
Citation: Rotaeche, R.; Ballesteros, A.;

Proenza, J. Speeding Task Allocation

Search for Reconfigurations in

Adaptive Distributed Embedded

Systems Using Deep Reinforcement

Learning. Sensors 2023, 23, 548.

https://doi.org/10.3390/s23010548

Academic Editor: Federico Tramarin

Received: 24 October 2022

Revised: 12 December 2022

Accepted: 22 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Speeding Task Allocation Search for Reconfigurations in
Adaptive Distributed Embedded Systems Using Deep
Reinforcement Learning
Ramón Rotaeche , Alberto Ballesteros * and Julián Proenza

Departament de Matemàtiques i Informàtica, Universitat Illes Balears, 07122 Palma de Mallorca, Spain
* Correspondence: a.ballesteros@uib.es

Abstract: A Critical Adaptive Distributed Embedded System (CADES) is a group of interconnected
nodes that must carry out a set of tasks to achieve a common goal, while fulfilling several requirements
associated with their critical (e.g., hard real-time requirements) and adaptive nature. In these systems,
a key challenge is to solve, in a timely manner, the combinatorial optimization problem involved
in finding the best way to allocate the tasks to the available nodes (i.e., the task allocation) taking
into account aspects such as the computational costs of the tasks and the computational capacity of
the nodes. This problem is not trivial and there is no known polynomial time algorithm to find the
optimal solution. Several studies have proposed Deep Reinforcement Learning (DRL) approaches
to solve combinatorial optimization problems and, in this work, we explore the application of such
approaches to the task allocation problem in CADESs. We first discuss the potential advantages of
using a DRL-based approach over several heuristic-based approaches to allocate tasks in CADESs and
we then demonstrate how a DRL-based approach can achieve similar results for the best performing
heuristic in terms of optimality of the allocation, while requiring less time to generate such allocation.

Keywords: Deep Reinforcement Learning; Distributed Embedded Systems; combinatorial optimization;
Machine Learning

1. Introduction

A Distributed Embedded System (DES) is a combination of hardware and software,
where the hardware is a set of interconnected nodes and the software is typically imple-
mented as a set of computational elements, called tasks, which are executed in the nodes
in order to achieve some common goal. DESs play a key role and are almost ubiquitous
in many engineering fields, such as avionics, automotive industry, healthcare, energy
management or telecommunications.

DESs are used in real-world applications and some of them have real-time (RT) and
dependability requirements. We refer to DESs that have demanding RT and dependability
requirements (i.e., strict real-time response and very high dependability) as critical DESs.
A system is said to have RT requirements if its correct operation depends not only on its
ability to provide a correct response, but also on its ability to provide such a response before
some deadline. On the other hand, a system is said to have dependability requirements [1] if
it is required to have certain attributes that provide enough trustworthiness in the system’s
ability to provide a correct service.

Nowadays there is strong interest in using critical DESs in changing operational contexts.
By operational context, we mean all the relevant aspects involved in the operation of
the system that are susceptible to change. As seen in Figure 1, the operational context
includes the functional requirements (i.e., the fundamental functionalities the system
must carry out) and the non-functional requirements (i.e., the RT guarantees and the
dependability guarantees). All these requirements are referred to as operational requirements.
Additionally, the operational context also considers the operational conditions, that is, the

Sensors 2023, 23, 548. https://doi.org/10.3390/s23010548 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6304-4703
https://orcid.org/0000-0002-7194-213X
https://orcid.org/0000-0001-7238-0557
https://doi.org/10.3390/s23010548
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010548?type=check_update&version=1

Sensors 2023, 23, 548 2 of 23

circumstances under which the system has to operate. These are the state of the environment
and the state of the system itself which could change, for example, due to faults in its
components. For a critical DES to operate efficiently and effectively under unpredictable
changes in the operational context, it needs to be adaptive [2]. Adaptivity, in the context of
a Critical Adaptive Distributed Embedded System, implies that the system must be able
to dynamically assign its computing and communication resources while in operation, in
response these kind of changes.

Operational
context

Operational
requirements

{
Functional requirements
Non-functional requirements

Operational
conditions

{
Status of the environment
Status of the system

Figure 1. Components of the operational context.

A Critical Adaptive Distributed Embedded System (CADES) includes a software
component we call Node Manager (NM) that continuously monitors the operational context
and, if a change jeopardizes the ability of the system to operate correctly, finds and applies
a new proper system configuration. A system configuration (or configuration for short)
determines the allocation of tasks and messages to nodes and network links, respectively,
as well as all their RT and reliability attributes. On the one hand, RT tasks and messages
have schedule-related attributes like periods, deadlines or priority levels. On the other
hand, if the tasks and messages have stringent dependability requirements, their level
of replication must be defined. Replication consists in executing redundantly (multiple
times) a given task or a given communication in order to tolerate faults affecting some of
the replicas. Finally, note that the longer it takes to reconfigure the system, the longer the
system is not providing the expected services and thus the reconfiguration time must be
short. Moreover, since tasks in CADES can have RT requirements, it is desirable that the
reconfiguration is also carried out in a timely manner.

The first and most important aspect in a configuration is finding a task allocation in
which the RT requirements of all the tasks are met. This is because the rest of the aspects,
such as the communications or the replication of the tasks, explicitly depend on where
each task is placed. An allocation of RT tasks must guarantee, in each node, that the tasks
being executed meet their deadlines. That is, the NM must not only distribute the tasks, but
perform a schedulability analysis in each of the nodes. In this regard, we recommend using
a utilization-based schedulability test. As further explained in Section 2.4, in [3] the authors
demonstrated that it is possible to guarantee that the tasks being executed in a node are
schedulable if the sum of their utilization of the CPU is below a predefined threshold. Note
that the utilization of a task can be easily calculated from its period and execution time.
This approach makes it possible for the NM to validate the RT response of a configuration
in a short time, contrary to typical schedulability tests which operate offline.

The problem can, then, be formulated as follows. Given the set T = {u1, u2, . . . , un},
where ui is the utilization of task i and a set of m nodes, each one with the same capacity,
assign all the tasks to the nodes so that, for each node, the sum of the utilizations of the
tasks being executed in said node does not surpass a certain predefined threshold. Note
that here we assume that all the nodes are identical, they all have the same capacity.

There are many criteria that can be followed to decide on the task allocation. However,
we believe that assigning all the tasks to the minimum number of nodes is preferable. The
main advantage of this approach is that it minimizes the number of nodes the system must
be provisioned with to correctly operate. Consequently, it reduces the cost, weight, size and
energy consumption, which is desirable in an embedded system. Later, in Section 2.3, we
list and discuss all the advantages of this approach. If this criterion is selected, the problem
is then equivalent to the well known bin packing problem (BPP) [4,5]. If we formulate the
problem in terms of the BPP, tasks are items, utilizations are sizes and nodes are bins.

Sensors 2023, 23, 548 3 of 23

BPP is an NP-hard combinational optimization problem, meaning that there is no
known polynomial time algorithm to find the optimal solution [6]. These types of problems
are typically solved using approximation algorithms, which provide near-optimal solutions
with a low time complexity. These algorithms can be classified into online and offline.
Online algorithms sequentially assign items to bins without considering any item that
has not been packet yet. That is, the bin to which item i is assigned only depends on the
items [1, i]. Offline algorithms, in contrast, consider the complete list of items to perform
the assignment. The main advantages of online algorithms are that they do not require
a previous knowledge of the list of items and that they require less computation time. In
contrast, offline algorithms provide better approximations.

Later, in Section 5.1 we explain some of the most utilized online and offline approxima-
tion algorithms. In particular, first-fit-decreasing (FFD) is a well known offline algorithm
used as the reference in many BBP-related works [4,7–10]. This is because FFD provides
solutions very close to the optimal in a relatively short execution time. Specifically, FFD
produces, in the worst case, a solution with a number of bins equal to 11

9 OPT(L) + 6
9 (with

OPT(L) being the minimum number of bins necessary to pack items in list L) [11] with
a time complexity of O(|L|log(|L|)) (with |L| being the number of items in list L).

Note, however, that in an adaptive system it is desirable that the new configuration
is determined as soon as possible. This is because, when a change in the operational
context occurs, the system stops providing its intended service until the new configuration
is applied. Moreover, if we think about the dependability, if a change in the operational
context jeopardizes the ability of the system to provide the required fault tolerance, during
this time, the system is more vulnerable to faults.

