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Abstract: Effective livestock management is critical for cattle farms in today’s competitive era of smart
modern farming. To ensure farm management solutions are efficient, affordable, and scalable, the
manual identification and detection of cattle are not feasible in today’s farming systems. Fortunately,
automatic tracking and identification systems have greatly improved in recent years. Moreover,
correctly identifying individual cows is an integral part of predicting behavior during estrus. By doing
so, we can monitor a cow’s behavior, and pinpoint the right time for artificial insemination. However,
most previous techniques have relied on direct observation, increasing the human workload. To
overcome this problem, this paper proposes the use of state-of-the-art deep learning-based Multi-
Object Tracking (MOT) algorithms for a complete system that can automatically and continuously
detect and track cattle using an RGB camera. This study compares state-of-the-art MOTs, such as
Deep-SORT, Strong-SORT, and customized light-weight tracking algorithms. To improve the tracking
accuracy of these deep learning methods, this paper presents an enhanced re-identification approach
for a black cattle dataset in Strong-SORT. For evaluating MOT by detection, the system used the
YOLO v5 and v7, as a comparison with the instance segmentation model Detectron-2, to detect and
classify the cattle. The high cattle-tracking accuracy with a Multi-Object Tracking Accuracy (MOTA)
was 96.88%. Using these methods, the findings demonstrate a highly accurate and robust cattle
tracking system, which can be applied to innovative monitoring systems for agricultural applications.
The effectiveness and efficiency of the proposed system were demonstrated by analyzing a sample
of video footage. The proposed method was developed to balance the trade-off between costs and
management, thereby improving the productivity and profitability of dairy farms; however, this
method can be adapted to other domestic species.

Keywords: cattle detection; cattle tracking; deep learning; multi-object tracking; precision livestock
farming; re-identification

1. Introduction

Cattle are one of the most commonly raised livestock and a primary protein source for
people across numerous cultures and geographic regions. Managing the health of cattle
improves productivity and is ideally performed by monitoring individual cows. Moreover,
behavior has been well-established as a strong indicator of cattle health. However, manually
monitoring the behavior of individual cows is not practical or sustainable with the existing
staffing and workflow.

Ranches and dairy farms often contain many similar cattle, which are difficult to
distinguish visually. With the development of modern information and automation tech-
nology, automated cattle monitoring has become practical. With improvements in sensor
technology and wireless network technology, researchers have adapted traditional solu-
tions into numerous methods including: mechanical, electronic, and biometric solutions.

Sensors 2023, 23, 532. https://doi.org/10.3390/s23010532 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010532
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3435-2197
https://orcid.org/0000-0002-3623-2984
https://doi.org/10.3390/s23010532
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010532?type=check_update&version=2


Sensors 2023, 23, 532 2 of 21

Unfortunately, these methods are disadvantageous in many ways. For example, ear tags
cause stress on the cattle and may also be lost or damaged over time. Radiofrequency
identification (RFID) technology is also commonly used to track cattle. This technology
requires active RFID tags attached to the cattle, tag readers, and radio communication
between them, thus requiring a high initial cost and negatively impacting the cattle’s health
and well-being. The purpose of our future research is to detect and analyze the estrus
behavior of cattle. Although the IoT (Internet of Things)-based wearable wireless sensors
such as Lora and BLE are available, it is necessary to install the device on the body of the
animal. If one uses these wearable devices, installing them on the tailhead of each cow
is necessary. Thus, the cattle are stressed when wearing those devices for twenty-four
hours, seven days a week. In addition, the accuracy of the sensor results cannot be checked.
Low-cost trackers based on the IoT devices have many adverse impacts on the livestock
and farms, including network connectivity, power dependence, higher costs, and adverse
health issues.

Computer vision is a more practical approach that does not require attaching any
material or a sensor to the cattle being monitored [1]. Vision technology is an integral
part of the Fourth Industrial Revolution. With the rapid growth of Industry 4.0, manual
monitoring of individual animal behavior on commercial livestock farms is no longer
sustainable for the workflow [2]. Currently, there is significant research applying deep
learning and computer vision techniques to precision livestock farming and promoting the
development of intelligent systems for use on livestock. An essential focus of this research
is multiple-object detection and tracking for remotely monitoring numerous animals and
capturing their activities.

