej2π( δn±0.5
N )

+ W(m̂± 0.5)

(4)

where W(m̂± 0.5) is the spectrum of the last three terms in (3). As δ±0.5
N � 1, the denomi-

nator of (4) can be expanded by the Taylor series as

X(m̂± 0.5) = b
δ

(δ± 0.5)
+ W(m̂± 0.5) (5)
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where b = Nej2ϕ0 (1+ej2πδ)
j2πδ . When there are no noise terms, the residual can be estimated by

δ̂ =
1
2

b δ
(δ−0.5) − b δ

(δ+0.5)

b δ
(δ−0.5) + b δ

(δ+0.5)

=
1
2
|X(m̂− 0.5)| − |X(m̂ + 0.5)|
|X(m̂− 0.5)|+ |X(m̂ + 0.5)| (6)

The noise terms will affect the accuracy of the residual, which is analyzed later. Finally,
the estimated result of center frequency can be expressed as

ˆfid =
1
2

m̂
N

fs +
1
4
|X(m̂− 0.5)| − |X(m̂ + 0.5)|
|X(m̂− 0.5)|+ |X(m̂ + 0.5)| ) (7)

Its estimation accuracy can be improved by updating the value of m̂ with m̂ = m̂ + δ̂
and repeating two search steps. The estimation accuracy is 1.0147 times the asymptotic
Cramer–Rao bound.

The initial phase of the frequency doubling signal is estimated by the Fourier coeffi-
cients at ±(m̂ + δ̂). The DFT coefficients of the frequency doubling signal at ±(m̂ + δ̂) can
be calculated as

X[±(m̂ + δ̂)] =
N−1

∑
n=0

sFD(n)e±j2π(m̂+δ̂)
fs
N n = e±2ϕ0

∣∣∣∣∣X[(m̂ + δ̂)]

∣∣∣∣∣ (8)

Namely, e±ϕ0 = X[±(m̂ + δ̂)]/
∣∣X[(m̂ + δ̂)]

∣∣. According to Euler formula, we can ob-
tain

sin 2ϕ0 = e2ϕ0−e−2ϕ0
2j

cos 2ϕ0 = e2ϕ0+e−2ϕ0
2

(9)

According to (9), the estimated result of the initial phase ϕ̂0 can be obtained. However,
the frequency doubling resulting in the solution is not unique. The real value of the ϕ0
maybe ϕ̂0 or ϕ̂0 + π. To solve this problem, a posterior, the correlation ZIF signal and
the original signal, is adopted. When their correlation is positive, ϕ0 = ϕ̂0; otherwise
ϕ0 = ϕ̂0 + π.

The final ZIF signal obtained after secondary downconversion can be expressed as

sZIF(n) = [
K−1
∑

k=0
ckrect(n− kTc)ej2π fidn+ϕ0 + w(n)]e−j2π ˆ( fidn+ϕ̂0)

=
K−1
∑

k=0
ckrect(n− kTc)ej2π( fid− ˆfid)n+(ϕ0−ϕ̂0) + w(n)e−j2π ˆ( fidn+ϕ̂0)

(10)

3.2. PN Code Estimation Based on NCTVR

After secondary downconversion, the ZIF signal is sent to the NCTVR filter. To
facilitate the analysis, we assume that fid = ˆfid and ϕ0 = ϕ̂0. In fact, there are always errors
between the measured values of frequency and phase and their real values. However, as
fid − ˆfid � 1

KTc
with the IFC estimator, the frequency residue fid − ˆfid has little effect on

the polarity of the PN code. The same is true for the participation of the phases ϕ0 − ϕ̂0.
Under this assumption, (10) can be rewritten as

sZIF(n) =
K−1

∑
k=0

ckrect(n− kTc) + w(n)e−j2π ˆ( fidn+ϕ̂0) (11)

Then, PN code estimation can be formulated as the following optimization problem:

ĉ = argmin
c∈{−1,1}N ,

1
2
‖sZif−c‖2

2, (12)
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where ĉ is the estimated codes. As the nonpositive definition of (12), a minimax-concave
penalty regularization function is adopted as a Lagrangian penalty factor and the following
optimization objectives can be obtained,

ĉ = argmin
c∈{−1,1}N

1
2
‖sZif −c‖2

2 + λ
N

∑
i=1

φ(‖[Dc]i‖; a) (13)

where D represents the first-order derivatives padded by Neumann boundary conditions
and φ(t, a) is the minimax-concave penalty function, which is defined by

φ(t, a) =
{
− a

2 t2 +
√

2at, t ∈ [0,
√

2/a)
1, t ∈ [

√
2/a,+∞)

(14)

where a in φ(t, a) affects the degree of nonconvexity. When a→ ∞ , the MC penalty tends
to be L0 norm. For a = 0, the φ(t, a) is defined as φ(t, a) = |t|, namely the MC penalty
tends to be L1 norm. The curve of φ(t, a) with different a is shown in Figure 4.
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Figure 4. The curve of φ(t, a).

