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Abstract: In modern networks, a Network Intrusion Detection System (NIDS) is a critical security
device for detecting unauthorized activity. The categorization effectiveness for minority classes
is limited by the imbalanced class issues connected with the dataset. We propose an Imbalanced
Generative Adversarial Network (IGAN) to address the problem of class imbalance by increasing the
detection rate of minority classes while maintaining efficiency. To limit the effect of the minimum or
maximum value on the overall features, the original data was normalized and one-hot encoded using
data preprocessing. To address the issue of the low detection rate of minority attacks caused by the
imbalance in the training data, we enrich the minority samples with IGAN. The ensemble of Lenet 5
and Long Short Term Memory (LSTM) is used to classify occurrences that are considered abnormal
into various attack categories. The investigational findings demonstrate that the proposed approach
outperforms the other deep learning approaches, achieving the best accuracy, precision, recall, TPR,
FPR, and F1-score. The findings indicate that IGAN oversampling can enhance the detection rate
of minority samples, hence improving overall accuracy. According to the data, the recommended
technique valued performance measures far more than alternative approaches. The proposed method
is found to achieve above 98% accuracy and classifies various attacks significantly well as compared
to other classifiers.

Keywords: intrusion detection; class imbalance; deep learning algorithms; imbalanced generative
adversarial network (IGAN); LeNet 5; LSTM; attacks

1. Introduction

Network intrusion detection faces a growing number of difficulties as the primary
method for preventing advanced threat attacks. A long time has passed since the em-
ployment of the conventional feature-based IDS [1]. The scope and refresh rate of the
established signature database mean that signature-based intrusion detection systems
cannot detect all forms of attacks, especially novel attack variations [2]. Researchers have
focused significantly on adding new intrusion detection algorithms to address this issue,
and one approach is to apply machine learning methods.

Network information security is significantly aided by intrusion detection. However,
the network’s traffic types are expanding daily and the features of network behavior are
growing more complicated due to the explosive rise of Internet commerce, which poses
significant hurdles to intrusion detection [3,4]. The challenge of identifying different
harmful network traffic, especially unanticipated hostile network traffic, cannot be ignored.
In reality, there are two sorts of network traffic (normal traffic and malicious traffic).
Additionally, there are five ways to categorize network traffic: normal, dos, R2L, U2R, and
Probe [5–7]. Therefore, it is possible to classify ID as a categorization issue. The accuracy
of network intrusion detection can be significantly increased by enhancing the classifier’s
ability to recognize malicious traffic [8–10].
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Numerous researchers suggested machine learning (ML) methods to find and identify
network attackers, including SVM, KNN, RF, and NB [11,12]. These methods, which have
a greater computational cost, are based on conventional ML. They are shallow learners;
therefore they do not gain a deeper understanding of their datasets [13]. Additionally, they
issue warnings that are partially misleading (i.e., they raise false alarms).

In the past few years, a large number of IDS techniques have been presented based
on a variety of approaches, such as mathematical formulations, data mining techniques
like machine learning, etc. Poor performances are caused by the difficulty in managing the
high-dimensional network traffic data with these statistical formulations and conventional
machine learning models [14]. Furthermore, the majority of the techniques used binary
classification, such as whether it is an attack or not. Therefore, better approaches are
required for IDS, such as deep-learning-based techniques. Due to its powerful learning
and feature extraction capabilities, particularly in scenarios involving large datasets, deep
learning has been widely recommended for IDS in recent years [15]. Multiple layers are
used in deep learning approaches to gradually extract important features from raw input
without the need for domain knowledge.

To extract deep features, deep learning offers automated tools. It provides a better
data representation to create more advanced models [16–18]. Building on recent advances
in the field of intrusion detection, recurrent neural networks (RNNs) have emerged as one
of the most popular deep learning techniques for categorization and other evaluations of
data sequences [19]. Additionally, RNN is a good technique that can show excellent results
in subsequent learning and improve anomaly detection in a network system [20].

Therefore, in this paper, we proposed an LSTM-based deep learning model for the
multiclass classification of attack detection. To enhance the effectiveness of the classifier,
the LeNet 5 and LSTM are hybrid, and IGAN-based class imbalance is implemented. The
findings of the experiments are examined and evaluated. The outcomes demonstrate that
the NIDS developed in this paper is able to detect intrusions rapidly while maintaining
higher accuracy.

The structure of this article is as follows. In the Section 2, we provide a summary of
the existing papers. The Section 3 explains the methodology. The result and discussion
findings are presented in Section 4, along with an analysis of each experimental outcome.
The last section of this article is Section 5, which concludes the paper.

Novel Contribution

The major key contributions of this research are as follows,

â We introduce IGAN, a class imbalance processing method. This strategy can stop
random under-sampling from losing crucial samples, as well as the unnecessary time
and space costs associated with oversampling. It considerably raises the rate at which
minority classes are discovered.

â One-hot encoding and normalization operations are performed in preprocessing.
â The model accuracy and speed of convergence are both enhanced by data normaliza-

tion. The class label numeralization of two datasets also employs one-hot encoding.
â An ensemble of Lenet 5 and LSTM is employed to classify the various attack categories

in NIDS.
â The UNSW-NB15 and CICIDS2017 datasets have undergone various experiments. Our

proposed network outperforms the state efficiency concerning all other approaches,
according to the experimental data.

2. Literature Review

This phase provides a summary of relevant network-based intrusion detection research work.
Lee. J and Park. K [21] introduced the GAN model to solve the class imbalance

problem. GAN is a deep-learning-based unsupervised learning method that produces new
virtual data that was comparable to existing data. The GAN can solve the fitting problem
along with class overlaps and noise as it resamples by specifying the desired uncommon
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class. The resampled data is trained by random forest (RF), a common ML technique,
to evaluate the classifier’s effectiveness. When compared to existing methodologies, the
suggested solution outperforms them.

To address the network intrusion data imbalance problem, Fu et al. [22] suggested
an ADASYN oversampling algorithm as the class imbalance approach and a SA model
with a higher dropout structure as the data downscaling method. A DL approach for NIDS
was proposed for traffic anomaly detection, which integrates a Bi-LSTM network, initially
retrieving consecutive characteristics from data traffic via a CNN model, then reconfiguring
the weights of every channel via the attention mechanism, and at last employing Bi-LSTM
to discover the network of sequential features. When compared to existing techniques, the
suggested model achieved 90.73% accuracy and an 89.65% F1 score.