Several studies have shown that Machine Learning (ML), in general, and Deep Re-
inforcement Learning (DRL), in particular, can outperform other approaches in solving
combinational problems like the one previously presented. The goal of this work is to
demonstrate that DRL techniques can be used to find new system configurations in CADESs
and provide good results in terms of optimality while requiring less time to generate such
results. For this, we design and implement a DRL-based approach capable of allocating
tasks to nodes in a CADES and analyze the benefits of such an approach both qualitatively
and quantitatively. In order to achieve such an objective, we executed the following tasks:

1. Define the task allocation problem to solve (e.g., allocation criteria, assumptions made);
2. Select the best ML-based approach to solve the problem;
3. Analyze the potential benefits of the selected approach qualitatively;
4. Define and implement the selected approach;
5. Execute the experiments to quantitatively analyze the benefits of our approach in

comparison with typical approaches used in this kind of problem.

In a previous four-page work-in-progress [12], we identified the potential benefits
of using DRL to solve combinational optimization problems like the allocation of tasks
in CADES. Specifically, we designed, implemented and tested a preliminary version of
a DRL-based solution to allocate tasks in a CADES. In the present paper, we extend the
work carried out:

• We give a detailed explanation of the complete problem of finding configurations in
CADES and, then, of the specific aspects of this problem that we cover here.

• We give a detailed explanation of the assumptions made to ensure that the solutions
we provide meet the RT requirements.

• We give a detailed description and motivation of the specific Machine Learning
techniques used in our DRL model.

• We give a detailed description of the inputs, outputs, architecture and training process
used to build and train our DRL model.

• We modify the design to introduce a new manner of assigning tasks to nodes.
• We include new experiments to test with a bigger and variable-size sets of tasks, as

well as to measure the response time in a more comprehensive manner.

Sensors 2023, 23, 548 4 of 23

• We discuss in more detail the further work suggestions.

The remainder of this document is structured as follows. In the next section, we specify
the problem to be solved, including the necessary assumptions and simplifications. In
Section 3 we justify the use of a DRL-based approach and introduce the theory behind DRL
and the specific techniques employed in this work. In Section 4, we present our DRL-based
solution. In Section 5, we show the experiments we have carried out together with their
results. Additionally we compare these results with those obtained for heuristic-based
solutions. In Section 6 we discuss related work. Finally, in Section 7, we discuss the
conclusions and future work.

The remaining sections assume some basic understanding of ML concepts and, in
particular, of the design and training of Deep Neural Networks (DNNs).

2. Problem Statement

As with many engineering and mathematical problems, a reasonable approach to
solving a complex issue is to break it down into smaller and simpler parts on which to
gradually build a solution. In line with this principle, we decided to narrow the scope
of this work by simplifying the concepts of system configuration and operational context
introduced in the previous section.

2.1. System Configuration

In this work, we focus on a key aspect of a system configuration: the task allocation.
Given a set of tasks that must be executed, a task allocation can be defined as the distribution
of such tasks into the nodes of the system. More formally, it is a many-to-one binary relation
between the set of tasks and the set of nodes available.

We leave aside other elements of the system configuration such as the task replication
or the communications between nodes. Therefore, in the rest of this document, we use the
term “task allocation” rather than “configuration” to emphasize that we are only solving
this aspect of the system configuration. Similarly, we refer to “task reallocation” rather than
“reconfiguration” when talking about the specific act of finding a new task allocation after
changes in the operational requirements.

It must be noted that the ability to reallocate tasks not only makes the system more
adaptive, but also contributes to improving its dependability. This is because such realloca-
tion ability allows the system to recover tasks, meaning that it can tolerate faults affecting
tasks or nodes.

2.2. Modelling Tasks and Nodes

As discussed in the introduction, Adaptive Distributed Embedded Systems must be
able to operate under unpredictable dynamic operational contexts, which encompass both
the operational requirements and the operational conditions.

The operational requirements considered in our problem are the set of tasks that
must be allocated. We assign a computational cost to each task, which is a scalar number
representing the quantity of resources that each tasks needs in order to be properly executed.

The operational conditions considered in our problem are the resources available to
execute tasks in each node, which we refer to as the computational capacity of each node.
A node’s computational capacity determines the amount of available resources. The tasks
allocated to a given node cannot add up to a total computational cost higher than the node’s
capacity. To simplify, we consider that the computational capacity is constant for all the
nodes and throughout the entire duration of the system operation.

The reason for modelling the system in terms of computational costs and computa-
tional capacities is because, as will be explained in Section 2.4, we can apply a utilization-
based test to check the RT response of the system. Specifically, if the Node Manager (NM)
is able to allocate all the tasks to the available nodes so that no node receives a subset of
tasks with an aggregated computational cost higher than its computational capacity, we

Sensors 2023, 23, 548 5 of 23

can guarantee that the tasks will meet their deadlines. That is an easy and fast manner of
checking the RT response of a given task allocation.

Finally, we assume that a change in the operational requirements triggers a change in
the list of tasks to be executed. This is in contrast to a non-adaptive system where the NM
would only be programmed to deal with some specific sets of tasks defined a priori.

2.3. Task Allocation Criteria

When the set of tasks that must be allocated changes (i.e., when the operational
requirements change) the NM must find a new allocation of tasks. Such allocation could be
chosen based on different criteria. We will model the problem where the NM must find the
task allocation that, for a given set of tasks, the minimum number of nodes is used, which
we will refer as the number of active nodes. See the example in Figure 2: initially, the set of
tasks to be allocated is tasks 1 to 5 (represented in the top half of the picture), but if in a
later step a new task (Task 6 in the picture) needs to be allocated, the new set of tasks that
the NM must allocate is tasks 1 to 6, which triggers a reallocation.

Figure 2. Minimizing the number of active nodes—Illustrative example. A reallocation in order to
keep the number of active nodes at a minimum.

Minimizing the number of nodes is preferred over other criteria for various reasons:

• The system can be designed to include a restricted number of nodes, which reduces
its cost, weight and size.

• At runtime, the number of active nodes is the minimum and, thus, the energy con-
sumed by the nodes is also minimized.

• Concentrating tasks reduces the network traffic as tasks executed in the same node
can exchange messages without using the communication channel. This simplifies the
scheduling of the RT messages.

• From a research point of view, the problem is equivalent to the bin-packing problem,
which means there are multiple algorithms already available that can be compared
with in terms of the performance.

Of course, concentrating tasks in a minimum number of nodes has its own disadvan-
tages (e.g., more challenging scheduling in each of the active nodes, higher severity in the
event of a failure) and therefore it is not our intention to present this allocation criteria as a
sufficient condition for a well designed CADES.

It must be noted that, although we model the search for task allocations that minimizes
the number of nodes as an optimization problem, our system does not need to find the
best possible task allocation (i.e., the optimum). The system can work with just "good" task
allocations. In fact, our proposed approach will find good solutions but is not guaranteed to
find the optimal solution. This is completely expected since, as discussed later, no algorithm
has been found for this problem, other than an exhaustive search, capable of guaranteeing
the finding of the optimal solution for any given set of tasks.

2.4. Assumptions Made

We consider the problem in which all the tasks that are required for a correct operation
of the system can be allocated to the available nodes. Therefore, it is necessary to guarantee

Sensors 2023, 23, 548 6 of 23

the existence of an allocation that includes all the tasks (i.e., no task is left without a node
assigned). This could be enforced in the design of a real system by having a number of
nodes large enough to guarantee a solution given the maximum possible number of tasks
and the possible maximum cost. In a real scenario, this cannot be fully guaranteed because
there is always the possibility of failing nodes, meaning there is always a chance that there
are not enough nodes to execute all tasks. In this work, we will assume that in such a case,
we would have some mechanism by which the system enters in degraded mode, taking
measures such as prioritizing the most critical tasks or stopping replicating some tasks.

An additional condition is required to meet the RT requirements, which is that the
subset of tasks assigned to each node is schedulable. Schedulable means that, given each
task’s computation time and period, it is possible to find a schedule for the node that always
meets the deadlines for said tasks.This requirement could be enforced (for nodes that use
RT operating systems applying rate-monotonic scheduling) by capping each of the nodes’
capacities made available in the allocation process to 69.3% of its actual computational
capacity, since Liu & Layland [3] proved that for any set of n periodic tasks, a schedule exists
if the resulting node’s utilization is below 69.3%. The node’s utilization is the sum of each
task’s utilization, which is defined as the computation time required to execute the given
task in the given node, divided by the task’s period. Therefore, in order to use this theorem
to enforce our schedulability assumption (i.e., that the subset of tasks assigned to each node
is schedulable) in practice, it would require expressing the tasks’ computational cost as the
number of operations required each time the task is executed divided by the task’s period
and expressing the node’s computational capacity as 0.693 multiplied by the number of
operations that the node can execute in a time unit.