Compared with the L1 norm, the proposed MC penalty promotes sparsity more
effectively and accurately preserves the amplitude of the piecewise-constant signal. Shown
in Figure 5a, the amplitudes of the estimation results from MC penalty are ±1, which are
same as the real PN codes. However, the amplitudes of the estimation results from L1 norm
tend to be random. Therefore, the solution of (14) can be imposed a constraint to force ĉ to
be a binary vector. However, when adopting L1 norm to estimate the PN codes, we need to
adopt additional binary quantization algorithms. The MC penalty possesses a better noise
tolerance than the L1 norm. Shown in Figure 5b, many errors have occurred in the results
of the L1 norm with SNR = 0 dB.
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When 0 ≤ a ≤ 1
4λ , the cost function is strongly convex, and (13) can be rewritten as

ĉ = argmin
c∈{−1,1}N

1
2
‖sZif −c‖2

2 + λ‖Dc‖1 − λ min
v∈RN

{
‖v‖1 +

a
2
‖Dc−v‖2

2

}
(15)

where, v ∈ RN is an intermediate variable. As the discontinuous minimax-concave penalty
function, the extremum of (15) cannot be solved with its first-order or second-order deriva-
tive. Here, we propose an iterative algorithm based on forward–backward splitting algo-
rithm. Defining the two functions

f (c) = argmin
c∈{−1,1}N

1
2‖sZif −c‖2

2 − λ min
v∈RN

{
‖v‖1 +

a
2‖Dc−v‖2

2

}
g(c) = λ‖Dc‖1

(16)

According to the above definitions, f (c) and g(c) are convex, and ∂ f
∂c is Lipschitz

continuous. Hence, the minimization of (15) can be solved based on the forward–backward
splitting algorithm for minimization by iterating

zp = cp − u ∂
∂cp f

cp+1 = argmin
v

{
1
2‖z− v‖2

2 + µg(v)
} (17)

where p is the number of iterations and ∂ f
∂c represents the first-order derivative. Taking

µ = 1, (17) can be expressed as

zp = aDT(Dcp − so f t1/a(Dcp)) (18)

cp+1 = argmin
v∈{−1,1}N

{
1
2
‖sZif + λzp − v‖2

2 + λ‖Dc‖1

}
(19)

where so f t1/a(t) =
{

0, |y| < 1/a
(|t| − λ)sign(t), |y| > 1/a

is a soft threshold function. We observe

that the backward step in (19) is a standard one-dimensional TVR problem, and the inter-
mediate variables z play a role in enhancing sparsity. The extra computational complexity
of MC penalty is (18), which includes twice matrix multiplications and a soft threshold
function. The flow chart of NCTVR is shown in Figure 6.
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3.3. The Motivation behind the NCTVR

The essence of the PN code estimation method proposed in this paper is to extract level
jumps from a noise-polluted ZIF signal. According to (18) and (19), when z is equal to zero,
(19) is a classical TVR problem. The classical TVR problem can be solved with an L1-norm-
based regularization penalty term, but it has a limitation that tends to underestimate the
amplitudes of signal discontinuities. Therefore, we introduce a minimax-concave penalty
function to improve the TVR problem. The sequence z, resulting from the minimax-concave
penalty function, enhances the sparsity of the ZIF signal and makes it more robust to noise.

As observed in Figure 7., sequence z (the red line in Figure 7.), which is computed by
(18) upon convergence of the NCTVR, acts as a detector of polarity change. By applying
the soft threshold function in (20), we obtain

z(n) =
{

DTDc(n), |Dc(n)| > 1
a

0, |Dc(n)| > 1
a

(20)
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Therefore, the sequence z can be considered as the response of a Laplacian operator
(LAPO) on the PN codes c. The Laplacian operator takes the second derivative of the
ZIF signal: When the PN codes do not change, the Laplacian operator outputs zero,
corresponding to jumps with a minimal jump height lower than 1/a caused by noise. As
illustrated in Figure 7b, if PN codes change from −1 to +1 (|Dc(n)| > 0), z shows a positive
impact first and then a negative impact.