In a computer vision-based system, the applications of deep learning and neural
networks are becoming sophisticated, and their use in models for object detection has
increased substantially. Such object detection systems are finding many uses in real-world
applications, such as autonomous driving, robot vision, and video surveillance. Popular
one-stage object-detection systems include the Regions with Convolutional Neural Network
features (R-CNN) [3], You Only Look Once (YOLO) [4–11] and its variants, as well as the
Single Shot Multi-Box Detector (SSD) [12]. Rather than a traditional, selective search, the
Faster R-CNN is a feature extractor that uses a region proposal network (RPN) [13] to check
for the occurrence of an object. As an extension of the Faster R-CNN, the Mask R-CNN [14]
is an example of a two-stage deep learning network that performs region segmentation at
the pixel level.

From these related studies, we can see that these non-contact monitoring methods
have facilitated automation and improved the accuracy of precision dairy farming. The
above mentioned deep-learning algorithms work well in detecting objects in static images.
While multi-object detection refers to locating several objects belonging to a category of
interest within the image, multi-object tracking can be described as tracing the movement
of objects throughout a consecutive number of video frames, and consistently assigning
individual object IDs.

In recent years, many research studies have sought to adapt deep learning and com-
puter vision techniques to promote the development of smart livestock farming. Farm
animals besides cattle have also featured in deep learning applications as part of the In-
dustry 4.0 smart farming. In 2020, a study developed an automatic sheep counting system
based on multi-object detection, tracking, and extrapolation techniques [15]. In 2022, a
semantic segmentation and counting network was proposed to improve the segmentation
accuracy and efficiency of counting pigs, an application requiring sophisticated image
segmentation [16]. Another paper proposed a new solution to automatic cow detection and
tracking, which optimized cow tail detection and tracking with an improved single-shot
multi-box detector (SSD) and Kalman filter [17]. In 2021, a Holstein cattle open dataset was
developed [18], but no dataset then existed for black cattle re-identification. This gave us
an idea for improving the tracking phase in a farm management system.
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We have previously developed a method of detecting and analyzing cattle mounting
behavior [19]. We presented an approach to detect and track individual cattle outdoors,
using inexpensive color (RGB) surveillance cameras under typical commercial farm condi-
tions. This approach does not use individual cattle identifiers such as RFID due to their
impracticality and other concerns. The multi-object tracking algorithm assigns a unique
ID to each target, and this ID remains constant throughout the sequence. Before tracking,
the detection algorithm obtains the object information in each frame. Therefore, tracking
performance mainly relies on the detection results [20,21].

This paper proposes two contributions that are unique to our research. The first is
an improved Strong-SORT [22] algorithm featuring a re-identification method for black
cattle tracking, and the second is the comparison of the use of an extended Detectron-2 [23]
with a customized light-weight tracking algorithm. According to the literature review,
multi-object-tracking has never been performed on a black cattle dataset. We implemented
a way of tracking cattle through deep learning-based multi-object tracking algorithms.
Since the cattle are black and constantly moving, it is hard to rely solely on tracking them
by their appearance. This too often results in an ID switch or counting mistake due to
occlusion. Since YOLO v5 is a one-stage detector, we used it as our baseline detector. The
main contributions of the study are summarized as follows:

• We compared the use of the cutting-edge detector YOLO v7 with the two-stage detec-
tion and instance segmentation of Detectron-2;

• We developed a customized tracking algorithm after comparing two state-of-the-art
MOT algorithms, Deep-SORT and Strong-SORT;

• We used ResNet 50 as the backbone and modified the Strong-SORT algorithm by
building a re-identification network structure for feature extraction in the appearance
feature stage to make it more suitable for the black cattle dataset;

• We built the Re-ID dataset and presented a process for producing a semi-automatic
nested dataset;

• We conducted extensive experiments on a large-scale dataset to validate the proposed
approach. The results have indicated that our customized tracking algorithm enables
high accuracy in tracking livestock.