2.5. Resource Requirements

Lastly, two requirements related to the task reallocation that are common in CADESs
have been considered: memory requirements and latency. Given that in many systems the
software implementing the NM needs to be deployed in resource-constrained processors
such as microcontroller units (MCU), it is important to develop an algorithm that can be
stored in these devices’ flash memory, which is up to 1MB in industrial settings [13], and that
is able to generate a new task allocation as fast as possible to increase the likelihood that not
only the tasks meet their RT requirements but also that the reconfiguration itself can be done
in a quick manner (although we will not try to establish any strict RT response requirements
for the reconfiguration itself). In our work, we have factored these requirements by ensuring
that our model’s size is below 1MB and by having the inference latency as one of the
dimensions benchmarked in our experiments.

2.6. Summarized Problem Statement

Recapitulating, the actual problem tackled in this work has been the design of a so-
lution capable of allocating tasks to nodes ensuring that, for each node, the sum of the
costs of its assigned tasks does not surpasses is capacity while, at the same time the total
number of active nodes (i.e., nodes that receive at least one task) is minimized. In addition,
special attention will be paid to the memory requirements and time necessary to produce
a solution.

3. Introduction to DRL and Motivation for a DRL-Based Approach

The problem we are trying to solve (as described in the previous section) is an opti-
mization problem, since we want to minimize the number of active nodes. More precisely,
it is a combinatorial optimization problem, which is a type of optimization problem where
the objective is to find the optimal object from a finite set of objects (in our case, the set of
objects would be the set of all possible ways in which the tasks can be allocated and an
object would be a specific mapping between tasks and nodes).

As mentioned in the previous section, our problem is equivalent to the bin-packing
problem [4], which is an NP-optimization problem, meaning that there is no known polyno-

Sensors 2023, 23, 548 7 of 23

mial time algorithm to find the optimal solution [14]. These types of problems are typically
solved using solvers (e.g., [15]) or heuristics. In this work, we wanted to explore alternative
approaches based on ML techniques, which, as detailed later in this section, might present
a number of advantages.

In the rest of the section, we first introduce the concept of Deep Neural Network
(DNN), which is a key component of the discussed Machine Learning approaches. Secondly,
we introduce the concept of supervised ML and discuss why it is not fit for our purpose. We
then introduce the concept of Reinforcement Learning and Deep Reinforcement Learning
(DRL). Lastly, we elaborate on why DRL is the right approach for this problem and reflect
on its suitability to a CADES.

3.1. Deep Neural Networks

As discussed in Section 2, in our problem the input is a set of tasks and the computa-
tional cost of each task, while the output must be some representation of how these tasks
are assigned to the available nodes. We need to learn some way to map our inputs to the
output. Given the high dimensionality of our input–output pairs, we considered Deep
Learning (DL) that makes use of Deep Neural Networks (DNNs) [16] to parameterize the
input–output mapping function.

A deep neural network, given an input x and an output y, is a mapping function
y′ = f (x, θ) that tries to approximate the unknown function f ∗ which maps any possible
set of input–output pairs y = f ∗(x). The symbol θ represents the parameters that define
this mapping function (i.e., the operations that map x to y) and they can be “learnt" using
different ML algorithms. There are many types of DNNs, which differ in the computations
they perform to compute the output based on the input. However, all DNNs have some
things in common; that is precisely what makes them a DNN.

First of all, the input and outputs are always represented as multidimensional arrays
(a.k.a. tensors), with no specific restriction on the number of dimensions. For example,
the output can be a simple scalar (which can be seen as a 1 × 1 array) or a colored image,
which is represented as a three-dimensional array.

Secondly, all the computations of a DNN can be represented as a composition of
functions; each function is referred to as a layer that takes the array output by the previous
layer, performs a mathematical operation and returns a new array. The array taken by the
first layer would be the input and the array returned by the last array would be the output.
This layered representation is the reason we call it a “network”, and they are called “deep”
because they typically chain a large number of layers. See Figure 3.

Figure 3. Schematic view of a Neural Network. Deep Neural Networks (DNNs) are just Neural
Networks with multiple hidden layers.

Lastly (Figure 4), each of these layers typically has several neurons which take each ele-
ment from the input array, multiply it by a scalar and then apply an activation function. The
scalars that multiply the elements of the input array are precisely the learnt parameters θ of

Sensors 2023, 23, 548 8 of 23

a network. The activation function is typically a non-linear transformation (e.g., ReLU [16],
soft-max [16]).

Figure 4. Schematic view of a neuron. Elements from the array returned by the previous layer are
multiplied by a scalar (the parameters θ) and then a non-linear activation function is applied.

3.2. Supervised Machine Learning

The first family of ML techniques that we considered was supervised ML, which
allows one to infer a function (a.k.a. learn a function) that is able to map input data to
an output (a.k.a. estimation or prediction) even if the model has never ‘seen’ those input
data before. That is why it is said that supervised ML models learn to ‘generalize’. In
order to do this, supervised ML techniques require a training dataset with examples of
input–output pairs. However, supervised ML is quite limited for our purposes, because it
requires examples of the optimal task allocation (desired output) for each set of tasks in the
training dataset. There is no known polynomial time algorithm to find the optimal solution
for our problem [14], so generating optimal solutions is complex and time consuming,
especially with large sets of tasks.

3.3. Reinforcement Learning

Once supervised learning was discarded for the reasons described in the previous
section, further research led us to conclude that the right approach for this problem was
Reinforcement Learning (RL). Reinforcement Learning (RL) is a sub-field of Machine
Learning that studies methods for a decision maker, the agent, to learn what actions to
take in a given environment to maximize a numerical value, the reward, accumulated over
time [17]. The RL problem can be formalized using the decision process shown in Figure 5,
where the agent, each time step t, receives the state of environment St and selects an action
At that modifies it. In response to this action, the agent receives a reward Rt and the new
state St+1.

Figure 5. The agent–environment interaction in an RL decision process.

The criteria used by the agent to decide on the action to take is called policy. A policy
maps states to actions, which is typically denoted as π(At | St). Sometimes, in solutions
based on RL the policy is parameterized; that is, the mapping between states and actions
is a parameterized function. Here the objective is to learn the parameters (i.e., learn the
policy) that makes it possible to score the maximum reward. The value of the parameters,
denoted as θ, are updated taking into account the reward obtained in the interactions with
the environment. One way to do this is by using the policy gradient method [17], which is the
technique we used and which we will explain in more detail in the next section.

Sensors 2023, 23, 548 9 of 23

3.4. Deep Reinforcement Learning

One way to parameterize the policy that is followed by the agent is with a DNN, since
a DNN is effectively a parameterized function that takes an input (in this case, the state)
and produces an output (in this case, the action). Using a DNN is particularly useful when
the state space is very large (or infinite), as in our case where the number of different sets
of tasks that the agent can receive is very large (as the number of total tasks can vary as
well as the cost of each task). Given that we use a DNN to parameterize the policy, our
approach falls into the field of Deep Reinforcement Learning (DRL), which is the term used
to refer to the set of RL techniques that make use of DNNs. Note that our approach is only
one of many ways in which DNNs can be used in RL, so the method we will detail later on
is not a comprehensive view of what DRL is.

3.5. Rationale for a DRL Approach

One of the main reasons for DRL being a better approach to our problem is that, as
opposed to supervised ML, the model can learn to take better actions (in our case the
actions would be the task allocation) without actual examples of what the right action is.
The only signal it needs is the reward associated with each action that is undertaken. For
example, in our case and based on the problem statement from the previous section, the
reward would be higher the lower the number of active nodes.

One can see that our problem fits perfectly in the RL framework: the NM (the agent)
has to select among a set of possible task allocations (the actions), based on the tasks cost
and nodes capacity (the state), in order to minimize the number of active nodes (the reward).
In fact, although the study of modern RL falls under the ML umbrella, its “modern fathers”
A. Barto and Richard S. Sutton [17] were highly influenced (as declared by themselves [17])
by previous ideas in the field of adaptive optimal control (e.g., [18]), a field concerned with
controlling unpredictable dynamical systems and which one could see as more closely
related to CADESs.

Lastly, it is worth mentioning that when we first decided to explore the use of DRL to
tackle this problem, although we had some intuitions concerning its potential advantages,
it was driven primarily by the desire to undertake such an academic exercise. However, as
we progressed in our research, we realized that a DRL-based approach, when compared to
solvers and heuristic-based algorithms, could have several advantages that make it a real
alternative for CADESs. Namely:

• There are studies proving that DRL-based solutions are near as good or even better,
than popular heuristics for solving combinatorial optimization problems [19,20].