4. Performance of NCTVR
4.1. Variance of the Estimated Centre Frequency

Assume that w(n) is zero-mean additive Gaussian noise with variance σ2. According
to (6), the noise carried by the frequency doubling signal can be expressed as

wFD(n) = wim(n) cos 2π( fidn + ϕ0) + wre(n) sin(2π fidn + ϕ0) + [wim
2(n)− wre

2(n)]/2 (21)

As the last item of (21) is a higher order infinitesimal of variance O
(
σ2), wFD(n) can

still be considered zero-mean additive Gaussian noise with the same variance σ2. Therefore,
the variance of the estimated center frequency can be expressed as

Var( ˆfid) =
f 2
s π2(δ− 0.25)2(4δ2 + 1)

4N3ρ cos2(πδ)
(22)

where ρ is the SNR. By iteration, it has a minimum

Var( ˆfid) =
f 2
s π2

64N3ρ
(23)
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As our initial phase estimation method is still based on Fourier coefficients, it variance
of the estimated center frequency can be expressed as

Var(ϕ̂0) =
πσ

2N
∣∣X[+(m̂ + δ̂)]

∣∣ + πσ

2N
∣∣X[−(m̂ + δ̂)]

∣∣ (24)

4.2. Accuracy of The Estimated PN Codes

According to (18) and (19), NCTVR detects the PN codes with the first and second
derivatives of the ZIF signal. The detection threshold is decided by the two regularization
parameters λ and a. When |Dc| > λ and

∣∣DTDc
∣∣ > 1

a , it is considered to be a polarity
change. Therefore, the regularization parameters are set between the derivative of the
signal and noise. When the SNR is low, the derivative of the noise may be larger than that
of the PN codes, and some estimation errors appear.

5. Simulations and Experiments
5.1. Simulations

The performance of the NCTVR-based PN codes estimation method is tested by
numerical simulation and semiphysical in this section. In our simulation scenario, there
is only one BPSK radar that works in the X band with a carrier frequency of 10 GHz. Its
chipping width and code length are 50 ns and 31, respectively. The reconnaissance receiver,
working under the SNR varying from −10~10 dB, is able to accept signals ranging from
10 GHz to 11 GHz by using a local oscillator of 10.5 GHz and high-speed ADCs with
a 1 GHz sampling rate. As the distance between the radar and reconnaissance receiver
changes slowly in a short time, the amplitude change of the received signal can be ignored.
When the BPSK signal enters the reconnaissance receiver, it is quadrature downconverted
and sampled to a digital intermediate frequency signal. When processing the obtained
digital intermediate frequency signal, the iterations of the IFCs and NCTVR are 2 and 100,
respectively, with regularization parameters where λ = 0.5 and a = 1/4λ.

The effect of the pretreatment is estimating the center frequency and initial phase of
the digital intermediate frequency signal and converting it to ZIF. The standard deviation of
the center frequency and initial phase under different SNRs is shown in Figure 8. According
to the result shown in Figure 8a, the IFCs estimator possesses an extremely high frequency
estimation accuracy, and its standard deviation approaches the asymptotic Cramer–Rao
bound, which is lower than 20 kHz with N = 1550. According to the result shown in
Figure 8b, the standard deviation of the initial phase is lower than 0.25 rad or 15◦ even
under SNR = −10 dB. Assuming the frequency estimation error is 20 kHz and the initial
phase estimation error is 0.25 rad, the ZIF signal after downconversion, which is a level-
jumping signal that is polluted by noise, is shown in Figure 8c. Namely, the pretreatment
can effectively transform phase jumps of the BPSK signal into the level jumps of the
ZIF signal.

The simulation results of the NCTVR with different SNRs are shown in Figure 9. From
Figure 9a–c, the estimation results are almost identical to the original sequence with an SNR
larger than 0 dB. Only 6 of the 1550 sampling points are estimated incorrectly when the
SNR is −5 dB and 174 of the 1550 sampling points are estimated incorrectly when the SNR
is−10 dB, which are shown in Figure 9d,e. According to the simulation results, the NCTVR
can efficiently extract the PN codes from noise polluted ZIF signals even under serious
electromagnetic environments. When the input SNR is higher than −5 dB, its statistical
miscalculation is lower than 5% of the total sample number. However, when the input
SNR is lower than −5 dB, its miscalculation increases rapidly over 10%. This is because
the probability that the derivative of the noise is larger than that of the PN codes is greatly
improved when the SNR deteriorates from −5 dB to −10 dB.
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Figure 9. The estimated PN codes under different SNRs. (a) Original sequences; (b) SNR = 5 dB;
(c) SNR = 0 dB; (d) SNR = −5 dB; (e) SNR = −10.