Jiang et al. [23] suggested the ensemble approach that integrates CNN with Bi-LSTM.
This method effectively extracts the features of the data. The SMOTE and OSS method was
employed to decrease the majority samples and increase the minority samples. OSS was
used to decrease the majority samples, and the SMOTE was used to boost the minority
samples. In this manner, a balanced dataset for model training is created. The input
data is then classified using the network model built by CNN and BiLSTM. Using deep
learning’s remarkable characteristics, the algorithm collects characteristics dynamically
through recurrent multi-level learning. When evaluated against a testing set, the proposed
method produces enhanced outcomes in terms of performance metrics.

Al. S and Denver. M [24] presented an HDL network consisting of CNN and LSTM
that is used for better IDS. Furthermore, data imbalance processing, which included the
Synthetic SMOTE approach and Tomek-Links sampling approach known as STL, was
utilized to mitigate the impacts of class imbalance on system effectiveness. It is possible
that you might be interested in the fact that you might be interested in the use of this
website. As a consequence, the suggested technique achieved 99.82% accuracy in multi-
categorization and 99.16% accuracy in binary categorization. In comparison to existing
methods, the suggested approach has obtained relatively good outcomes in identifying
network assaults in imbalanced data sets, according to the results.

To tackle the issue of negative and positive instance imbalance in the initial dataset,
Cao et al. [25] developed an ensemble sampling method that combines ADASYN and
RENN. To solve the issue of feature redundancy, the RF algorithm and Pearson correlation
analysis are combined to pick the features. The spatial features are then retrieved using a
CNN and further extracted by fusing average pooling and maxpooling, as well as utilizing
an attention strategy to apply varying weights to the features, decreasing overhead and
boosting method effectiveness. To ensure effective and useful feature learning, the long-
distance dependent information features are extracted using a gated recurrent unit (GRU).
The experimental results show that the suggested approach yields greater performance.

Mulyanto et al. [26] developed the focal loss NIDS, a cost-sensitive neural network
based on focal loss, to tackle the problem of unbalanced data. FL-NIDS was employed
in conjunction with DNN and CNN to evaluate intrusion detection data with skewed
distributions. To overcome the problem of unbalanced data, focal loss was utilized. When
contrasted with other techniques, the presented method applying FL-NIDS in the DNN
and CNN framework provides more effectiveness.

Man. J. and Sun. G. [27] presented a NIDS architecture based on DCNN. DCNN with
residual blocks was used to learn more essential properties. To detect minor assaults in
the testing set, the modified FL function was analyzed instead of the cross-entropy FL to
address the imbalanced data issue in the training set. To avoid overfitting, the system is
improved with batch normalization and global average pooling. According to test findings,
the suggested method can enhance attack detection precision over existing methods. An
overview of relevant studies is shown in Table 1.
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Table 1. Summary of existing works.

Reference Approach Merits Demerits

Lee. J and Park. K [21] 1D-CNN
The classifier’s effectiveness in
predicting minorities has been

improved.

In terms of computation, it is more
expensive than the other approaches.

Fu et al. [22] Bi-LSTM
Compared to other algorithms, this

one is simpler, faster, and less
complex.

The quantity of outliers in the data
affects performance.

Jiang et al. [23] CNN with Bi-LSTM The classifiers are one-of-a-kind
and low-cost to run.

It is a confusing and time-consuming
procedure.

Al. S and Dener. M [24] CNN and LSTM An algorithm that is simpler, easier,
faster, and less difficult.

The main disadvantage of this model
is that crucial data can be lost.

Cao et al. [25] RF algorithm Reduces the rate at which duplicate
data is created

In multiclass, the performance
standard falls.

Mulyanto et al. [26] FL-NIDS Faster training speed of
undersampling

Only focusing on problems with
binary classification

Man. J and Sun. G [27] residual learning Increased accuracy level Unable to resolve the issue of
imbalance class highly

Despite the high detection accuracies obtained, our related work demonstrated that
there are still improvements to be made. Such problems include inconsistent or average
accuracy levels and substantial dataset change. The region is still in its early stages of
development. The majority of the researchers focused on ML techniques and integrated
many algorithms to create a more realistic and effective solution for a detailed dataset with
restricted attacks. Many other important classifiers are overlooked in the analysis. Although
most of them attempt to address some of the shortcomings of existing oversampling
techniques, they are unable to eliminate noise while also distributing the generated samples
in a minority of data centers. This is because the closer the samples are to the data center,
the higher their contribution to categorization. In addition, the more apparent the traits,
the larger the contribution of the samples to categorization. As a consequence, we assume
that the approach and work provided in this paper will yield credible findings. This work
will enhance and integrate several single learners to train a model more precisely and faster.
Greater precision will result in faster training and detection speeds.

3. Proposed Methodology

The proposed method is thoroughly discussed in this portion. The main framework
of the system proposed in this research is given in Figure 1, which is built on the IGAN
technique and a hybrid technique of LeNet 5 and LSTM. Data preprocessing is a very
important component of data analysis that directly affects prediction accuracy. To make
the original data more suitable for the model’s prediction, the data preparation module
is in charge of conducting operations on the data, such as one-hot encoding and data
normalization.

Resampling the training dataset is the imbalance processing module’s main task to
lessen the bias that the original dataset’s imbalance has on the results of experiments.
We presented a novel approach called IGAN that integrates over- and under-sampling to
produce a perfectly balanced dataset. We provided an ensemble of LeNet 5 and LSTM in
the categorization decision module to conclude the attack types. We carry out multi-class
categorization employing two different datasets.
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Figure 1. Architecture diagram of the proposed methodology.

3.1. Problem Statement

This section discusses the problem statement identified by IDS research using existing
methodologies.

An ML-based IDS creates a higher false detection ratio and experiences data imbalance
concerns due to a restricted training dataset in the UNSW-NB15 and CICIDS2017 datasets.
This imbalance causes problems for classifiers and leads to poor detection accuracy for
these minority classes. Existing intrusion detection systems (IDS) are insufficient in dealing
with new attack types in networks due to low recognition and detection rates. Overfitting
is also another major concern in IDS research. Furthermore, most existing ML-based IDS
have a higher computational time. Existing methods are not broadly applicable, because
most existing ID systems are incapable of detecting major threats due to out-of-date ID
datasets. The data is thought to be noisy, with inaccuracies, and unpredictable, with code or
name variances. To alleviate the imbalance issues, we used over-sampling, which involved
arbitrarily repeating data in the minority class to boost the minority class’s presence in the
sample. Despite the possibility of overfitting, no data was destroyed, and the oversampling
method beat the undersampling method.