• The algorithm used to teach the agent can maximize any reward function. Conversely,
when solving a combinatorial optimization problem using solvers or heuristics the
solution is typically specific to the problem statement. This is particularly significant
when the problem involves high-dimensional states, that is, states with a large number
of variables and/or complex reward functions. In these cases, building a solution
based on heuristics can require non-negligible ad hoc work.

• After the DNN has been trained, the inference latency (i.e., the time it takes to produce
a solution) is relatively low. Moreover, compared to many heuristics, it can be lower.
This is because heuristics may require exploring the search space, sort the inputs, etc.
Furthermore, depending on the specific techniques used, the inference latency can
also be bound in time. All of this suggests that a DRL-based approach can be used in
CADESs with real-time requirements.

• Although the training of a DNN-based solution can require a non-negligible amount
of computational power, complex generated models can be deployed on processors
with constrained resources like microcontrollers (MCUs), thanks to Tiny ML [13,21].
Moreover, the concessions carried out to reduce the resource requirements do not
significantly impact the inference accuracy and latency. All of this suggests that
a DRL-based approach can be used in resource-hungry CADESs.

Sensors 2023, 23, 548 10 of 23

4. Problem Formulation and Approach

As discussed in Section 2, in this work we aim at designing a solution capable of
allocating tasks to nodes in a way that, for every node, the sum of the costs of its allocated
tasks does not surpasses its capacity. Moreover, we minimize the total number of active
nodes (i.e., nodes that receive at least one task).

Our task allocation problem maps to the DRL framework discussed in the previous
section as follows:

1. The state is the set of tasks, each of them with a cost, that must be allocated;
2. The environment is the set of nodes available and its capacity;
3. The action is a specific mapping of tasks to nodes;
4. The reward must be some scalar that is inversely proportional to the number of nodes

used (since we want to minimize this number);
5. The policy is a DNN that maps any given state to an action (i.e., any given set of tasks

to a specific allocation of tasks to nodes).

Before jumping into the details in the upcoming subsections, let us discuss the items
listed above, which will help to outline the design decisions that are required to formulate an
approach. These design decisions are then discussed one by one in the upcoming subsections.

If we want our DNN to take a given set of tasks as an input and generate as the output
a specific allocation of those tasks to nodes, the first thing we need is a way to numerically
represent both a set of tasks and an allocation of tasks to nodes. This is what we call the
input–output representation approach and is discussed in Section 4.1.

The second thing we need to define is how the reward is computed, because as
mentioned above, the only real restriction we have is that it needs to be scalar, that is,
inversely proportional to the number of nodes used. This, the reward signal approach, is
what we discuss in Section 4.2.

Third, we need to choose a specific RL technique that can be used to “teach” our policy
to allocate tasks in a way that maximizes the reward. For the sake of clarity, note that
“teaching our policy to allocate tasks in a way that maximizes the reward” is equivalent to
saying “finding the DNN parameters that map inputs to outputs in a way that maximizes
the reward”. The RL approach is discussed in Section 4.3.

Lastly, the DNN has to take the input (the set of tasks) and generate the output (the
allocation of tasks to nodes). As mentioned, the numeric format for the input and the
output is discussed in Section 4.1. However, we also need to define the operations that take
place to compute the output based on the input, which depends on the architecture of the
DNN. This, the DNN’s architecture, is discussed in Section 4.4.

4.1. Input–Output Representations Approach

In our parameterized policy (i.e., our DNN), the input (i.e., the state) is the set of tasks
that must be allocated. We decided to represent it as a sequence S of l tasks, each one with
an associated cost ci, i ∈ [1, L].

We decide to represent a task allocation (i.e., a specific mapping of tasks to nodes)
as follows. Our representation (i.e., the output of the DNN) will be a sequence A that
represents the order in which the tasks in S are allocated to nodes following a given
heuristic H. To represent this allocation order, we define A as a sequence of L integers
ai ∈ [1, L], i ∈ [1, L], where ai indicates the position of the task in the input sequence S. This
representation is better understood with an example, such as the one shown in (Figure 6).

With regards to the heuristic H that we use once we have defined the allocation order
A, we will experiment with two:

• Next-Fit (NF): In this heuristic, tasks are allocated in the first available node until task
ai does not fit. At this point, ai is allocated in the next node, which keeps receiving
tasks until it can no longer handle the current task, and so on.

• First-Fit (FF): In this heuristic, as in NF, tasks are sequentially allocated to the first
available node until a given task does not fit. However, when this happens, if the

Sensors 2023, 23, 548 11 of 23

node is not completely full, the node is not “closed". It is kept “open" for future
allocations. In each allocation step, “open" nodes are sequentially checked until a node
with enough available capacity is found.

Figure 6. Input–output representation example for a set of five tasks and node capacity C = 5, for the
case where the NF allocation heuristic is followed. The set of available tasks is a sequence containing
the cost of each task. Concerning the output of the DNN, the sequence A is the order in which the
tasks are allocated following the NF rule. This is a simple example, but maximizing the occupancy
ratio is an NP-optimization problem, which becomes challenging to solve for large sets of tasks.

Note that what we are doing is using the allocation order sequence A generated by
the DNN to implicitly dictate how tasks are grouped together. We have also considered
other representations for the output. For instance, it would be possible to represent it as the
sequence of indexes of the nodes where each of the tasks is allocated. Note, however, that
this leads to a large equivalence class of solutions and, as stated in [19], the more restricted
the equivalence class for the outputs, the better the results obtained. Moreover, the chosen
representation, when combined with the selected allocation heuristic, guarantees that all
the solutions produced fulfill capacity constraints imposed on the nodes. If the former was
not guaranteed, then the reward function would also need to check for whether there is
any node that exceeds its capacity and return a negative or zero reward.

4.2. Reward Signal Approach

The reward we have chosen to maximize is the average node occupancy ratio (O). This
value can be calculated by determining which are the active nodes (i.e., nodes that contain
at least one task) and, then, averaging their occupancy ratio. The occupancy ratio of a given
node is the sum of the cost of each of its allocated tasks divided by the capacity of the node.
For example, the value of O in Figure 6 is 0.867 which is the mean of 1.0, 0.8 and 0.8.

It is noteworthy that other more direct metrics could also have been chosen. For
instance, the inverse of the number of active nodes. However, the metric we have chosen is
independent of the number of tasks in the input. This makes it possible for the agent to
learn a policy that can be used with inputs having different numbers of tasks.

4.3. RL Method Used

It is not the objective of this work to present and explain all of the techniques and
algorithms that fall under the RL umbrella. We will only explain the method used in
our solution, which is a DRL-based actor-critic policy gradient method. The first reason why
we chose this method over the rest was because it can handle very large (even infinite)
state spaces, which is a requirement in our case (there are many possible sets of tasks).
In addition, this method had shown fast convergence and good results for other types of
combinatorial optimization problems [19].

Sensors 2023, 23, 548 12 of 23

In a DRL-based actor-critic policy gradient method, the policy is parameterized using
a DNN. As mentioned in previous sections, the DNN maps each state to an action and we
denote it by π(A | S, θ). The symbol θ, as is common practice in ML and as explained in
Section 2, represents the parameters of the DNN and stresses the fact that the mapping of
states to actions depends on those parameters.

Before detailing the specific algorithm and formulas, let us explain the training process
at a more conceptual level. Remember that we want to find the parameters θ for the DNN
that maximize the reward. We start with a DNN with random values for θ. Policy gradient
methods rely on running a large number of simulated interactions with the environment.
A simulation starts by generating a random initial sequence of tasks St (the state), we then
use our existing DNN π(A | S, θ) to generate a task allocation A (the action) and then we
calculate the associated reward O. Lastly, the parameters θ of the DNN are then updated
using a formula discussed in next paragraph. Each simulation and parameter update step
is known as a training step.

Intuitively, if A has led to a better reward than the average reward of the current policy
π(A | S, θ), we want to update the parameters θ of the DNN in the “direction" that leads to
more outputs like A. In the formula that we present later in this section, the concept of
“updating parameters in the direction that leads to more outputs like A” is represented
by ∇θ p(π(A | St, θt) = At), which is the gradient with respect to the parameters θ of the
probability of having chosen At. The concept of “better reward than the average reward
that we were getting” is represented by the term (Ot− v̂(St, θ′t+1)), where Ot is the obtained
reward and v̂(St, θ′t+1) is a function that estimates the expected reward that will be obtained
with the current policy and parameters v̂(S, θ′) given the sampled state St‘.