The rest of the paper is composed of five sections. Section 2 describes the data used for
this analysis and explains the methods applied in this article. Section 3 is the experimental
implementation design, and Section 4 describes the experimental results and discussion.
Finally, Section 5 concludes this article.

2. Materials and Methods
2.1. Self-Built Dataset Acquisition

The data used in this research were from the customized dataset supported by the
Sumiyoshi Ranch, University of Miyazaki, Japan. These self-collected images are more
complex and closer to real-life conditions; therefore, they are ideal for testing the merits
of the proposed method. The surveillance camera setup monitored 10 to 20 cattle, as
illustrated in Figure 1. Cattle were free to move about in this outdoor environment. The
images were continuously captured by a GV-FER5700 fish-eye camera located on top of
a barn, providing the best possible view. Data for Japanese black cattle were collected
for 24 h a day at 25 frames per second from 25 May to 6 June 2022, for a total of 11 days
of raw video. The image sequences also included the walking and lying positions of the
cattle. The processing of the dataset was challenging for the following reasons: (1) the cattle
changed posture frequently; (2) they were the same variety and colored similarly; (3) the
lighting changed continually; (4) a complex background (including trees and ground) was
difficult to distinguish from individual cattle. Images acquired in the morning were in a
low light, while images at noon were over-illuminated with strong shadows. These lighting
problems can cause the deep learning algorithms to inaccurately learn patches or shadows
as cattle features. In some rare cases, wet soil cannot be differentiated from the cattle. Our
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researchers manually annotated 3857 images in the dataset (80% and 20% for training and
validation, respectively). We have used an unknown dataset for the testing dataset.
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Figure 1. An illustration of the ranch layout.

The challenges have largely resulted from the fact that the data were collected in real-
world conditions within a commercial farm environment. For example, there were many
annotations per image in the dataset because the cattle were often densely packed into a
small space. This made separating the cattle very difficult, even using manual annotations.
The larger the scale and higher the quality of the data, the more successfully the model can
generalize. To address this problem, data augmentation methods using geometric changes,
flipping, rotation, clipping, scaling deformation, and affine operations were applied to the
dataset. Also, mosaic augmentation was utilized to enhance images. These methods can
increase diversity and variation in data samples to a certain extent, as explained in the
following Table 1.

Table 1. The explanation of the dataset.

Dataset Number of
Videos

Number of
Images

Image
Enhancement Method

Image
Resolution

Training set 30 3086 Mosaic
augmentation 2560 × 2048

Validation set 5 771 - 2560 × 2048
Total 35 3857 - 2560 × 2048
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When labeling images in the cattle dataset for training, the nested dataset production
process featuring the Detectron-2 framework for automatic object detection and segmenta-
tion was used. When some objects are difficult to detect, manual annotation is inevitable.
Blurred images of small cattle must be annotated manually as they are especially difficult to
detect automatically. A combination of manual and automatic annotation will help reduce
the human workload. The present study proposes an efficient semi-supervised, nested
dataset object detection method, which aims to lower labor costs by reducing the need for
human intervention.

In the experiments, over-detection is utilized to prevent gaps in tracking cows, and the
over-detected regions are removed manually. Moreover, in creating a dataset in a complex
environment, accurate detection of occluded or small cattle is the key to preventing the
identification of cattle. For this reason, in this proposed annotation framework, after the
automatic detection result from the detector was obtained, detection of the missing cattle
began because the small cattle can be occluded or partly obscured behind the bigger cattle,
which is the nature of the dataset.

2.2. The Proposed System

The proposed system aims at comparing the state-of-the-art deep learning tracking
algorithm Strong-SORT with the customized light-weight tracking system.