3.2. Preprocessing

We organize the data in such a way that it is ready for the learning algorithm right
away. In a circulation manner, the CICDDoS2017 and UNSW-NB15 datasets are provided.
Before the component testing, we go through a few processes to collect the data required.

3.2.1. One-Hot Processing

Symbolic features in the dataset are converted into numerical features using the one-
hot approach. One-hot encoding is the major often utilized approach for dealing with the



Sensors 2023, 23, 550 6 of 26

numeralization of ordinal attributes since it is a feasible and elegant encoding technique.
Ordinal attributes transfer into binary vectors containing one unit with a value of one and
the other units are zero. The possibility of feasible numbers corresponding to the category
feature is indicated by an entity with several ones.

3.2.2. Normalization

The value of the original data may be excessively high, which could lead to issues
like “large numbers to eat decimals”, data processing overflows inconsistent weights, etc.
The continuous data is normalized into the range [0, 1] using a conventional scaler. The
normalization process removes the measurement unit’s influence from the model’s training
and increases the reliance of the training outcome on the properties of the data itself. The
min-max method is used to normalize the data. Normalization Equations (1) and (2) present
the formula.

r′ =
r− rmin

rmax − rmin
(1)

rmax = max{r} (2)

Herein, rmin and rmax denote minimum and maximum eigenvalues respectively, and
the normalized eigenvalue is denoted by x′ and the original eigenvalue is denoted by r.

3.3. Imbalanced Data Handling Using IGAN

The training approach will be more biased towards correctly predicting the majority
of samples because the training set’s unbalanced data were used. Therefore, balancing the
dataset is very important before classification. In the UNSW-NB15 dataset, ‘Shellcode’,
‘Worms’, ‘analysis’, and ‘backdoor’ classes are increased by the IGAN technique. Similarly,
in CICIDS 2017 dataset, the ‘Bot’, ‘MSSQL’, and ‘Heart bleed’ classes are also increased.

A generative model is typically included in a GAN (Generator, G) as well as a discrim-
inatory model (Discriminator, D). S creates noises z to create synthesized samples using
them as inputs S(z). D produces the chance D(x) that sample x is the input sample derived
from the true distribution. Jensen–Shannon (JS) divergence was initially defined as using
the following formula to evaluate this similarity:

JS(pdata ‖ pg) =
1
2 KL(pdata‖pm) +

1
2 KL(pg ‖ pm)

pm = 1
2 (pdata + pg)

(3)

The maximized data can be represented as

min
G

max
D

V(D, G) = min
G

max
D

(Ex−pdata(x)[log D(x)] + Ez−pz(z)[log(1−D(G(z)))] (4)

However, the standard GAN is intrinsically incapable of handling class because it
seeks to generate samples without taking into account its class unbalance. Additionally,
the multilayer perceptron used by the conventional GAN in G results in poor expression
capabilities. For the minority classes, we, therefore, use an unbalanced data filter in
IGAN. This also impacts the generating amount. We go on to think of the lessons as
prerequisites for teaching IGAN, including the features of the network. Additionally, we
update the design by combining convolutional layers in model G, and the expression
capability is improved.

3.3.1. System Model

IGAN-IDS is made up of three components: extraction of features (FE), IGAN, and
DNN. The IGAN-IDS system concept is depicted in Figure 2. To begin, the FE component
converts raw network characteristics into latent extracted features. The proposed model
then produces instance data, as described in Section 3.3. Lastly, the deep neural network
component is trained with balanced samples, and the detection technique is tested on novel
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data. To recap, IGAN uses network characteristics as input and forecasts their likelihood
function p(y, j) across various ID classes.
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3.3.2. Model Description

GAN is a technique for learning from unstructured data distributions and generating
similar samples. GAN presents two types, one generative and one discriminative. G
generates a distribution of new instances, whereas D differentiates from genuine ones.
Following a minimax two-player game among both methods, G’s generative distribution
may describe the true one, whereas D cannot discriminate among the two and converges to
0.5. We proposed the IGAN model. To perform class imbalance ID, we develop an IGAN-
based NIDS. To tackle the issue of imbalance in NIDS, we improve the standard generative
adversarial network (GAN) by creating examples for minority classes. Discriminator D, the
unbalanced data filter, and Generator G are the three components of IGAN. Minority-class
samples are selected for the unbalanced data filter, which then determines the producing
quantity. Figure 2 represents the architecture diagram of IGAN.

(a) Imbalanced data filter

It requires ordinary instance s = (x, y) as input and outcome instance S′ = (x′, y′). In
common, the filtering process can be stated as follows:

s′ =

{
s′ = (x′, y′)|s′ ∈ s, y′ 6= argmax (n cτ)

c,∈c

}
(5)

where c = {c1, . . . . . . . ., cτ} the set of various classes ncτ represents the quality of instances
in class cτ . We established a created ratio to objectively reduce the ratio, which represents
the split between synthesized and genuine data. r = i:j, while i and j are the number of
synthesized instances. Multilayer perceptron is the main component of the discriminative
model D.
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(b) Discriminator (D)

An MLP is used to construct method D. D is given either generative results G(z; y′),
as well as the corresponding class labels y′, as input. y′ must be incorporated in one-hot
matrices before the conjunction. D calculates the likelihood D (x; y) that a given input (x; y)
is derived from realistic samples rather than sG. The following are the connecting layers d:

d = max
(
0, ωd v + bd

)
(6)

where v is the input of every layer, while ωd and bd are the weights and bias. Convolutional
layers and sigmoid output layers, as well as numerous fully linked layers, are used to
implement G. The linked layers are formalized.

(c) Generator (G)

G is implemented using various layers. G requires minority-class labels y′ and noises
z as input and produces relevant features xG = G(z; y′) for minority classes. In particular,
z and y′ can be combined by convolving to v = [z; y′]. Before summation, y′ must be
integrated into one-hot vectors, which is identical to D.

The convolutional layer performs the following one-dimensional convolution among
the kernels f and the input v:

ρ =
{

ρ = v ∗ fe|ε ∈ [1, np]
}

(7)

As the value function, we use the condensed form of the JS divergence, which will be
covered in more detail in the following section.

Data filtering, adversarial learning, and sample production are the three phases of the
training phase. When filtering data, as stated in Equation (8), we initially build a subset of
minority classes s′ and then estimate the producing quantity.