The function v̂(S, θ′) is known as the critic. The critic is a state-value function, meaning
that it takes a given state S and approximates the expected reward that will be obtained
following policy πθ . We use another DNN with parameters θ′ to parameterize the critic.
The critic parameters θ′ are also continuously updated during training. Figure 7 gives an
overview of the training process.

Figure 7. DRL-based actor-critic policy gradient. We use a DRL-based actor-critic policy gradient
method. This means that two DNNs are trained. The first DNN parameterizes the policy used
by the agent (a.k.a. actor) to map states to probabilities of taking each action. The second DNN
parameterizes the critic, which maps states to the reward that it is expected to receive from the
environment following the current policy.

The specific algorithm followed in the training process that we just described is the
so-called actor-critic reinforce stochastic gradient ascent algorithm, based on the policy gradient

Sensors 2023, 23, 548 13 of 23

theorem [17]. The algorithm (Algorithm 1), on each training step, updates the parameters θ
and θ′ of the policy and the critic DNNs, respectively, as follows:

Algorithm 1: Algorithm used for the training

1 for t← 0 to max_train do
2 Randomly generate state St
3 Sample action a from π(A | St, θt)
4 Calculate reward Ot = O(St, a)
5 Update critic parameters

θ′t+1 = θ′t − α′∇θ′t
MSE(Ot, v̂(St, θ′t))

6 Update policy parameters

θt+1 = θt + α(Ot − v̂(St, θ′t+1))∇θ p(π(A | St, θt) = At)

7 end

Note that the equation in line 5 is just a standard training step for a supervised ML
regression problem where we want our critic DNN v̂(S, θ′) to learn to estimate O(A, S) and
hence we use as a loss function the Mean Squared Error (MSE) of the difference between the
obtained reward and the estimated one. α′ and α are the learning rates, which are simply
two scalars representing the update “step size” for equations in lines 5 and 6, respectively.
p(π(A | St, θt) = At) is the probability of having chosen At, given state St and following
policy π(A | St, θt). This probability can be calculated because the DNN that we use (more
details on its architecture are provided in the next subsection) does not directly output a
specific action (i.e., a specific mapping of tasks to nodes), but rather, it outputs a probability
for each possible action. Therefore, we can know what the probability of choosing At was.

A natural question is how we choose At from all the possible actions. During training,
we choose action At by sampling it from the discrete probability distribution for each
possible action given by our DNN π(A | S, θ). Note that this is different to supervised
ML, where we would select the action (or the class in supervised ML) with the highest
probability. This means that during training we might select an action which does not have
the highest probability according to policy π, but this is actually essential to ensure the
exploration of the actions space, a fundamental principle in RL. During inference, however,
once training has been completed, we make the policy greedy on the action values, meaning
that in inference we always select the action with the highest probability.

4.4. Architecture of the Policy and Critic DNNs

We use a pointer network [22] to parameterize our policy π(A | S, θ). A pointer network
is a DNN architecture for solving variable length sequence-to-sequence problems and
whose output is represented as a sequence “pointing” at positions in the input sequence.
This is ideal for the input–output representation approach defined in Section 4.1.

The pointer-network follows an encoder–decoder Recurrent Neural Network (RNN)
architecture [23]. This architecture is widely used in problems where the inputs and output
are sequences (like our problem, but also in areas like Natural Language Processing since
text is also sequential data), because it is designed to process each element of the input
sequence S in order in what is known as the encoding (allowing the DNN to take the order
of the elements into account) and then recurrently generate the output sequence A in what
is known as the decoding. The decoding takes place in recurrent decoding steps where at each
step i, the element i of sequence A, ai, is a function of the input sequence S as well as of the
previous outputs a1, . . . , ai−1. We based our specific implementation on the architecture
proposed by [19].

Sensors 2023, 23, 548 14 of 23

See Figure 8 for a detailed overview of the architecture of our policy DNN. The encoder
reads the input sequence S = [c1, . . . , cL] of task costs, one at a time, and transforms it into
a sequence of latent memory states of dimension LxH. Where H is the hidden dimension
of our DNN. Each element of the input sequence is first transformed into an H-dimensional
embedding, obtained via a linear transformation shared across all input steps whose
parameters are also learned. The decoder network also maintains its latent memory states
and uses a pointing mechanism to produce a probability distribution over the next task that
should be “pointed” at. Once the next task is selected (by sampling from the distribution),
it is passed as the input to the next decoder step, together with the last memory states.

The pointing mechanism is based on the so-called Bahdanau’s attention mechanism
first proposed in [24]. It takes the decoder hidden state as the query vector and the hidden
states from the encoder as the reference vectors. The output of the pointing mechanism
is masked first (to avoid pointing to the same input element twice) and then a soft-max
activation is applied, so that the output can be interpreted as a probability distribution
representing the degree to which the model is pointing to each element of the input
sequence. The allocation order A (see Section 4.1) is generated by sampling ai, at each
decoding step i, from the probability distribution of ai. The discrete density function of ai
is the output of the DNN, which has a softmax activation in the last layer. Moreover, the
results are appropriately processed before the softmax activation guarantees that the same
position is not “pointed” twice.

The DNN used to approximate the critic function v̂(S, θ′) is made of an encoder with
the exact same architecture as the DNN used for the policy, followed by a similar attention
mechanism but using the encoder outputs as the query and reference vectors. Lastly, it
has two standard feed-forward layers, the last one with a single neuron since v̂(S, θ′) is a
regression model that attempts to estimate a scalar (i.e., the expected reward given state S).

Figure 8. Neural network architecture. The encoder reads the input sequence S = [c1, . . . , cL] of task
costs and ultimately produces an allocation order sequence A, which can be defined as numbers
“pointing” at positions in the input sequence S.

4.5. Additional Remark for Readers Familiar with Other RL Problems

One thing to note is that we have defined an action as the sequence A representing the
allocation order. This means that in our RL framework, when the agent receives a set of
tasks that must be allocated, it allocates all of them in one action. Using the RL terminology:

Sensors 2023, 23, 548 15 of 23

the episode lasts only one time step and the recurrent nature of the task allocation decision
is already taken care of by the RNN architecture of the policy.

An alternative approach would have been to define an action as the allocation of
a single task to a node and the RL episode would last L time steps, where L is the length
of the input task sequence S. This alternative approach is equivalent to our approach if in
the alternative one the reward is set to zero for all timesteps except for the last one, which
would make sense because the average occupancy ratio is not known until the end (and
using a partial average occupancy ratio on each timestep would cause the agent to deviate
from learning to optimize the final average occupancy).

Our one-timestep approach is more convenient to implement. The only difference that
needs to be taken into account is the equation in line 6 in Algorithm 1. In that equation,
the term p(π(A | S, θ) = a) represents the probability of having selected action a. In our
approach a is actually a sequence A of L integers ai ∈ [1, L], i ∈ [1, L] (where ai represents
the position of the task in the input sequence). Therefore, p(π(A | S, θ) = a) in Equation (1)
should be the probability of generating the sequence A following policy πθ , which can be
calculated using the chain rule as:

p(π(A | S, θ) = {a1, . . . , aL}) =
L

∏
i=1

p(π(ai) | a1, . . . , ai−1, S, θ)} (1)

p(π(ai) | a1, . . . , ai−1, S, θ) is the probability of sampling ai in the decoding step i of
the pointer network, which is given by the output of the masked soft-max layer (note
that p(π(aL) | a1, . . . , aL−1, S, θ) = 1 always because in the last timestep there is only a
remaining task that can be pointed at).

5. Experiments

In this section, we show the experiments we have carried out to demonstrate how
a DRL-based approach can achieve similar results to the best performing heuristic in
terms of optimality of the allocation, while requiring less time to generate such allocation.
The primary objective of our experiments is to evaluate how well the policy can learn to
produce the allocation of tasks with high average occupancy O. In addition, we want to
gain some basic understanding of the inference latency and of the model size, in line with
our hypotheses presented in Section 3.5, related to the suitability of a DRL approach for
time-sensitive and resource constrained environments like CADESs.

5.1. Experiments Approach

We have considered four different problem conditions (Table 1). In problems 1 to 3,
the sets of tasks that the agent learns to allocate all have always the same size (24, 40 and
50, respectively). Problem 4 tests the ability of the agent to learn to allocate sets of tasks
of variable length, with a minimum of 3 and a maximum of 50 tasks. This means that the
same parameters θ of the policy DNN are applied to sequences of length 3, 4, 5, . . . , up to
50. In practice, all the sets of tasks are input as an array of length 50, but they might have
zeroes at the end, meaning that there are no tasks. The DNN has two masking layers (one
for the inputs and one for the outputs) that ensures these tasks are not taken into account.

