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Abstract: The key to autonomous navigation in unmanned systems is the ability to recognize static
and moving objects in the environment and to support the task of predicting the future state of
the environment, avoiding collisions, and planning. However, because the existing 3D LiDAR
point-cloud moving object segmentation (MOS) convolutional neural network (CNN) models are
very complex and have large computation burden, it is difficult to perform real-time processing on
embedded platforms. In this paper, we propose a lightweight MOS network structure based on
LiDAR point-cloud sequence range images with only 2.3 M parameters, which is 66% less than the
state-of-the-art network. When running on RTX 3090 GPU, the processing time is 35.82 ms per frame
and it achieves an intersection-over-union(IoU) score of 51.3% on the SemanticKITTI dataset. In
addition, the proposed CNN successfully runs the FPGA platform using an NVDLA-like hardware
architecture, and the system achieves efficient and accurate moving-object segmentation of LiDAR
point clouds at a speed of 32 fps, meeting the real-time requirements of autonomous vehicles.

Keywords: moving object segmentation; LiDAR; CNN; FPGA

1. Introduction

Presently, the key to autonomous navigation in autonomous driving systems is the
ability to recognize static and moving objects in the environment, and to support predicting
the future state of the environment, avoiding collisions, and planning tasks. Moving object
segmentation (MOS) algorithms improve environment perception [1], localization [2],
and future state prediction [3] by distinguishing between moving and static objects in 3D
LiDAR point cloud data. However, the MOS task is computationally intensive and the
network model is complex [4,5], so it is very important to meet the real-time processing
requirements of autonomous driving applications.

Most of the existing LiDAR-based point-cloud semantic segmentation networks pre-
dict the semantic labels of point clouds, such as vehicles, buildings or roads from a single
frame. However, comparing to images, LiDAR provides better object location information
via consecutive frames, so that we can also use LiDAR to distinguish moving objects.
Recently proposed point-based [6] or voxel-based [1] segmentation networks, although su-
perior in performance, are structurally complicated and computationally expensive. In the
recent work [4], a segmentation network based on range images was adopted, the 3D LiDAR
point cloud was projected onto a 2D plane, the range images of consecutive frames were
used as the intermediate representation, and a 2D convolutional neural network (CNN)
was used. This network performs the moving segmentation task. Furthermore, almost all
state-of-the-art point-cloud moving object segmentation networks target GPUs that may
not suitable for edge computing. From a computation point of view, edge deep learning
accelerators (such as NVIDIA Deep Learning Accelerator (NVDLA) [7] and Xilinx DPU [8])
do not accelerate all common operations. Therefore, designing neural networks compatible
with edge deep learning accelerators is critical for real-time embedded applications.
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In this paper, we propose a lightweight multi-branch network structure to solve the
problem of 3D LiDAR point-cloud moving object segmentation, which can run in real time
on GPU. Figure 1 shows an example scene of our segmentation, red boxes are moving cars,
the yellow box is a parked car, and moving objects are represented by red masks, which
also verifies the feasibility of our method. Furthermore, the MOS computing system is
built for autonomous vehicles, which can perform point-cloud pre-processing and neural
network segmentation. Since only post-processing steps are left to the automotive electronic
Control Unit ECU, this solution significantly alleviates the computation burden of ECU,
thereby reducing the decision making and vehicle reaction latency. Our moving object
segmentation network achieved 32 frames per second (fps) on FPGA. The contributions of
this paper are summarized below:

(1) To our knowledge, this is one of the first end-to-end FPGA implementations for a
real time LiDAR point-cloud moving-object segmentation deep learning platform,
a LiDAR is directly connected to the processing system (PS) side. After pre-processing,
the point cloud is stored in the DDR memory, which is accessible by the hardware
accelerator on the programmable logic (PL) side.

(2) A light-weight and real-time moving-object segmentation network is proposed, tar-
geting to NVDLA. Hardware-friendly layers are used (i.e., by replacement of decon-
volution with bi-linear interpolation) to greatly reduce the complexity of computation.
Its IoU score on the SemanticKITTI test set is 51.3%. The inference time on NVIDIA
RTX 3090TI is about 35.82 ms.