The proposed cattle detection and tracking system is composed of the following
five processing subsystems: (i) video data processing, (ii) cattle detection, (iii) feature
extraction, (iv) re-identification (re-ID), and (v) tracking. The re-identification part is only
included in the Strong-SORT tracking algorithm. In this part, we proposed the black cattle
re-identification dataset as a modification of the Strong-SORT algorithm. An overview of
the process components and methods are shown in Figure 2.
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2.3. The Object Detection

The object detection combines the recognition and localization of the object. It is
widely used in various applications, such as intelligent traffic, pedestrian counting, animal
recognition, agricultural product pest identification, and defect detection. The Convolu-
tional Neural Network (CNN) is widely used as an important part of computer vision,
and object detection technology based on deep learning has also attracted much attention.
YOLO (You Only Look Once) is a detection algorithm that pursues both accuracy and
speed. It treats detection as a regression problem and can detect objects at fast speeds.

YOLO algorithms have been improving in both speed and accuracy. The YOLO
v1 used pre-defined candidate areas to divide the input image into a grid, and each
grid can predict multiple bounding boxes. Subsequently, the YOLO v2 adopted many
improvements over the YOLO v1, such as normalizing each layer of the network and using
a high-resolution classifier. This classifier improved the mAP of the model, but failed to
solve the problem of small object recognition. The YOLO v3 introduced a residual module
to deepen the network structure. Multi-scale feature information can predict different sizes
of objects and improve the accuracy of small object detection. The YOLO v4 and YOLO v5
have further improved in accuracy and speed. Compared with other versions of YOLO, the
YOLO v5 is light-weight, and can quickly and accurately detect small objects. The YOLO
v7 was released this year, and it includes an instance segmentation module as a branch.

Successful detection is an important precursor to tracking individual cattle. We used
two detectors for this purpose: a one-stage and a two-stage detector. Firstly, we used
Detectron-2 instance segmentation for subtracting the background and proceeding to the
tracking stage. Considering that Detectron-2 outperforms many other detection approaches,
we used its output bounding box to train YOLO.

2.4. Object Tracking

Object tracking techniques have become a fundamental part of real-time video-based
applications that require object correspondence between the frames. According to the
literature, recent advances in multi-object tracking (MOT) have been focusing on two
different approaches: (1) a tracking by detection approach [24] and (2) a joint tracking
and detection approach [25]. Tracking by detection algorithms are used to detect and
classify objects before performing the object association, simplifying the process as tracking
becomes a matter of associating objects over consecutive frames. Recent research has also
employed the Kalman Filter (KF) algorithm [26] as a motion model, which improves the
association of objects over time. SORT [27] is a technique consisting of a KF estimate of
object states. Subsequently, a year later, other authors have proposed Deep-SORT [28] as
an improvement that includes a novel cascading-association step using CNN-based object
appearance features.

The data association algorithm combines similarities in the object appearance features
with the Mahalanobis distance between object states. The Deep-SORT method achieved
a promising frame rate on object tracking benchmarks [29]. Euclidean distances between
extracted object appearance features are used to improve the association step. In 2022,
Strong-SORT achieved a new state-of-the-art performance on the popular benchmarks like
MOT 17 and MOT 20 [30].

Cattle seek shelter according to the weather, which complicates the detection process.
Under these conditions, developing techniques for automatically tracking cattle could
significantly lower labor costs and improve statistical performance. In this paper, we
propose a new customized light-weight cattle tracking approach that can perform under
actual conditions on a cattle ranch without affecting the appearance of the black cattle.
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2.5. Evaluation Methods

To assess the overall performance of our framework, we separately evaluated instance
segmentation and multi-object tracking. For Detectron-2 instance segmentation, the mean
average precision (mAP) is defined as the mean of AP across all the categories (M), which is
shown in Equation (1):

mAP = ∑M
i=1

APi
M

, (1)

For the detection stage, we computed the number of True Positives (TP), False Positives
(FP), and False Negatives (FN) over all the test images, and then calculated Recall, Precision
rate, and F1-score, defined as in the following Equations (2)–(4):

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 =
2TP

2TP + FP + FN
(4)