We believe that these problem parameters represent quite well the conditions a real
NM would have to face. The number of tasks proposed is one that we could find in real
small/medium size CADES. The costs and capacities have been determined experimentally
and we have paid some attention to choosing a set of conditions that did not easily lead to
very high occupancy ratios, which could not pose a big enough “challenge” to our agent.

Sensors 2023, 23, 548 16 of 23

Table 1. Problem conditions in our experiments. Task costs are sampled from the uniform distribution
over the interval [Min. task cost, Max. task cost].

Problem Label # of Tasks Min. Task Cost Max. Task Cost Capacity

1 24 1 6 8
2 40 3 8 10
3 50 4 14 15
4 Variable (3 to 50) 4 14 15

As discussed in Section 2, we assume that there is always at least one valid task
allocation (i.e., there is always one valid allocation where no task is left unassigned). In our
implementation, we enforce this by assuming that we always have the number of nodes
required to fulfill the most optimal allocation. Therefore, the number of nodes available is
not a fixed value which is part of the problem conditions, but rather we assume it is high
enough to accommodate the generated task allocations.

We trained our parameterized policy to see how well it learns to allocate tasks, by
analyzing the average occupancy ratio O achieved after 10,000 training steps. One training
step consists of one iteration of the actor-critic reinforce stochastic gradient ascent algorithm
described in Section 4.3.

As is common in ML, especially in stochastic gradient ascent algorithms like ours,
we use training batches. This means that in each training step, we do not just use a single
randomly generated state (i.e., a set of tasks), but rather, we use a batch of randomly generated
states, which in our case is of size 128 (i.e., the batch consists of 128 randomly generated
sets of tasks). In batch training, the parameters of the DNNs are updated using the mean of
the individual updates calculated for each of the 128 samples (following equations in lines
5 and 6 in Algorithm 1). This approach, i.e., updating the parameters only once with the
mean of the batch rather than 128 times with the value of each single element of the batch,
has been shown to achieve the task more quickly and closer to the optimal convergence [16].

To determine how well our solution works in comparison with popular heuristics [4]
used to solve the bin-packing combinatorial optimization problem, we also solved the
problems previously introduced using the Next-Fit (NF), the First-Fit (FF) and the First-Fit
Decreasing (FFD) heuristics (see Figure 9). The NF and FF heuristics are the same as the ones
described in Section 4.1, when discussing the input–output representation approach and
the heuristic H assumed for the allocation order A generated by the DNN. Nevertheless, for
ease of read, we describe the NF and FF heuristics again below, together with the additional
heuristic used in the benchmark: the FFD. Thus, the benchmark heuristics are:

• Next-Fit (NF): Tasks in the input set are considered in the same order in which they
were generated for the specific problem. They are sequentially allocated to the first
“open” node until a task does not fit. When this occurs the node is “closed” and the
next node is “opened”. A “closed” node cannot receive any additional task.

• First-Fit (FF): As with NF, the input is a set of tasks randomly generated. The only
difference with the previous heuristic is that a node is not marked as “closed” unless
it is completely full. Specifically, in each allocation step all the nodes are marked as
“open” nodes. The task is allocated in the first node where it fits. If the task does not fit
in any of the “opened” nodes, a new node one is “opened”.

• First-Fit-Decreasing (FFD): This heuristic is similar to the FF heuristic, but the input set
of tasks is sorted, from the most costly to the least costly, before trying the allocation.

We selected the NF and FF heuristics because they are two well studied online heuris-
tics used to solve this problem. Recall from the introduction that online means that they
do not have to process the full input set prior to the start of the allocation. This type of
heuristics is faster and has lower time complexity and lower memory requirements than
offline heuristics such as FFD or our own DRL-based approach which, as opposed to online
methods, require processing the entire set of tasks prior to generating a solution. That
is precisely why we included two online heuristics in our benchmark. If such heuristics

Sensors 2023, 23, 548 17 of 23

were to lead to a similar or better average occupancy ratio than our DRL-based approach,
it would be hard to find reasons in favour of the DRL-based method. We also included
an offline heuristic, FFD, in our benchmark because we also wanted to compare against
a heuristic that is proven (and observed in our experiments) to yield results closer to the
optimal than online heuristics. In order to calculate the average occupancy ratio obtained
with each of the heuristics, we took the mean of 12,800 random samples of sets of tasks
(100 batches of 128 samples).

Figure 9. Benchmark heuristics. Visual example of how a given sequence of tasks would be allocated
following each of the three benchmark heuristics.

As explained earlier, in our DRL approach, we take the allocation order A output by
the DNN and test both the cases where tasks are allocated following an NF heuristic and
following an FF heuristic. When looking at the average occupancy ratio that we obtain just
using those heuristics, those are the baseline values for each respective case, since those are
the average occupancy ratios that the policy would score if it does not manage to learn at
all and simply generates random allocation orders A. We have not tried to improve the
results with hyper-parameter tuning, i.e., changing different combinations of parameters in
the network architecture and training an algorithm to see if it drives better results or with
more sophisticated decoding strategies (e.g., beam search or those proposed by [19]), which
could potentially yield better average occupancy ratio O.

In order to have it as a reference, we tried to calculate the optimal average occupancy
for the four problems analyzed. We built our own iterative program and we even used
Google’s tools for optimization [25]. However, it was not possible to solve problems with
more than 15–20 tasks in a reasonable amount of time due to the amount of computation
time required. For instance, for Problem 1 (which is the one with the shortest input length),
it took the solver > 10 h to find the solution for some of the samples. There are some
exact algorithms such as in [14] that claim to be very fast for most of the problem instances,
although there are still no guarantees of polynomial time. However, implementing such
algorithms was beyond the scope of this work. It is worth mentioning that the optimal
average occupancy is likely not far from the ratio obtained with the FFD heuristic: FFD
guarantees a solution with no more than 11/9 of the optimal number of nodes. Refs. [4]
and [14] empirically showed that the FFD achieved the optimal solution in 94.7% of the
problem instances tested.

Sensors 2023, 23, 548 18 of 23

For the inference latency comparison, we will compare the time it takes to allocate the
tasks following the FFD heuristic (the one that achieves better occupancy ratios) with the
time it takes to generate an allocation with our agent, using the same hardware.

To understand the model size, we will just look at the storage space that the agent’s
DNN uses in the hard drive, which is directly related to the number of parameters of the
DNN and the format in which they are stored, which in our case is 32-bit integers.

5.2. Implementations of the Experiments

For each of the experiments, we trained three models, each with a random weight
initialization, during 10,000 training steps and selected the model with the best results.
An initial learning rate of 0.001 was used for both the agent and the critic network, with
a 0.9 decay rate every 1000 steps. This simply means that the learning rate (i.e., the scalars
α′ and α in equations in lines 5 and 6 in Algorithm 1) is reduced every 1000 steps by a factor
of 0.9. This is shown to improve the convergence, because it helps to escape spurious local
minima at the beginning of the training while avoiding oscillation around local minima at
the end of the training [26].

The actor and critic DNNs were implemented in Python using the popular PyTorch
framework [27]. We implemented both the DRL-based approach and the benchmark
heuristics as functions in PyTorch and ran them on a computer with an Intel(R) Core(TM)
i7-7600U CPU, no GPU and 32GB of RAM.

5.3. Experiment Results for the Performance

In Table 2, we show the average occupancy ratio obtained, in each problem, from our
DRL agent and the selected heuristics. Our agent was able to match the best heuristic (the
FFD) when being trained to generate allocation orders that then follow an FF rule. Perhaps
more interesting, when trained to generate allocation orders that then follow an NF rule
(which is faster than the FF and the FFD), it achieves a higher average occupancy ratio
than the NF and the FF heuristics and gets close to the FFD performance. This is consistent
across all experiments.

Table 2. Optimization performance experiments results. Avg. occupancy ratio (%) comparison
between our trained DRL agents and the selected heuristics.

Problem
Label

Average Occupancy Ratio %

DRL Agent Heuristics

DNN + NF DNN + FF NF FF FFD

Problem 1 92.3 93.8 77.5 89.2 93.8
Problem 2 89.1 89.4 73.9 85.8 89.4
Problem 3 89.3 89.8 74.7 86.5 89.8
Problem 4 86.2 86.7 74.3 84.4 86.7

In Figure 10 it can be seen how the average occupancy ratio that the agent achieves
improves over time as the DNNs are trained (both the agent’s DNN and the critic’s DNN).
When the agent uses FF, very good results can be obtained in a few hundreds of training
steps. In contrast, when the agent uses NF, around 2000 training steps are needed to obtain
better results than FF alone. After that point, various thousands of training steps are needed
to get close to FFD. Note, however, that we can train offline the agent plus NF until it
provides results that are very similar to FFD.