(3) An efficient moving-object segmentation network architecture is implemented on the
ZCU104 MPSoC FPGA platform, which enables real-time processing at 32 frames per
second (fps).

(a) (b)

Figure 1. Moving object segmentation using our approach. (a) Raw Point Cloud ; (b) Segmented
Point Cloud.

The rest of this paper is organized as follows: Section 2 summarizes the existing
research results of moving-object segmentation in LiDAR point clouds and the FPGA
implementation of the segmentation network. In Section 3, the proposed moving-object
segmentation network model of LiDAR point cloud and its training details are described.
The FPGA implementation and its results are discussed in Sections 4 and 5, respectively.
Finally, Section 6 summarizes the whole paper.

2. Related Work
2.1. LiDAR Point-Cloud Moving Object Segmentation

Existing LiDAR point cloud moving object segmentation networks can be categorized
into two groups: computer-vision-based [9–13] and LiDAR-sensor-based [14–16]. However,
the processing of LiDAR data remains challenging due to the uneven distribution and
sparsity of LiDAR point clouds. Here, we mainly study the MOS problem of 3D LiDAR
point cloud data.

In recent years, great progress has been made in semantic segmentation based on
LiDAR sensor point cloud data [17–24], such as the point-cloud compression methods
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in [23,24] and so on. Semantic segmentation is a key step in the segmentation of moving
objects in LiDAR point clouds. However, most of the existing semantic segmentation
convolutional neural networks can only predict the semantic labels of point clouds, such as
vehicles, buildings, and people, but cannot distinguish between actual moving objects and
static objects, such as moving cars and parked ones.

The state-of-the-art scene flow method, FlowNet3D [25], is designed based on Point-
Net [6] and PointNet++ [26], which directly processes the original irregular 3D points
without any pre-processing, and estimates each LiDAR point for two consecutive frames.
The translational flow vectors include moving vehicles and pedestrians. Although these
methods perform well on small point clouds, processing power becomes inefficient on larger
point cloud datasets, requiring longer runtime. In addition, there are various 3D point-
cloud-based semantic segmentation methods, such as SpSequencenet [27], KPConv [28],
and SPVConv [29], which are also able to achieve state-of-the-art performance in semantic
segmentation tasks. Among them, SpSequencenet [27] uses changes in sequence point
clouds to predict moving objects. However, one problem with all networks based on
operating directly on the point cloud is the dramatic increase in processing power and
memory requirements, causing the point cloud to become larger. Therefore, training is
difficult and cannot meet the real-time requirements of the automatic driving system.

Chen et al. [4] developed LMNet, which utilizes the residual between the current
frame and the previous frame to be used as an additional input to the semantic segmen-
tation network to achieve class-independent moving object segmentation, as well as in
RangeNet++ [17] and SalsaNext [18] for performance evaluation. These networks are
capable of real-time moving object segmentation running faster than the frame rate of
the LiDAR sensor used. Mohapatra et al. [30] introduced a computationally efficient
moving object segmentation framework based on LiDAR bird’s eye view (BEV) space.
The work in [31] utilizes a dual-branch structure to fuse the spatio-temporal information
of LiDAR scans to improve the performance of MOS. In contrast, Kim et al. [32] proposed
a network architecture that fuses motion features and semantic features, achieving im-
provements in computational speed and performance metrics. In the recent work of [33],
the autoregressive system identification (AR-SI) theory was used to significantly improve
the segmentation effect of the traditional encoder–decoder structure, and the model was
deployed in embedded devices for actual measurement.

2.2. FPGA Implementations of Segmentation Networks

Advanced driver-assistance systems (ADAS) are rapidly being integrated into almost
all new vehicles. The LiDAR point cloud segmentation algorithm must meet the real-time
requirements, which may not be well met by standard CPUs or GPUs. FPGA has the ad-
vantages of high energy efficiency ratio and flexible reconfiguration, which can realize the
high energy efficiency deployment of semantic segmentation networks in ADAS. Current
researchers [5,34–39] mainly study and analyze the lightweight semantic segmentation
network algorithm and the accelerated computation combined with the resource character-
istics of customized hardware platform. Xilinx will support Continental’s new advanced
LiDAR sensor ARS 540 through the Zynq UltraScale+ MPSoC platform, partnering to create
the automotive industry’s first mass-produced 4D imaging sensor, paving the way for
L5-level autonomous driving systems. In Ref. [16], a LiDAR sensor is directly connected
to FPGA through an Ethernet interface, realizing a deep learning platform of end-to-end
3D point cloud semantic segmentation based on FPGA, which can process point-cloud
segmentation in real time.