Estimation performance of the MC penalty and L1 norm is shown in Figure 10. When
SNR = 0 dB, the estimation results of the MC penalty is almost the same as the original
codes. However, there are many estimation errors when adopting L1 norm.
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Figure 10. Estimation performance of the MC penalty with SNR = 0 dB.

To more intuitively reflect the estimation accuracy of the NCTVR, 5000 simulations
under different SNRs are carried out, and the average correlation coefficients between the
estimation results and the original PN codes are selected as the basis for evaluation. From
the simulation results shown in Figure 11, the estimation accuracy of NCTVR (blue line) is
over 95% when SNR is higher than 0 dB. As SNR continues to deteriorate, more estimation
errors appear, and its estimation accuracy decreases to 0. 70 when SNR = −10 dB. Namely,
the NCTVR has an extremely high estimation accuracy when the SNR is larger than 0 dB.
When SNR is lower than−5 dB, the estimation accuracy deteriorates rapidly. This is because
the NCTVR mainly attempts to detect the amplitude of the LAPO of the ZIF signal; With
SNR lower than−5 dB, the LAPO of the PN codes is covered by that of the noise. Compared
with the L1 norm (purple line), the MC penalty shows a higher estimation accuracy for
that the MC penalty possesses a better noise tolerance than L1 norm. Compared with
the method proposed in [18] (yellow line), the NCTVR-based method possesses a higher
estimation accuracy. The accuracy of our method is a little lower than the method proposed
in [16] when SNR is lower than 0 dB. It is because the duffing oscillator is sensitive to
periodic signal and insensitive to noise. However, [16] can only detects the polarity changes
of the PN codes and needs the starting symbol of the PN code as a priori to make sure the
polarity of the following code. This makes it hard to be realized in application.
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Figure 11. Correlation coefficients under different SNRs.

5.2. Experiments

To verify the performance of NCTVR, semiphysical tests are carried out in an anechoic
chamber. In our experiment, the BPSK radar is 30 m away from the reconnaissance receiver.
Its transmitting signal, with a 10 GHz carrier frequency and a chipping width of 20 ns,
is captured and downconverted by an N8201A, and the obtained intermediate frequency
signal, whose center frequency is approximately 100 MHz, is sampled by an M9203A digital
receiver with a sampling rate of fs = 1 GHz. The final digital intermediate frequency signal
is processed on a PC.
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The results of the NCTVR are shown in Figure 12. Figure 12a shows the captured
signal from the time domain (yellow line) and frequency domain (red line). The bandwidth
of the captured signal is 50 MHz. The ZIF signal is shown in Figure 12b, from which we
conclude that pretreatment leads the BPSK signal to ZIF and transforms the phase jumps
into the level jumps of ZIF. The result of the NCTVR is shown in Figure 12c, from which we
see that the NCTVR can extract the PN codes from the ZIF signal. According to the results
of the experiments, the NCTVR-based method proposed in this paper works well with the
experimental data.
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6. Conclusions

In this paper, a novel PN codes estimation method based on NCTVR is proposed for
radar jammer. the NCTVR-based method first converts the digital intermediate frequency
signal into ZIF with a pretreatment based on IFCs and secondary downconversion. This
turns phase jumps of the BPSK signal into level jumps of the ZIF signal. Then, an MC
penalty based NCTVR filter is introduced to extract level jumps of the ZIF signal. By
adopting the MC penalty function instead of the L1-norm-based penalty, the NCTVR can
extract accurately the level jumps of the ZIF signal under a serious SNR. Its estimation
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accuracy is over 70%, even under SNR −10 dB. Compared with the existing PN code esti-
mation method, the advantage of the proposed algorithm is that it possesses a competitive
estimation accuracy and do not need any priories. The results of the simulations and
semiphysical tests show that the proposed method works well on a radar jammer.

However, the proposed method needs an iterative algorithm to solve the optimistic
problem, which affects its real-time performance. Therefore, our future work includes
solving the NCTVR by ADMM and adopting the deep-ADMM-net to accelerate its speed.
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