For Problem 4, where the agent achieves an average occupancy ratio of 86.2% and 86.7%
(depending on the allocation heuristic H used), we checked that results were consistent
for all possible input lengths. As can be seen in Figure 11, the combination of the DNN
plus the NF heuristic is consistently better than the NF and FF heuristics and consistently
ends up close to the FFD for all algorithms. As expected, the average occupancy for all
approaches tends to be higher the longer the sequence of tasks, because there are more

Sensors 2023, 23, 548 19 of 23

possible combinations. The same consistency across all lengths is observed for the DNN
plus the FF heuristic.

Figure 10. Training history. Problem 2: batch average occupancy ratio (%) after each training step,
compared to the average occupation ratio obtained using the NF, FF and FFD heuristics.

Figure 11. Problem 4 results by size of the input set of tasks. Average occupancy ratio obtained
in Problem 4 when applying the trained DNN plus an NF heuristic and when applying the three
benchmark heuristics.

5.4. Experiment Results for Inference Latency

In this section, we describe the additional experiment we conducted to measure and
compare the time required to generate a solution using our agent and the FFD heuristic.
The problem conditions selected for this experiment cover many different sets of tasks with
different sizes. The idea is to characterize the growth of the execution time as the problem
becomes more complex. The specific problem conditions are shown in Table 3.

Sensors 2023, 23, 548 20 of 23

Table 3. Problem conditions in our 5th experiment. Task costs are sampled from the uniform
distribution over the interval [Min. task cost, Max. task cost].

Problem Label # of Tasks Min. Task Cost Max. Task Cost Capacity

5 1 to 280 1 50 50

As concerns the heuristic used in conjunction with our agent, recall from the previous
section that FF provides better results in terms of optimality than NF. However, it is possible
to train the agent plus NF to achieve very similar results to the agent plus FF. Moreover, NF
is faster that FF. Since in this test we are interested in the execution time, NF is the heuristic
that is worth considering.

In Figure 12, we show the results of the experiment. In this figure we can see that the
time required for the FFD heuristic to determine the solution constantly increases as the
number of tasks in the problem increases. This data corroborates what can be expected from
the FFD heuristic, a temporal complexity of O(nlog(n)). In contrast, the inference latency
of our approach exhibits a linear complexity, at least for these sets of tasks. In this regard,
data corroborate that, when the size of the list of tasks is between 1 and 20 executions,
execution times are alike. However, beyond 20, our approach is significantly faster than
FFD. For instance, with around 30 tasks, FFD needs twice the time and for 50 tasks it needs
triple the time.

Figure 12. Problem 5 results by size of the input set of tasks.

One important aspect to highlight is that the values measured depend on implementa-
tion aspects such as the ML framework and the hardware used. For example, the use of
GPUs, given their parallelization capacity, would speed up the DNN inference. However,
the results obtained align with our initial hypothesis. A DRL-based solution can have a
better time–reward trade off than heuristic-based approaches. This is especially notorious
in devices with memory constraints, where sorting and searching algorithms cannot be
implemented to minimize the response time.

Regarding the model size, our model required 264 KB of storage memory. The hidden
dimension of our DNN (i.e., the number of neurons in the hidden layers) is 64. This is
lower than typically used sizes (e.g., 128). However, having resource restrictions in mind,
we wanted to check the performance of a lighter DNN. The pointer network architecture
and the hidden dimension size of 64 resulted in the agent’s DNN having 66,754 parameters
(this was for problem 3, where the input length was 50. The other problems had fewer
parameters since the maximum length was smaller). These 66,754 parameters are ultimately

Sensors 2023, 23, 548 21 of 23

stored as 32-bit integers requiring a storage memory of 264 KB. This is more than enough
to fit on a standard microcontroller, which might have up to 1 MB of storage capacity [13].

6. Related Work

In this work, we use DNN to solve a combinational optimization problem. This is
typically called neural combinatorial optimization. An important notable contribution in
this regard was the pointer network architecture that we previously described. In [22],
the authors prove that this type of architecture provides good results in combinatorial
optimization tasks in the area of supervised ML.

A specific framework developed to address combinatorial optimization problems
using DNNs together with RL was proposed by [19]. Our DNN architecture (except for the
input and output layers which are specific to our problem’s input–output representation)
and the selection of the specific RL algorithm to use (the actor-critic reinforce stochastic
gradient ascent algorithm) is based on their work. However, they apply it to different
combinatorial optimization problems with different problem conditions. We had to design
all the aspects of this work that are specific to the task allocation problem (or equivalently,
to the bin packing problem). For example, the input–output representation approach, the
reward signal or the benchmark heuristics.

Taking the work in [19] as the starting point, multiple works have addressed the
problem of allocation resources using DRL techniques. Some examples are [20,28–30].
Perhaps, the most related to ours are [20,30]. In [30], the authors propose a solution to
allocate services to hosts while minimizing the power consumption. The reward function
from this work is similar, but not identical, to the one we used. On the other hand, the
architecture of the DNN, the problem constraints and the constraint-enforcing strategies
are also different. In [20], the authors solve a packing problem in a 3D environment. The
idea is to minimize the surface that is necessary to pack a set of items. This requires, for
each problem instance, taking three decisions. In this work heuristics are used to take two
of these decisions, while DRL is used for one of them.

To the best of the knowledge of the authors of the current work, this is the fist time DRL
has been used to train a DNN to produce solutions that solve problems formulated as a 1D
bin packing problem [4]. This is a problem that, although it can be simply formulated, is an
NP-hard problem. Moreover, although here we study the allocation of tasks in CADESs,
many workaday problems can be formulated and thus resolved using our solution. Finally,
looking at the results obtained and, specifically, the level of performance in terms of
optimality and the low response time indicates that the approach here described can be a
better option than typical heuristics for implementing the NM in a CADES.

7. Conclusions and Further Work

In this work, we demonstrated that a solution to find task allocation in CADESs based
on Machine Learning (ML) and on DRL in particular can achieve similar results to the best
performing solutions based on heuristics in terms of optimality and the allocation, while
requiring less time to generate such allocation.

Moreover, we fulfilled the specific objective of this work, which was stated as follows:
design and implement an ML-based approach capable of allocating tasks to nodes in a
CADES and analyze the benefits of such an approach both qualitatively and quantitatively.
In Section 3, based on our research, we outlined, in a qualitative manner, the benefits of
using a DRL-based approach in a CADES. With our solution design, implementation and
experiments presented in Sections 4 and 5, we have shown that:

• Our DRL agent, combined with an intermediate performing heuristic (the FF), can
achieve average occupancy ratios similar to the best performing heuristic (the FFD).

• Our DRL agent can be used in combination with the fastest heuristic (the NF), yielding
better average occupancy ratios than two popular heuristics (the NF and FF) and
getting close to the best performing one (FFD).

Sensors 2023, 23, 548 22 of 23

• Our comparison in the response time supports the hypothesis that the inference latency
of our agent can be significantly lower than the time required for the best performing
heuristics to produce a solution. This is because the last ones can require pre-sorting
the inputs.

Further work in this area could be targeted at modelling more complex operational
contexts closer to real-life applications. On the one hand, this could be achieved by
including a wider range of variables in the state information consumed by the DRL agent.
Examples of these additional variables are the time required by each task to complete
its execution, the number of nodes available (which could change over time due to node
failures or incorporations) or a varying computational capacity for the nodes (which could
vary over time due to, for example, some nodes being partially busy executing a task that
cannot be reallocated). On the other hand, more complex operational contexts could also
be factored in the reward function that defines the allocation criteria. For instance, the cost
of reallocating a task could be factored in the reward function, which would give priority
to task allocations that do not require moving a large number of tasks among nodes.

We are convinced that the full potential of DRL-based configuration search can be
realized when modelling more complex operational contexts such as the ones just described.
The more complex the problem is, the harder it is to find heuristics or search strategies that
deliver good results in a timely manner and that is precisely where a versatile approach
such as using a DRL-trained policy can have a greater impact.