In adversarial learning, the outcome samples sG = (xG;y′). In IDS, the outcome
instance sG is combined with the ordinary instance to address the issue of class imbalance.
IGAN working process is shown in Algorithm 1. To explain the such process, one possibility
is to train on a value V̂(D; G), which is expressed as follows

max
θD

V̂(D) = max
θD

1
m

m

∑
i=1

(log D(x′i , y′i) + log(1− D(G(zi, y′i), y′i))) (8)

Algorithm 1. IGAN

Input: s = (x, y) the original samples
Output: sG The synthesized samples
Parameter: t, iteration times of D per global iteration

s′ =

{
s′ = (x′, y′)|s′ ∈ s, y′ 6= argmax (n cτ)

c,∈c

}
While D has not converged to 0.5 do
For t steps do
Optimization of the discriminator

max
θD

V̂(D) = max
θD

1
m

m
∑

i=1
(log D(x′i , y′i) + log(1− D(G(zi, y′i), y′i)))

End
Optimization of the generator
Samples can be changed as a batch form
End
Generating the samples
Return sG
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3.4. Classification

A new classifier LeNet 5 and LSTM are combined for classification to obtain results
with higher accuracy and achieve the highest performance of IDS. Figure 3 represents the
flow chart of the proposed methodology.
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3.4.1. LeNet 5

LeNet-5 was pre-trained as a feature extraction network. It has a total of seven layers.
The LeNet-5 precise framework is depicted in Table 2. The LeNet-5’s several weighted
layers are built on the idea of reducing blocks of convolutional layers by using shortcut
connections. The “bottleneck” blocks are fundamental building blocks that typically adhere
to two design principles: employ the same number of filters for extracted features of similar
size and twice as many filters for features of half the size. Furthermore, batch normalized is
done after every convolution and before activating the ReLU, and down sampling is done
with convolution layers with a stride of 2.

Table 2. Architecture of LeNet 5.

Level Names of the Layers Size of Input Kernel Size Step Size Pooled Area Output
Size

Input Input 32 × 32 6 × 6 1 26 × 26

1st layer Convolutional 5@28 × 28 2 2 × 2 6@12 × 12

2nd layer Pool 5@16 × 16 5 × 5 1 16@10 × 10

3rd layer Convolutional 16@14 × 14 2 2 × 2 16@5 × 5

4th layer Pool 16@6 × 6 6 × 6 1 124@2 × 2

5th layer Fully convolutional 1 × 124 1 × 86

6th layer Fully convolutional 1 × 82 1 × 8

Output Output 1 × 7
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Convolutional neural networks are difficult to create because every layer’s input
distribution varies during training. This problem can be solved by employing batch nor-
malization (BN) layers, which ensure that the distribution of input data in each layer is
stable by normalizing the input to each layer. To increase the speed of model consolidation
and training we inserted BN in each convolutional layer. Table 2 shows the architectural de-
tails.

Another benefit of our framework is that we used LeakyReLU instead of the standard
Tanh, ReLU, and sigmoid activation functions found in the LeNet-5 model. Although it
appears to be a linear function, ReLU has a derived function and supports backpropagation,
which aids the network in convergent. The ReLU function was chosen to avoid this problem.
The equation for the LeakyReLU function

f (x) =

{
0.01x, for x < 0
x, for x ≥ 0

(9)

The function ReLU has as an equation

f (x) =
{

0, for x < 0
1, for x ≥ 0

(10)

Our model proposes that in addition to adding the fully connected layer before the
output layer and the LeakyReLU activation function after every convolution layer.

3.4.2. Long Short-Term Memory (LSTM)

The LSTM neural network is a commonly used approach for classification tasks. The
model includes an LSTM layer and a mean-pooling layer with fully connected input
layers. Because it performs better when processing a group of data, we chose LSTM as a
great architecture for the classification. We start the method to understand the long-term
dependency issue better. In the LSTM neural network, a DL net, long-term dependencies
are explicitly designed to be learned. The newly developed gates are designed to store data
for a very long time instead. The current input xt, the output ct−1 of the cells at the (t − 1)
phase, the terms of bias bg, and the time interval of the forget gates are used to determine
the pt activation value in forget gates and t. Finally, the sigmoid function adjusts all initiate
numbers to a scale between 0 and 1

pt = sig
(
zyxt + zkkt−1 + bg

)
(11)

The method handles the specifics and can connect to the cell states in the next section.
The value of the initial choice can be computed and included in cell states. Following that,
the input activating values are calculated in the subsequent phase.

jt = sig(Zyxt + Zkt−1 + bi) (12)

Depending on the resolution of the previous two phases, which can be represented by
the Hadamard consequence, the following step is a novel cell state. The following equations
can be used to represent how memory cells are generated.

kt = ot × tanh(at) (13)

LSTM neurons have a variety of gates, as well as a cell state and a control state.
Long-term memory is present in LSTM during the entire sequence.

The weight of the input can be denoted Wx. The chain rule Wx that resulted from the
moment t is

∂Lt

∂Wt
=

t

∑
k=0

∂Lt

∂Ot

∂Ot

∂St

(
t

ä
j=k+1

∂Sj

∂Sj−1

)
∂Sk
∂Wx

(14)
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Hence Sj represents the unit of RNN in the state at the samples j. We stated as for the
input layer of tan h in neurons.

t

∏
j=c+1

∂Sj

∂Sj−1
=

t

∏
j=k+1

(tanhWs)
′ (15)

The range of tan h’s value (.) is 0 to 1. The derivation number of tan h (.) is often
reduced throughout the preparatory process, and then t increases.

t

∏
j=c+1

(tanhWs)
′ (16)

The controlling gate for the LSTM, as well as information from the previous cell state
that is currently secured, was retained.

pt = σ(Z f · [mt−1,xt] + bp) (17)

To start the bias and right of the forget gate, the activation function is represented by
the symbols, Wi and bi. The output gate and its input gate can be expressed in a form to
determine the current moment:

jt = σ(Zi · [mt−1,xt] + bi) (18)

The mathematical model is employed to upgrade the cell state and provide information

S̃t = tanh(ZS · [mt−1,xt] + bS) (19)

ht = ot × tanh(St) (20)

The forget gate is represented as

t

∏
j=C+1

∂Sj

∂Sj−1
=

t

∏
j=c+1

(tanh(σ( ft))
′ (21)

Every gate outcome measure is evaluated, while b[i,k,c,o] bias vectors

ot = sig(Z◦ ∗ [Yt−1, Xt] + b◦) (22)

An appropriate amount of LSTM blocks are combined to form a layer in the empirical
technique.