3. Proposed Network

The design method of the moving object segmentation network is mainly inspired
by [4]. The residual image is used as an additional input to the designed semantic segmen-
tation network to achieve moving object segmentation. In the following, we will describe
our method in detail.
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3.1. Spherical Projection of LiDAR Point Cloud

Following previous work [16,17], we use a 2D neural network convolution to extract
features from the range view (RV) of LiDAR. Specifically, we project the LiDAR point
(x, y, z) onto a sphere and finally convert it to image coordinates (u, v), defined as:(

u
v

)
=

( 1
2
[
1− arctan(y, x)π−1]w[

1−
(
arcsin

(
zr−1)+ fup

)
f−1]h

)
(1)

where (u, v) are the image coordinates, (h, w) are the desired range image according to
the height and width, r represents the range of each point as r =

√
x2 + y2 + z2, and

f = | fdown |+
∣∣ fup

∣∣ for the sensor’s vertical field of view.
We use Equation (1) to extract the range index r, 3D point coordinates (x, y, z) and inten-

sity value i for each point projected to (u, v), and take them as features to be superimposed
along the channel dimension. Therefore, we can directly input these features into the network,
and then transform point-cloud moving segmentation into image moving segmentation.

3.2. Residual Images

As in ref. [4], the residual image and range view based on LiDAR point cloud are used
as the input of the segmentation network, and the temporal information in the residual
image is used to distinguish the static object and the pixels on the moving object, so the
actual moving object and the static object can be distinguished.

Assuming that there are N time series of LiDAR scans in the SLAM history,
Sj =

{
pi ∈ R4} and M points are represented as homogeneous coordinates, i.e., pi =

(x, y, z, 1). T N−1
N , . . . , T0

1 is denoted as the transformation matrix between N + 1 scan poses,
i.e., T l

k ∈ R4×4. Equation (2) represents the coordinate system in which the kth scan
transformed into the lth scan

Sk→l =

{
l+1

∏
j=k

T j−1
j pi | pi ∈ Sk

}
(2)

In Ref. [4], in order to generate the residual image and fuse it into the current range
image, transformation and re-projection are required. First, the transformation estimate
defined in the ego-motion is compensated according to Equation (2) by transforming
the previous scan to the current given local coordinate system, and next, the Sk→l of the
past scans are re-projected to the current range image view using Equation (1). In order to
calculate the residual dl

k,i for each pixel i, we use the normalized absolute difference between
the range of the current frame and the transformed frame to calculate, as defined by

dl
k,i =

∣∣∣ri − rk→l
i

∣∣∣
ri

(3)

where ri is the range value from pi to the current frame at the image coordinates (ui, vi),
and rk→l

i is the range value from the transformed scan to the pixel in the same image. In the
scene of moving objects, the displacement of the moving car is relatively large compared
to the static background, and the residual image is obvious, while the residual image of
the slowly moving object is blurred and the residual pattern is not obvious. Therefore,
direct use of residual images for moving object segmentation cannot achieve good perfor-
mance. Finally, we concatenate the residual image and the range view as the input of the
segmentation network, and each pixel fuses the spatial and temporal information.

3.3. Network Architecture

In this paper, our proposed network is mainly divided into two branches: context
path and spatial path, which respectively extract feature information and then fuse these
feature information. The architecture of our proposed CNN for point-cloud moving object
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segmentation is shown in Figure 2. The backbone module utilized in the context path
branch is ResNet-18 [40] for eight times fast down-sampling. Subsequently, the extracted
features are fed into the Atrous Spatial Pyramid Pooling (ASPP) [41] module in order to
connect features from different perceptual domains. ASPP builds convolution kernels with
different receptive fields through different dilated rates to increase the receptive fields
of the network and enhance the ability of the network to obtain multi-scale context, so
as to obtain good performance. However, from the perspective of hardware (GPU or
FPGA), dilated convolution has low efficiency and slow inference speed, and the larger
the dilated rate, the longer the convolution processing time. Therefore, our network keeps
the dilated rate as 2, and this method can simulate the function of ASPP without reducing
the computational efficiency of GPU and NVDLA. Next, a global context module (GCM) is
introduced to extract contextual information and guide feature learning of the current path.
GCM consists of a global average pooling layer and a 1× 1 convolution layer that extracts
global context features.