If the intersection over union (IoU) threshold was set to 0.5 or 50%, the mAP is called
maP_0.5 or mAP@50.mAP_0.5:0.95, meaning that the mAP is with the 0.5 < IoU < 0.95 s.
The tracking performance measure we used was the multi-object tracker accuracy (MOTA).
This is the most common metric for benchmarking MOT solutions [31], as it accounts
for the three types of error that occur: the false negative (FN), false positive (FP), and
identity switch (IDs), as described in Equation (5). False negatives are defined as objects
that are not tracked, false positives are defined as tracked objects which should not be
tracked, and identity switches are when two objects that should be tracked swap identities.
Fragmentations are defined as the number of times an identity switches from “tracked” to
“not tracked”:

MOTA =
∑t FNt + FPt + IDSWt

∑t GTt
(5)

where t is frame index, FN is false negative, FP is false positive, IDSW is ID switch, and GT
is ground truth objects.

3. Experimental Design
3.1. Experimental Setup

All experiments were conducted on a Windows 10 system with an Intel® Xeon®

Gold 6326 CPU @2.90 GHz 16.04, and an NVIDIA RTX a6000 with 32 GB of memory.
The proposed cattle instance segmentation model was based on the YOLO version and
Detectron-2 implementation used by Pytorch. A Python 3.8.11, TensorFlow 2.5.0, and Keras
2.0.8 with GPU are the requirements. The base model was pre-trained on the Microsoft
Common Objects in Context dataset (MS COCO).

3.2. Choice of Detection Model

In the choice of the detection model, four models of YOLO v5, three models of YOLO
v7, and Detectron-2 were used. Each one was constructed using basic backbone networks
with different widths and depths. To select the base model suitable for detecting cows, the
transfer learning method was employed, which uses the COCO dataset with pre-trained
weights. As the balanced dataset was used, no over-fitting occurred during the training
process. Images with different resolutions were introduced into models of different batch
sizes for training. Figure 3 describes the training and validation loss of YOLO v5 on the
cattle dataset. Figure 4 describes the results from the Detectron-2 training.
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3.3. Fitting the Detection Model in the Tracking Process

In this tracking process, the systems describe two tracking algorithms: (1) Modification
of the Strong-SORT-based re-identification dataset, and (2) the proposed customized light-
weight tracking algorithm.

3.3.1. The MOT Network for Automatic Tracking

In this section, the modified Strong-SORT-based re-identification approach [32] is
described. The cattle tracking algorithm presented in this paper has a higher tracking
success rate than the original YOLO v5 with the original Strong-SORT model, and is more
effective and stable in tracking cows. The cattle are detected using the YOLO v7 network
from the detection model, and sent to the Strong-SORT. After that, the algorithm updates
the positions of the tracked targets.

Strong-SORT is an improved version of the Deep-SORT multi-object tracking algo-
rithms, and it includes an association method, which improves the accuracy of tracking
objects for long periods of time and reduces the rate of ID switching. Strong-SORT uses an
appearance branch, which is a stronger appearance feature extractor than Deep-SORT. By
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taking ResNet 50 as the backbone and pre-training on the DukeMTMCreID [33] dataset,
Strong-SORT can extract more discriminative features than Deep-SORT.

A Strong-SORT tracking algorithm contains six main steps. The first step is object de-
tection. The second is pre-processing and threshold selection. The third is feature extraction,
in which the Re-ID model extracts appearance features. The fourth step involves associating
the data with that in the previously detected frame. The fifth is track management, which
includes updating the Kalman filter, as well as initializing and deleting tracks. After the
fifth step of post-processing, the tracking results are obtained. Figure 5 shows the process
for cattle tracking with Strong-SORT.
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Figure 5. Cattle Tracking with Strong-SORT.

In the proposed modified Strong-SORT algorithm, only the black cattle re-identification
part is improved. After cattle are detected by YOLO v5 and YOLO v7, the cattle regions
are forwarded to the Strong-SORT algorithm. Following this, the cattle re-identification
process is initialized, and cattle are identified. The re-identification step is explained in the
next section. Finally, the bounding boxes with IDs are obtained.