Yt = ot•tanh(St) (23)

Working process of the proposed methodology

Step 1. Start.
Step 2. Intrusion detection data is an input.
Step 3. Apply preprocessing in the IDS dataset, and one hot-encoding and normalization

operation are performed.
Step 4. Symbolic features in the dataset are converted into numerical features using the

one-hot approach.
Step 5. Normalization processing removes the measurement unit’s influence from the

model training and increases the reliance on the training outcome.
Step 6. Employ an imbalanced generative adversarial network (IGAN) to address the

problem of class imbalance by increasing the detection rate of minority classes.
Step 7. Lenet 5 and LSTM are employed to classify the various attack categories in NIDS.
Step 8. End.
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4. Result and Discussions

To assess the efficiency and effectiveness of the proposed framework, several in-
vestigations were carried out on UNSW-NB15 and CICIDS2019 datasets using standard
performance metrics. The effectiveness of our proposed approach is then examined. Finally,
we evaluate our model’s performance with various start-of-the-art work to confirm the
development and feasibility of the proposed model.

4.1. Experimental Setting

Using 4 GB RAM and an Intel i5 2.60 GHz processor, it runs Windows 10. The studies
were carried out in the Anaconda3 environment using Python and KERAS with Tensor
flow as a backdrop. The UNSW-NB15 and CICIDS2017 datasets were utilized for validation
in this paper to estimate the effectiveness of our proposed approach. The data samples
were split into two sections, one of which was utilized to create a classifier and is referred
to as the training dataset. The testing dataset was used in the second step to evaluate the
classifier. The parameter configuration is shown in Table 3.

Table 3. Parameter configuration.

Parameter Value

MLP layers 3

Epoch 20

Batch size 32

Decay 10−5

Momentum 0.9

Learning rate 0.01

MLP hidden nodes 48

RNN hidden units 128

4.2. Dataset Description

UNSW-NB15: There are nine different attack categories included in the 2.54 million
network packets that make up this dataset. This dataset shows severe class imbalances,
with total attack traffic making up only 12.65% of the dataset, while regular traffic makes
up 87.35% of the overall dataset. Table 4 details the data distribution for every class.

Table 4. UNSW-NB15 data samples of each class.

Class Training Set Size Testing Set Size

Normal 1,553,132 443,755

Generic 150,836 43,097

Dos 11,449 3269

Fuzzers 16,972 4849

Backdrops 1630 466

Shellcode 1057 303

Worms 122 35

Exploits 31,167 8906

Analysis 1874 535

Reconnaissance 9791 2797
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When compared to other sorts of samples, the samples for the categories of backdoors,
worms shell code, and analysis are substantially lesser. In particular, worms attacks make
up only 130 of the training set’s total attacks and represent 0.07% of it.

The ratio of samples of the normal type to samples of the worm attack type across the
entire data set is 534:1. Less than 1% of the attack samples for backdoors and shell code are
presented. The class distribution of the UNSW-NB15 dataset is shown in Figure 4. Table 5
represents the features of the UNSW-NB15 dataset.
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Table 5. Features of the UNSW-NB15 dataset.

No Feature No Feature No Feature

1 rate 16 loss 31 Response_body_ien

2 dur 17 synack 32 Ct_src_itm

3 dpkts 18 swin 33 ackdat

4 Ct_src_dst 19 Sjit 34 State

5 dwin 20 Ct_dst_sport_ltm 35 Ct_src_dport_ltm

6 spkts 21 smean 36 djit

7 proto 22 Ct_flw_http_mthd 37 sbytes

8 Ct_dst_src_ltm 23 Ct_srv_src 38 dtrcpb

9 Sttl 24 dbytes 39 Is_sm_ips_ports

10 Attack_cat 25 dinpkt 40 stcpb

11 Is_ftp_login 26 sinpkt 41 Trans_depth

12 dttl 27 Ct_state_ttl 42 service

13 sloss 28 tcprtt 43 Ct_ftp_cmd

14 dload 29 dmean

15 sload 30 Ct_dst_ltm
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CICIDS2017 dataset: There are 2,830,473 samples of network traffic in the dataset, of
which benign traffic makes up 80.30% and attack traffic represents 19.70%. There is one
normal class and 14 assault types. The assault types include the most prevalent attack types,
like port scan, DDoS, web attacks, botnet, DoS, etc. The last column of the dataset, which
contains the multiclass label, contains 84 features that were extracted from the generated
network traffic. Table 6 provides the data distribution for each class.

Table 6. CICIDS2017 data samples of each class.

Class Training Set Size Testing Set Size
BENIGN 1,591,167 454,620
Dos Hulk 161,751 46,215
Port Scan 111,251 31,786

XSS 457 130
Infiltration 26 7

DDoS 89,618 25,606
DoS Golden Eye 7205 2059
DoS slow loris 4057 1159

FTP 5516 1588
Brute force 1055 301

SSH 4128 1179
DoS slow http test 3849 1100

Bot 1376 393
MSSQL 15 4

Heart bleed 8 2

The amount of samples from regular traffic is substantially higher than the other
categories, and it makes up 80.3% of this data set. DoS Hulk, one of the attack types with
the most samples, barely makes up 8.16% of the total data set.

The percentages of web attacks, bots, and infiltration in the total data set are 0.08%,
0.07%, and 0.001%, respectively. The lowest amount of samples is for heart bleed. Table 7
and Figure 5 represent the features of the CICIDS2017 dataset.
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Table 7. Features of the CICIDS2017 dataset.