Figure 2. Architecture of the proposed CNN for point-cloud moving object segmentation.

The spatial path mainly retains rich spatial information to generate high-resolution
feature maps, which only contains four convolutional layers. The first three convolutional
layers are stride = 2, and 1/8 feature maps are extracted. The feature fusion module
(FFM) [42] is used to fuse the features of context branch and spatial branch at different scales.
Therefore, the features of the two channels cannot be simply weighted, but superimposed
by concatenation method. FFM combines the attention mechanism for feature fusion,
mainly including global pooling layer, 1× 1 convolution layer, ReLU activation layer and
Sigmoid layer. At the end of the network, in order to output the moving object segmentation
results of the original image size, the mainstream high-performance segmentation networks,
U-NET [43] and FCN [44], use layer skip connection for up-sampling. This requires a GPU
or FPGA for more computation and data movement. Therefore, we up-sample the FFM
output eight times using a bi-linear interpolation algorithm.

3.4. Training Details

We implemented a 3D LiDAR point-cloud moving-object segmentation network using
PyTorch and trained on a single NVIDIA RTX 3090TI GPU. We use the method of [4] to train
the network, process all point clouds according to Equations (1)–(3), and generate 64× 2048
range views and residual images respectively. The residual images are then concatenated
with the current range image and used as input to a 2D convolutional neural network.
Trained with the new binary masks, the proposed method can separate moving and static
objects label maps. During training, the network is trained with an initial learning rate of
0.01 and a weight decay of 1 × 10−4.
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3.5. Dataset and Evaluation

SemanticKITTI [45] is a large-scale dataset for semantic scene understanding of 3D
LiDAR point cloud sequences, including semantic segmentation and semantic scene com-
pletion. The dataset contains 28 annotated categories such as pedestrians, vehicles, parking
lots, roads, buildings, etc., which further distinguishes static objects from moving objects.
The raw odometry data consists of 22 sequences of point cloud data. We follow the same
protocol in [17], where the sequences 00–10 are used for training and the sequence 08 is
used for validation. The remaining sequences 11–21 are used as the test set. All classes
are reorganized into two types: moving and non-moving/static objects according to [4].
The former one contains actually moving vehicles and pedestrians, all other classes are
non-moving/static objects.

In order to evaluate the MOS performance, we follow the official guidance, using the
Jaccard index or IoU [46], which is:

IoU =
TP

TP + FP + FN
(4)

where TP, FP, and FN correspond to the number of true-positive, false-positive, and false-
negative predictions for the moving classes.

Referring to the evaluation method proposed in [4], we use IoU to evaluate the
accuracy of moving object segmentation in LiDAR point clouds. Table 1 shows the MOS
performance compared to the state-of-the-art on the SemanticKITTI test set. Table 2 shows
the results of the validation set. Since all operations of our network are supported by
NVDLA, the network complexity is reduced and no semantic information is added. Thus,
when our proposed model uses N = 8 residual images, the best performance IoU score
(51.3%) is obtained, but slightly lower than the baseline LMNet [4] on the test benchmark.

For qualitative evaluation, Figure 3 shows the qualitative results of different methods
on the SemanticKITTI test set. Meanwhile, the qualitative results of the point clouds are
shown in Figure 4. In the intersection in the figure below, there are a large number of
moving objects and non-moving/stationary objects such as moving vehicles and walking
people; our method can distinguish between actual moving vehicles and pedestrians, while
other methods cannot detect slow-moving objects.

Table 1. MOS performance compared to the state-of-the-art on the SemanticKITTI test set.

Methods IoU (%)

SceneFlow [25] 28.7
SpSequenceNet [27] 43.2

SalsaNext [18] 46.6
LMNet [4] 62.5

BiSeNet [42] 45.1
Ours 51.3

Table 2. MOS performance compared to the state-of-the-art on the SemanticKITTI validation set.