3.3.2. The Cattle Re-Identification Dataset

The original Strong-SORT was trained on the Person Re-ID Dataset to extract appear-
ance features. People are distinguished by clothes of various colors and patterns. The
cattle in our dataset are uniformly black, which is the main challenge in re-training the
Strong-SORT feature extractor. Therefore, for the extraction of appearance features of the
cattle, the re-identification is performed. A sample of the cattle Re-ID dataset is shown
in Figure 6.
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Building the cattle re-identification dataset involves other challenges as well, including
intra-class variations, illumination changes, low resolution, and occlusion. The person
dataset contains 751 different classes. The cattle Re-ID dataset consisted of 70 cattle identi-
ties, each with an average of 240 images, totaling 16,800 images (80% for training and 20%
for testing). All annotations were resized to 128 × 128 for processing by a Convolutional
Neural Network (CNN), describe in Table 2. The proposed unsupervised re-identification
network removes the need for annotated datasets. To build the cattle Re-ID dataset, sep-
arating each cow into each group is a necessary step. After the detection stage, cattle
images are saved from the YOLO detector. These are automatically split using a traditional
image processing-thresholding method. Based on the input images, we defined the optimal
threshold parameters to split the group automatically. The best threshold values for each
image are selected by analyzing all of the images. After that, the automatic splitting process
is performed. Subsequently, each same image is kept in the same group as described in
Figure 7. To the best of our knowledge, it is the first work to propose unsupervised Re-ID
models for multi-object tracking.

Table 2. An overview of the CNN architecture used to learn the cattle re-identification.

Layer No. Name Patch Size/Stride Output Size

1 Conv 1 3 × 3/1 32 × 128 × 128
2 Conv 2 3 × 3/1 32 × 128 × 128
3 Max Pool 3 × 3/2 32 × 64 × 64
4 Residual 4 3 × 3/1 32 × 64 × 64
5 Residual 5 3 × 3/1 64 × 32 × 32
6 Residual 6 3 × 3/2 64 × 32 × 32
7 Residual 7 3 × 3/1 128 × 16 × 16
8 Dense 8 - 128
9 Batch Normalization 3 × 3/1 128

10 Relu 3 × 3/1 128
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Figure 7. Building the cattle re-identification dataset with the thresholding method.

In the experiments, the Adam optimizer (Adaptive Moment Estimation) [34], which
is a computationally efficient optimizer, selected a learning rate of 1 × 10−5 and a batch
size of 128. While training with the CNN, the epochs stopped at 100, when the training
accuracy reached 95%. When the training reached 200 epochs, the system overfitted the
data. In order to facilitate training the Re-ID model and avoid overfitting the model, the
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best validated model in the first 100 epochs was used for testing. We used transfer learning,
which can improve the generalization ability of the model [35]. The original weight was
applied and it was used to pre-train the improved re-identification network.

After completing the process of re-identification, the tracking stage of Strong-SORT
is processed.

The proposed modified Strong-SORT tracking stage has the following states with the
parameters shown in Table 3: (1) Tentative State: new tracks that have not been confirmed;
(2) Confirmed State: tracks that have been validated as confirmed; (3) Deleted State: tracks
that will be removed at the end of the iteration. This tracking stage is from the fourth and
fifth steps of the Strong-SORT as described in the previous Section 3.3.1. In Table 3, N_INIT
is the number of frames that a track remains in the initialization phase which is the same
stage as the Tentative State; NN_BUDGET is the maximum size of the cattle store in the
database. The MAX_AGE determines the maximum number of frames for which an ID
will be kept alive (or active) without any valid associations, which is the same state as
the Confirmed State. If an ID is not associated with any detections after the MAX_AGE
number of frames, then the ID is deleted which is the same stage as the Deleted State. This
helps to account for some missed detections (false negatives) by the detection model. The
Strong-SORT tracking results are described in Section 4.

Table 3. Strong-SORT parameters and settings.