No Feature No Feature No Feature

1 Total Length of Bwd Packets 25 Forward IAT Std 49 Bwd IAT Max

2 Init_Win_bytes_forward 26 Bwd Packets Length Max 50 Forward Packets Length Min

3 protocol 27 Forward Packets Length Std 51 Fwd IAT Max

4 Subflow Forward Packets 28 Backward IAT Total 52 Fwd IAT Min

5 Forward Header Length 29 Forward Header Length1 53 Average Bwd Segment Size
Fwd Packets/s

6 ECE Flag Counts 30 Backward IAT Std 54 Bwd IAT Mean

7 Subflow Fwd Bytes 31 Total backward packets 55 Flow duration

8 Source port 32 Backward IAT Min 56 Total Length of forwarding
Packets

9 Subflow Bwd Bytes 33 Forward PSH Flags 57 Subflow Bwd Packets

10 Down/Up Ratio 34 Total fwd packets 58 Fwd Packet Length Max

11 Average Packet Size 35 Bwd Header Length 59 Destination port

12 Avg Fwd Segment Size 36 Forward Packet Length Mean 60 RST Flag Count

13 Label 37 SYN Flag Counts 61 Forward IAT mean

14 Idle Min 38 Active Mean 62 Backward Packet Length Std

15 Packet Length Variance 39 PSH Flag Counts 63 Min Packet Length

16 min_seg_size_fwd 40 Flow IAT Std 64 Flow IAT Max

17 FIN Flag Counts 41 Backward Packet Length Mean 65 Active Max

18 URG Flag Counts 42 Packet Length Std 66 Max Packet Length

19 Acknowledge Flag Count 43 Flow Bytes/s 67 Flow Packets/s

20 Packet Length Mean 44 Backward Packets/s 68 Active Min

21 Active Std 45 Idle Mean 69 Forward IAT Total

22 Backward Packet Length Min 46 Idle Max 70 Flow IAT Min

23 Init_Win_bytes_bwd 47 Flow IAT Mean

24 act_data_pkt_fwd 48 Idle Std

4.3. Evaluation Metrics

The efficiency of the proposed method is evaluated in this research using accuracy (A).
In addition to false positive rates (FPR), accuracy, and false positive rates (TPR), recall and
precision are also discussed. In the subject of NIDS detection research, these indicators are
frequently employed. The calculation formula is presented below. While true positive (TP)
denotes the Intruder’s proper classification, false positive (FP) refers to the misidentification
of a legitimate user as an unauthorized user. True negative (NP) denotes an accurately
classified average user. False negative (FN) refers to a situation in which the intruder is
mistakenly categorized as a regular user.

The percentage of all correctly classified is measured by accuracy.

Accuracy =
TP + TN

TP + FN + TN + FP
(24)

The true positive rate (TPR) stands for the proportion of records properly detected
over all records with anomalies, which is similar to the detection rate (DR).

TPR =
TP

TP + FN
(25)
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The false positive rate (FPR) is the division of wrongly rejected records over all normal
records. The following definitions apply to the evaluation metrics:

FPR =
FP

TN + FP
(26)

Precision measures the percentage of actual attack records versus expected attack records.

precision =
TP

TP + FP
(27)

The percentage of authentic attack samples that were initially detected as attacks in
the data set is known as the detection rate (recall rate).

recall =
TP

FN + TP
(28)

As a derived effectiveness metric, the F1-score calculates the harmonic mean of preci-
sion and recall.

F1− Score =
2 ∗ precision ∗ recall

precision + recall
(29)

4.4. Performance Evaluation of the UNSW-NB15 Dataset

Several investigations on the UNSW-NB15 dataset were done to assess the efficacy
of the proposed strategy. Table 8 shows the multi-class categorization results of the pro-
posed technique.

Table 8. Multi-class classification of the proposed approach on the UNSW-NB15 dataset.

Attack Types Precision F1-Score Accuracy Recall

Normal 99.64 99.71 99.76 99.56

Analysis 99.43 99 99.24 99.77

Backdoors 99 99.39 99.12 99.63

DoS 99.25 99.17 99 99.20

Exploits 98.76 98.16 99.13 98.84

Fuzzers 98.88 99.47 99.72 99

Generic 99.35 99.09 99.23 99.14

Reconnaissance 99.03 99.23 99.05 99.32

Shellcode 99.45 99.73 99.81 99.44

Worms 99.14 99 99.16 99.29

Table 8 shows that the suggested approach outperforms all other attacks on the
CICIDS2019 dataset. All the classes attain above 99% accuracy for all the classes. Specifically,
the proposed approach classifies normal, fuzzers, and shellcode with 99.76%, 99.72%, and
99.81% accuracy. Compared to all attacks, the classification performance on the proposed
approach of DoS average 99% accuracy. These values are the best. However, compared
to all other classes, these values are very low. The graphical representation of this table is
represented in Figure 6.
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4.5. Performance Evaluation on the CICIDS2017 Dataset

Several experiments are carried out using the CICIDS2017 dataset to determine the
effectiveness of the suggested approach. The multi-class classification result of our approach
is given in Table 9.

Table 9. Multi-class classification of the proposed approach on the CICIDS2019 dataset.

Attack Types Precision Accuracy F1-Score Recall

Normal 99.75 99.82 99.88 99.89

DNS 99.54 99.39 99.31 99.47

NTP 99.67 99.51 99.24 99.14

NetBIOS 99.47 99.65 98.86 99.71

SYN 99.44 99.78 99.08 99.85

MSSQL 98.37 98.79 98.92 98.61

UDP 99.36 99.78 99.45 99.34

LDAP 99.24 99.48 99 99.28

SNMP 98.95 98.78 99.02 98.92

UDP-LAG 99.05 98.59 98.97 98.98

From Table 8, it is observed that the proposed approach’s multi-classification perfor-
mance is superior and achieves better values for all the attack classes. All the classes attain
above 99% accuracy for all the classes. Particularly, the normal, SYN, and UDP classes
attain superior results with 99.82%, 99.78%, and 99.78% accuracy, respectively. Moreover,
the classification performance on other attack types also provides the best performance.
Compared to all the classes, MSSQL detection performance is average with 98.79% accuracy,
98.37% precision, 98.61% recall, and 98.92% f1-score. The graphical representation of Table 8
is shown in Figure 7.
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4.6. Comparison of CICIDS-2017 and UNSW-NB15 Datasets with Various Approaches

CICIDS-2017 and UNSW-NB15 datasets’ performances can be compared with the
existing approaches. The existing approaches like DBN and RBN are compared with the
proposed approach.

Table 10 compares the performance of the proposed work to that of other cutting-
edge approaches tested on the CICIDS2019 and UNSW-NB15 datasets. Based on the table,
the proposed approach-based IDS model achieves the highest results in terms of recall,
accuracy, F1-Score, and precision.

Table 10. Comparison of the test results with various approaches.

Dataset Approaches Accuracy TPR FPR

CICIDS-2017

DBN 97.45 95.68 0.85

RNN 96.08 94.39 0.92

Proposed 98.96 96.13 0.76

UNSW-NB15

DBN 92.36 94.16 1.75

RNN 95.36 92.42 3.96

Proposed 98.02 95.77 1.15

Figure 8 represents the graphical representation of accuracy and TPR on the CICIDS-
2017 dataset. When the differentiation can be made with the existing techniques, our
proposed approach yields greater performance.