Methods IoU (%)

SalsaNext [18] 48.6
LMNet [4] 65.3

BiSeNet [42] 46.1
Ours 52.4
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Qualitative results of different methods on the SemanticKITTI test set, where red pixels
correspond to moving objects (range view images). (a) Range Image; (b) Ground Truth Labels;
(c) BiSeNet (retrained); (d) SalsaNext (retrained); (e) LMNet; (f) ours.

(a) (b)

(c) (d)

Figure 4. Qualitative results shown as point clouds. (a) Raw Point Cloud; (b) Ground Truth Labels,
and (c,d) prediction results, where red points correspond to the class moving (c) LMNet; (d) Ours.

3.6. Ablation Studies

In this section, some ablation experiments on the validation set (sequence 08) of the
SemanticKITTI dataset are conducted to analyze the effect of each component’s performance
shown in Table 3. As shown in Table 3, it can be observed that the IoU of the dual-branch
architecture can be increased by 9.6% compared to that of the single-branch architecture.
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On this basis, FFM, GCM, ASPP, and their combination are added. It is worth noting that
the IoU of our proposed final setup can achieve 52.4%.

Table 3. Ablation study of components on the validation set. CP: Context Path; SP: Spatial Path;
GCM: Global Context Module; FFM: Feature Fusion Module.

Methods IoU (%)

CP 33.6
CP + SP + Sum 43.2
CP + SP + FFM 45.1

CP + SP + FFM + GCM 47.4
CP + SP + FFM + GCM+ASPP 52.4

In our design, the K-Nearest Neighbor (KNN) post-processing is used to back-project
the 2D prediction result to the 3D point cloud. In order to verify the attractive performance
of the KNN post-processing in our proposed design, the comparison with regard to the
back-projection between the Conditional Random Field (CRF) post-processing and the
KNN post-processing is provided in Table 4. As shown in Table 4, compared to CRF
post-processing, KNN post-processing results in better IoU performance. Figure 5 shows
the qualitative results of different post-processing methods for MOS on the validation
set. The qualitative results prove that the KNN can handle the blurred boundary of
moving objects in a better way. This also obeys our expectation. Due to the fact that,
during dimension reduction, different 3D points belonging to different categories might
project into the same pixel in the 2D range image. Considering the principle of CRF, it
contributes little to solve this issue if it is applied to a 2D range image. While KNN counts
nearest points in 3D space rather than 2D.

Table 4. Comparison of the post-processing between the KNN and the CRF on the validation set.

Methods IoU (%)

(1) KNN 52.4
(2) CRF 49.1

(a) (b)

(c) (d)

Figure 5. Qualitative results of different post-processing methods for MOS on the validation set,
where red pixels correspond to moving objects (range view images). (a) Range Image; (b) Ground
Truth Labels; (c) CRF; (d) KNN.

3.7. Run-Time Evaluation on GPU

In autonomous driving systems, the processing speed of the moving object segmen-
tation network must meet real-time requirements. To get a fair performance evaluation,
all measurements are evaluated on the SemanticKITTI dataset 08 sequence using a sin-
gle NVIDIA RTX 3090TI-24GB card and the network performances are shown in Table 5.
Compared to the state-of-the-art network LMNet [4], our model clearly shows better per-
formance, the running time is 35.82 ms, and the amount of network parameters is about
2.3 M, which is reduced to 1/3 of that in LMNet [4].
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Table 5. Run-time performance on the SemanticKITTI validation set.

Processing Time Speed Parameters

BiSeNet [42] 56.3 ms 18 fps 13.76 M
LMNet [4] 42.21 ms 23 fps 6.71 M

MotionSeg3D [31] 116.71 ms 8 fps 6.73 M
Ours (GPU) 35.82 ms 28 fps 2.3 M

Ours (FPGA) 31.69 ms 32 fps 2.3 M

Figure 6 shows the inference speed vs. IoU on the validation set. For practical use in
embedded systems on autonomous vehicles, the IoU of our design in GPU and FPGA is
sacrificed to achieving the higher inference speed compared to the other methods. Note that
our implementation runs significantly faster than the 10 Hz sampling rate of mainstream
LiDAR sensors [47].