Author Contributions: Writing—original draft, R.R.; Writing—review & editing, A.B. and J.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by grant TEC2015-70313-R (Spanish Ministerio de Economía y
Competividad), by FEDER funding, by grant PID2021-124348OB-I00 funded by MCIN/AEI/10.13039/
501100011033/ERDF, EU.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Avizienis, A.; Laprie, J.C.; Randell, B. Fundamental Concepts of Dependability. UCLA CSD Report no. 010028, LAAS Report

no. 01-145, Newcastle University Report no. CS-TR-739. 2001. Available online: https://course.ece.cmu.edu/~ece749/docs/
laprie.pdf#:~:text=Dependability%20is%20an%20integrative%20concept%20that%20encompasses%20the,catastrophic%20
consequences%20on%20the%20user%28s%29%20and%20the%20environment%3B (accessed on 1 October 2022).

2. Ballesteros, A.; Barranco, M.; Proenza, J.; Almeida, L.; Pozo, F.; Palmer-Rodríguez, P. An Infrastructure for Enabling Dynamic
Fault Tolerance in Highly-Reliable Adaptive Distributed Embedded Systems Based on Switched Ethernet. Sensors 2022, 22, 7099.
[CrossRef] [PubMed]

3. Liu, C.L.; Layland, J. Scheduling algorithms for multiprogramming in a hard real-time environment. J. ACM 1973, 20, 46–61.
[CrossRef]

4. Johnson, D.S. Near-Optimal Bin Packing Algorithms. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1973.

5. Coffman, E.G., Jr.; Csirik, J.; Galambos, G.; Martello, S.; Vigo, D. Bin Packing Approximation Algorithms: Survey and Classification.
In Handbook of Combinatorial Optimization; Pardalos, P.M., Du, D.Z., Graham, R.L., Eds.; Springer: New York, NY, USA, 2013;
pp. 455–531. ._35. [CrossRef]

6. Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-Completeness; Series of Books in the Mathematical
Sciences; W. H. Freeman and Company: New York, NY, USA, 1979. ISBN 0-7167-1045-5.

7. Kunde, M.; Steppat, H. First fit decreasing scheduling on uniform multiprocessors. Discret. Appl. Math. 1985, 10, 165–177.
[CrossRef]

8. Ajiro, Y.; Tanaka, A. Improving packing algorithms for server consolidation. In Proceedings of the 33rd International Computer
Measurement Group Conference, San Diego, CA, USA, 2–7 December 2007; pp. 399–406.

9. Feller, E.; Rilling, L.; Morin, C. Energy-aware ant colony based workload placement in clouds. In Proceedings of the IEEE/ACM
12th International Conference on Grid Computing, Lyon, France, 21–23 September 2011; pp. 26–33. [CrossRef]

10. Hossain, M.M.; Huang, J.C.; Lee, H.H.S. Migration energy-aware workload consolidation in enterprise clouds. In Proceedings
of the 4th IEEE International Conference on Cloud Computing Technology and Science, Taipei, Taiwan, 3–6 December 2012;
pp. 405–410. [CrossRef]

https://course.ece.cmu.edu/~ece749/docs/laprie.pdf#:~:text=Dependability%20is%20an%20integrative%20concept%20that%20encompasses%20the,catastrophic%20consequences%20on%20the%20user%28s%29%20and%20the%20environment%3B
https://course.ece.cmu.edu/~ece749/docs/laprie.pdf#:~:text=Dependability%20is%20an%20integrative%20concept%20that%20encompasses%20the,catastrophic%20consequences%20on%20the%20user%28s%29%20and%20the%20environment%3B
https://course.ece.cmu.edu/~ece749/docs/laprie.pdf#:~:text=Dependability%20is%20an%20integrative%20concept%20that%20encompasses%20the,catastrophic%20consequences%20on%20the%20user%28s%29%20and%20the%20environment%3B
http://doi.org/10.3390/s22187099
http://www.ncbi.nlm.nih.gov/pubmed/36146448
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1007/978-1-4419-7997-1_35
http://dx.doi.org/10.1016/0166-218X(85)90010-1
http://dx.doi.org/10.1109/Grid.2011.13
http://dx.doi.org/10.1109/CloudCom.2012.6427570

Sensors 2023, 23, 548 23 of 23

11. Dósa, G. The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is FFD(I)≤ 11/9OPT(I) + 6/9. In Proceedings of the
International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, Hangzhou, China, 7–9
April 2007; Chen, B., Paterson, M., Zhang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–11.

12. Rotaeche, R.; Ballesteros, A.; Proenza, J. Exploring the use of Deep Reinforcement Learning to allocate tasks in Critical Adaptive
Distributed Embedded Systems. In Proceedings of the 2021 26th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Vasteras, Sweden, 7–10 September 2021; pp. 1–4. [CrossRef]

13. Lin, J.; Chen, W.M.; Lin, Y.; Cohn, J.; Gan, C.; Han, S. MCUNet: Tiny Deep Learning on IoT Devices. In Advances in Neural
Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: Red
Hook, NY, USA, 2020; Volume 33, pp. 11711–11722.

14. Korf, R. A New Algorithm for Optimal Bin Packing. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence, Edmonton, AB, Canada, 28 July–1 August 2002; pp. 731–736.

15. Barrett, C.W. SMT Solvers: Theory and Practice. In Summer School on Verification Technology, Systems and Applications; 2008.
Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4c6e143608338cba8b0bf52981300a63b2
b42edb (accessed on 1 October 2022).

16. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
17. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
18. Kumar, P.R. A survey of some results in stochastic adaptive control. SIAM J. Control Optim. 1985, 23, 329–380. [CrossRef]
19. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. In

Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.
20. Hu, H.; Zhang, X.; Yan, X.; Wang, L.; Xu, Y. Solving a new 3D bin packing problem with deep reinforcement learning method.

arXiv 2017, arXiv:1708.05930.
21. David, R.; Duke, J.; Jain, A.; Janapa Reddi, V.; Jeffries, N.; Li, J.; Kreeger, N.; Nappier, I.; Natraj, M.; Wang, T.; et al. TensorFlow

Lite Micro: Embedded Machine Learning on TinyML Systems. In Proceedings of the Machine Learning and Systems, Austin, TX,
USA, 2–4 March 2020.

22. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. In Proceedings of the 29th Conference on Neural Information Processing
Systems, Montréal, QC, Canada, 7–10 December 2015.

23. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

24. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015.

25. Google OR-Tools for Optimization—The Bin-Packing Problem. Available online: https://developers.google.com/optimization/
bin/bin_packing (accessed on 1 October 2022).

26. Kleinberg, B.; Li, Y.; Yuan, Y. An Alternative View: When Does SGD Escape Local Minima? In Proceedings of the 35th
International Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018.

27. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the 33rd International Conference on Neural
Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

28. Sheng, S.; Chen, P.; Chen, Z.; Wu, L.; Yao, Y. Deep reinforcement learning-based task scheduling in IOT edge computing. Sensors
2021, 21, 1666. [CrossRef] [PubMed]

29. Xu, Z.; Wang, Y.; Tang, J.; Wang, J.; Gursoy, M.C. A deep reinforcement learning based framework for power-efficient resource
allocation in cloud RANs. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25
May 2017.

30. Solozabal, R.; Ceberio, J.; Sanchoyerto, A.; Zabala, L.; Blanco, B.; Liberal, F. Virtual Network Function Placement Optimization
with Deep Reinforcement Learning. IEEE J. Sel. Areas Commun. 2020, 38, 292–303. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ETFA45728.2021.9613409
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4c6e143608338cba8b0bf52981300a63b2b42edb
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4c6e143608338cba8b0bf52981300a63b2b42edb
http://dx.doi.org/10.1137/0323023
http://dx.doi.org/10.1016/j.physd.2019.132306
https://developers.google.com/optimization/bin/bin_packing
https://developers.google.com/optimization/bin/bin_packing
http://dx.doi.org/10.3390/s21051666
http://www.ncbi.nlm.nih.gov/pubmed/33671072
http://dx.doi.org/10.1109/JSAC.2019.2959183

	Introduction
	Problem Statement
	System Configuration
	Modelling Tasks and Nodes
	Task Allocation Criteria
	Assumptions Made
	Resource Requirements
	Summarized Problem Statement

	Introduction to DRL and Motivation for a DRL-Based Approach
	Deep Neural Networks
	Supervised Machine Learning
	Reinforcement Learning
	Deep Reinforcement Learning
	Rationale for a DRL Approach

	Problem Formulation and Approach
	Input–Output Representations Approach
	Reward Signal Approach
	RL Method Used
	Architecture of the Policy and Critic DNNs
	Additional Remark for Readers Familiar with Other RL Problems

	Experiments
	Experiments Approach
	Implementations of the Experiments
	Experiment Results for the Performance
	Experiment Results for Inference Latency

	Related Work
	Conclusions and Further Work
	References