Figure 9 depicts the effectiveness of the suggested UNSW-NB15 dataset technique
versus the existing one. When compared to existing strategies, our proposed strategy
outperforms them.
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When the comparison can be made with the existing techniques, our proposed ap-
proach yields greater performance. The FPR metrics performances are compared and
represented in Figure 10.
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Table 11 shows the comparative performance of the proposed approach with the
existing one. The existing approaches like Adaboost, CNN, LSTM, MLP, RF, and LuNet
are compared. When compared with existing approaches, our proposed approach yields
greater performance. Figures 11 and 12 show a comparison of existing approaches with the
proposed ones.

Table 11. Differentiation of the proposed approach with various existing approaches.

Approaches Accuracy Detection Rate False Alarm Rate

Adaboost 73.19% 91.13% 22.11%

CNN 82.13% 92.28% 3.84%

LSTM 87.90% 92.76% 3.63%

MLP 88.64% 96.74% 3.66%

RF 93.67% 92.24% 3.84%

LuNet 95.74% 97.43% 2.89%

Proposed 98.97% 99.02% 1.50%
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The existing approaches, such as LSTM, CNN, RNN-ABC, HCRNNIDS, and ABC-
BWO-CONV-LSTM, are differentiated from the proposed method. When differentiating
with accuracy metrics, the proposed approach achieves 98.97% accuracy, LSTM achieves
94.73% accuracy, CNN achieves 93.8%, RNN-ABC achieves 96.89%, HCRNNIDS achieves
94.58%, and ABC-BWO-CONV-LSTM achieves 97.03%. While analyzing the performance
of accuracy metrics, the proposed method yields the best solution. Then a comparison can
be made in precision metrics, and the proposed method yields the best solution, which
is 99.06%. The second greater solution presents in ABC-BWO-CONV-LSTM. Similarly,
in recall and F1-score, the proposed approach achieves the best outcome. Performance
evaluation with the existing approaches is represented in Table 12.

Table 12. Performance evaluation with existing approaches.

Approaches Accuracy
(%)

Precision
(%) Recall (%) F1-Score

(%)
FPR
(%)

FNR
(%)

LSTM 94.73 91.09 92.55 93.3 11.67 7.54

CNN 93.8 97.58 93.5 92.7 8.89 8.67

RNN-ABC 96.89 95.12 92.57 97.29 9.72 6.67

HCRNNIDS 94.58 93.47 93.65 97.98 8.67 5.98

ABC-BWO-
CONV-LSTM 97.03 98.14 95.78 99.67 5.76 4.8

Proposed 98.97 99.06 98.17 99.73 5.02 3.93

When comparing FPR and FNR metrics performance, the proposed approach achieves
a greater solution.

Figures 13 and 14 show the overall performance comparison. Furthermore, a pair-wise
t-test was conducted, and the findings confirmed that the proposed technique was statisti-
cally significantly distinct from the existing strategies. However, our proposed ensemble
model generated a high accuracy of 98.97, a detection rate of 0.989, and a low FNR of 3.93.
Additionally, pair-wise t-test statistics of 0.0224 were compared to the existing method.
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4.7. Data Imbalance Comparison

The influence of data imbalance on the evaluation criteria of the classifier for both
datasets is shown in Figure 15. This graph makes it obvious that using the data augmenta-
tion strategy improves classifier performance. In CICIDS2017dataset, the classifier achieves
98.96% accuracy with the IGAN-based imbalance technique. Without IGAN, it achieves
only 95.13%. Similarly, the classifier attains 98.02% accuracy for the UNSW-NB15 dataset
with the use of data augmentation techniques. The number of training samples generated
by this technique is significantly more than training samples without data imbalance.
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The same set of training samples is used for every epoch when there is no data
augmentation; when there is data imbalance, various sets of training samples are produced
for every epoch. As a result, the suggested classifier performs better and achieves higher
accuracy in both datasets using the IGAN data imbalance strategy.
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4.8. Evaluation of Training and Testing Set

Figures 16 and 17 depict a graph of the IDS’s categorization accuracy and loss value as
the quantity of iteration steps increases. The graphic shows that the strategy described in
this paper has a good convergence impact. We divided the dataset into two stages: training
and testing. For this investigation, we generated 75% of the training data and 25% of the
testing data. The suggested technique is trained for 200 epochs using the processed training
set during the training phase. The learning rate has been set to 0.1.

Sensors 2023, 23, x FOR PEER REVIEW 23 of 26 
 

 

 
Figure 15. Analysis of data imbalance technique. 

The same set of training samples is used for every epoch when there is no data aug-
mentation; when there is data imbalance, various sets of training samples are produced 
for every epoch. As a result, the suggested classifier performs better and achieves higher 
accuracy in both datasets using the IGAN data imbalance strategy. 

4.8. Evaluation of Training and Testing Set 
Figures 16 and 17 depict a graph of the IDS’s categorization accuracy and loss value 

as the quantity of iteration steps increases. The graphic shows that the strategy described 
in this paper has a good convergence impact. We divided the dataset into two stages: 
training and testing. For this investigation, we generated 75% of the training data and 25% 
of the testing data. The suggested technique is trained for 200 epochs using the processed 
training set during the training phase. The learning rate has been set to 0.1. 

  
(a) (b) 

Figure 16. (a) Testing and training accuracy, (b) testing and training loss for CICIDS2019 dataset. Figure 16. (a) Testing and training accuracy, (b) testing and training loss for CICIDS2019 dataset.

Sensors 2023, 23, x FOR PEER REVIEW 24 of 26 
 

 

  
(a) (b) 

Figure 17. (a) Testing and training accuracy, (b) testing and training loss for UNSW-NB15 dataset. 

This portion explores the details of the analytical outcomes employing the proposed 
approach. Dataset description, preprocessing, handling data imbalance, classification 
method, and results in the analysis are the five processes in this research. An ensemble of 
LeNet 5 and LSTM-based approaches are utilized to classify the attack types. In UNSW-
NB15 and CICIDS 2017 datasets, some attacks contain minority samples that lead to an 
imbalance problem that can affect the proposed method’s classification effectiveness. To 
tackle the class imbalance problem, we introduce the IGAN method. It increases the mi-
nority samples. 