Figure 6. Inference speed vs. IoU on the SemanticKITTI validation set. Red star indicates our method
in FPGA, the blue star indicates our method in GPU, and colored dots represent other methods.

4. Hardware Architecture

The hardware architecture of the point cloud moving object segmentation network is
shown in Figure 7. It consists of processing system (ARM core) and programmable logic
(FPGA) parts. ARM core is used to complete pre-processing and post-processing, such as
point cloud reading, image resizing [48], result showing, etc. On the FPGA side, an NVIDIA
Deep Learning Accelerator (NVDLA) like system is implemented. We tailor it and adopt it
into FPGA.

The core of the convolutional engine is the MAC array. In this work, the size of the
MAC array is chosen to be 32× 32. To improve the processing speed and alleviate the
bandwidth requirement between FPGA and DDR memory, NVDLA adopts a Ping-Pong
buffer. Different from a micro-controller in NVDLA, we implement a finite state machine
(FSM) to control the running order of CNN operations. In this study, we quantize the
neural network to INT8 for high computation efficiency.

Figure 7. Hardware architecture of the CNN accelerator on the FPGA.
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5. Results and Discussion

The target hardware platform is the Zynq UltraScale+ MPSoC ZCU104 development
board. Figure 8 exhibits the overall system setup with LiDAR connected to the FPGA board
directly, which demonstrates our experiment setup. The LiDAR driver is implanted in
the ARM processor on ZCU104 board and connected to LiDAR via UDP protocol on the
Ethernet port. The ARM processor receives each set of point cloud data from LiDAR and
stores it into DDR memory for NVDLA fetching.

Figure 8. Overall system setup with LiDAR connected to the FPGA board directly.

The hardware resource usage of our proposed neural network is shown in Table 6. This
design has used 91.84% of the DSP resources, if the parallelism is increased, a larger FPGA
needs to be used. Table 7 shows the run-time performance of the proposed approach on
SemanticKITTI Dataset. It can be observed that when running at 250 MHz, this accelerator’s
processing speed is 32 fps. The estimated power consumption of the FPGA implementation
is 12.8 W. The only real-time solution currently available, SalsaNext [18], runs on Nvidia
Quadro P6000 GPUs and requires 600–650 W PC power support. Therefore, our solution
provides a balanced and practical approach for running LiDAR point cloud moving object
segmentation tasks on embedded devices. Since there are few 3D point-cloud moving
object segmentation implementations on FPGA, the performance and hardware resource
utilization comparison with similar works is not yet available.

Table 6. FPGA Resource utilization for the CNN accelerator.

FPGA Resource Used Available Utilization

LUT 102,707 230,400 44.58%
FF 114,221 460,800 24.79%

DSP 1587 1728 91.84%
BRAM 162 312 51.92%

Table 7. Run-time Performance of the Proposed Approach on SemanticKITTI Dataset.

Device Precision Processing time Speed

GPU FP32 35.82 ms 28 fps
FPGA INT8 31.69 ms 32 fps

6. Conclusions

In this study, we proposed a lightweight CNN architecture for LiDAR point-cloud
moving object segmentation. Edge deep learning accelerators are designed with their
limitations and computational efficiency in mind, and our proposed network structure
fully supports all operations of NVDLA. On SemanticKITTI dataset, the processing time of
the network on RTX 3090TI GPU is 35.82 ms and the IoU score of 51.3% is achieved. When
compared to the state-of-the-art network, the network achieves a similar error performance,
but using only 34% of the parameters. In addition, the proposed network successfully
targets the MPSoC FPGA platform using NVDLA hardware architecture. The system
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successfully achieves efficient and accurate moving-object segmentation of LiDAR point
clouds at 32 fps, which meets the real-time requirements of autonomous vehicles.

However, some potential problems need to be solved in the future. First of all, in order
to reduce the computational complexity of our proposed network, we plan to simplify the
original structure and remove the time-consuming cross-layer connections while ensuring
its high performance. Secondly, due to acceleration of the model inference, the low-level
details mostly sacrificed, which leads to a considerable decrease in accuracy. In view of this,
the spatial path would be improved by capturing the low-level details with wide channels
and shallow layers in our future works.
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