After that, we classify the attacks with the help of LeNet 5 and LSTM. The batch size, 
momentum, learning rate, and weight decay are 1, 0.9, 0.03, and 0.001, respectively. The 
initial learning rate is 0.01. The learning rate in the ReLu layer is saturated. Because the 
network might be under- or over-fitted, the epoch count is an important training param-
eter. For this dataset, we trained the network for 200 epochs. The proposed model’s train-
ing and testing accuracy vary, and it ranges from 0.98 to 0.99, and loss values range from 
0.001 to 0.004. 

4.9. Case Study 
In this example, we show how an attacker can change normal packets so that the 

NIDS considers their security concerns. As a result, the secured service will reject all ordi-
nary packets, resulting in a huge number of unexpected FPs. 
(a). Experimental setup and configuration 

For the camera surveillance scenario, we use the UNSW-NB15 and CICIDS2017 da-
tasets, which total 5.37 million packets. In section 4.1, we take a look at the same setup 
function. The first half of the packets are employed to train the proposed IGAN method, 
and the remainder of the packets are utilized to train the Ensemble approach. T = 0.04 is 
chosen to yield the best results. 
(b). Results 

The main aim of these assaults is to disrupt regular packets to such an extent that the 
yield of the proposed detection mechanism deviates significantly from distributions, 
prompting the NIDS to interpret them as malicious packets. To develop adversarial per-
turbations, the attacker can continue the attack technique on normal data. The extractor 
component first assesses 10 vectors picked at random from the usual traffic stream. To 
ascertain which key elements have the most influence on the score value, these properties 
are intimately connected to the timestamp property. The attacker can then modify the time 
interval among packets. Drop UDP packets at random with a likelihood of p to achieve 
this. The sum of the computational gap among two packets is then converted to (1/1 + p) 
t. We take into account the following dropping rates: p = {0.1, 0.3, 0.5, and 0.7}. Packets are 
discarded among index 2 million and 1.8 million. The threshold T = 0.04, which yields the 
best false positive rate and false negative rate under normal conditions. We see that our 

Figure 17. (a) Testing and training accuracy, (b) testing and training loss for UNSW-NB15 dataset.

This portion explores the details of the analytical outcomes employing the proposed
approach. Dataset description, preprocessing, handling data imbalance, classification
method, and results in the analysis are the five processes in this research. An ensemble of
LeNet 5 and LSTM-based approaches are utilized to classify the attack types. In UNSW-
NB15 and CICIDS 2017 datasets, some attacks contain minority samples that lead to an
imbalance problem that can affect the proposed method’s classification effectiveness. To
tackle the class imbalance problem, we introduce the IGAN method. It increases the
minority samples.

After that, we classify the attacks with the help of LeNet 5 and LSTM. The batch size,
momentum, learning rate, and weight decay are 1, 0.9, 0.03, and 0.001, respectively. The
initial learning rate is 0.01. The learning rate in the ReLu layer is saturated. Because the
network might be under- or over-fitted, the epoch count is an important training parameter.
For this dataset, we trained the network for 200 epochs. The proposed model’s training
and testing accuracy vary, and it ranges from 0.98 to 0.99, and loss values range from 0.001
to 0.004.
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4.9. Case Study

In this example, we show how an attacker can change normal packets so that the NIDS
considers their security concerns. As a result, the secured service will reject all ordinary
packets, resulting in a huge number of unexpected FPs.

(a) Experimental setup and configuration

For the camera surveillance scenario, we use the UNSW-NB15 and CICIDS2017
datasets, which total 5.37 million packets. In Section 4.1, we take a look at the same
setup function. The first half of the packets are employed to train the proposed IGAN
method, and the remainder of the packets are utilized to train the Ensemble approach.
T = 0.04 is chosen to yield the best results.

(b) Results

The main aim of these assaults is to disrupt regular packets to such an extent that
the yield of the proposed detection mechanism deviates significantly from distributions,
prompting the NIDS to interpret them as malicious packets. To develop adversarial per-
turbations, the attacker can continue the attack technique on normal data. The extractor
component first assesses 10 vectors picked at random from the usual traffic stream. To
ascertain which key elements have the most influence on the score value, these properties
are intimately connected to the timestamp property. The attacker can then modify the time
interval among packets. Drop UDP packets at random with a likelihood of p to achieve
this. The sum of the computational gap among two packets is then converted to (1/1 + p) t.
We take into account the following dropping rates: p = {0.1, 0.3, 0.5, and 0.7}. Packets are
discarded among index 2 million and 1.8 million. The threshold T = 0.04, which yields
the best false positive rate and false negative rate under normal conditions. We see that
our assault raises the RMSE scores during the packet loss period. While p = 0.3, many
regular packets with RMSE values more than the threshold are blacklisted as malignant.
When the detection threshold is lower, it is simpler to carry such an attack with a lower
packet-dropping rate.

5. Conclusions

One of the worst issues in all communication networks is NIDS. This study examined
the present restrictions and suggested a hybrid IDS approach combining Lenet 5 and
LSTM. This article focuses on using the IGAN technique to address the issue of class
imbalance in the data set, in contrast to the majority of existing NIDS. Additionally, the
hybrid LSTM ensemble model approach is employed to address the issue of complicated
models’ extended training and detection times. The outcome of the evaluation using the
UNSW-NB15 and CICIDS2017 data sets demonstrates that the proposed NIDS developed
in the study has a high detection accuracy, with test sets of 98.96% and 98.02%, respectively.
It also achieves the best TPR and FPR in both datasets. In the UNSW-NB15 dataset, the TPR
is 95.77% and the FPR is 1.15%. Similarly, in the CICIDS2017 data sets, the TPR is 96.13%
and the FPR is 0.76%. The training and detection times of this method are relatively fast
when compared to other algorithms. It enhances accuracy and eliminates the FPR and FNR.
The proposed approach yield overall 99.06% precision, 98.17% recall, 99.73% F1-Score, and
98.97% accuracy.

Due to the poor error tolerance of IDSs, the UNSW-NB15 data set only comprises a
few different types of attacks. In the future, we will integrate additional data sets to cover a
wider range of attack types. Last but not least, due to a lack of processing power, testing
deeper neural networks with more residual and regular blocks is not possible. As a result,
we will carry out more trials in the future with more potent resources and might produce
better findings when it comes to identifying network threats. It is planned to integrate
various hybrid deep learning techniques in the future and analyze the outcomes. Further-
more, various methods for data balancing will be investigated. Furthermore, the proposed
method is intended to be applied instantly to network traffic in a big data environment.
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