Parameters Value

MAX_DIST 0.9
MAX_IOU_DISTANCE 0.8

MAX_AGE 1500
N_INIT 1

NN_BUDGET 100

3.3.3. The Proposed Customized Light-Weight Tracking Mechanism

In this section, to compare with the modified Strong-SORT tracking algorithm, we
proposed a customized light-weight tracking algorithm which is composed of three primary
stages, as shown in Figure 8. Detection is the first stage, adopted from Detectron-2. The
second stage is matching, in which the detections in the current frame with the locations of
detections in the previous frames are associated (Figure 9). The third stage is re-matching,
in which new detections are re-assigned. Sections 3.3.4 and 3.3.5 describe these stages in
more detail.

3.3.4. Matching

After completing the detection stage, we associate the detections in the current frame
through a matching method that is based on the target’s previous locations in previous
frames. Once a cow is detected, the position in the next frame can be calculated according
to Algorithm 1. When some cattle move quickly, the IoU may be too low between frames,
therefore, affecting the matching stage. Similarly, if parts of the cattle are occluded, it affects
the IoU and other components of the score.

3.3.5. Re-Matching

The proposed system matched the detection pairs according to the matching method.
The system defined detections in previous frames, which have N paired detections, and the
current new detections without pairs to the previous detections are called new detections.
Every 30 frames, the system recalls the matching method, which is a re-matching with the
previous detection and the new detection. At frame t in the re-matching stage, the new
detections will re-match with all the previous detections. Once one of the new detections are
successfully re-matched with a previous detection, the new detections will be assigned the
previous detection IDs, which means the correct IDs are assigned. If those new detections
are not re-matched with previous detection IDs, the system assigns them with new tracking
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IDs. The system sets a maximum number of frames after which the IDs that are no longer
in the detection process are deleted. Algorithm 1 describes the customized light-weight
tracking algorithm.
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Algorithm 1. Cattle Tracking

Input: Bounding Boxes and mask-regions for each cow from Detectron-2 detection
Output: IDs, the list of cow IDs
1: Function: Cattle_Tracking (Bounding Boxes, Mask Region):
2: Calculate Euclidean Distance for Aspect Ratio, Centroid values, and differences in Mask Area
for each cow from frame to frame.
3: Perform the following steps for each cow
4. Assign each cow a tracking ID, calculating the distance between the previous and current
frames using the cost function (8):

Ldist = ∑N
i=t

√
(xi − xi−1)

2 + (yi − yi−1)
2

N
(6)

Ardist =
N

∑
i=t

√
(Ari − Ari−1)

2

N
(7)

COST = Ldist + Ardist (8)

where Ldist is the Location Distance; t is the current frame; x, y is the bounding box location; Ldist
is the Average Euclidean Distance from current to N frames; Ar is the Aspect Ratio (Ar = w/h);
and COST is the combination of two distances (Location Distance and Aspect Ratio Distance).
5: Calculate to check the tracking database for the same detected object.
6: Compute the same object-to-tracking ID values from the tracking database.
7: Assign new tracking IDs for new cattle in the tracking database.
8: Return IDs
9: End Function

The system utilized two costs for matching the ID, the location and the aspect-ratio
distances; both are Euclidean distances. In this stage, the system associates detections in
the current frame with the object’s previously detected locations. The location distance is
defined in Equation (6). When matching two detections, a match is more likely when their
union is smaller, and has a larger overlapping area between their corresponding bounding
boxes. A match is also more likely with a higher IoU score, as described in Equation (9):

IoU =
Overlapping Area

Union o f Area
<= 1.0 (9)

To test the performance of the algorithm, we first experimented with 15-min video clips
and then integrated them into a one-hour video to see the results described in Section 4.

4. Experimental Results and Discussion
4.1. Detection Results

In this section, the detection and tracking results of the experimental results are
described. To evaluate the detection performance [36], the precision, recall, mAP of
IOU = 0.5:0.95 and 0.5, and inference time are compared in each of Tables 4–8. Some of them
require high computation power, while others are more efficient in the processing time.
Among these models, the YOLO v5 is the best in both precision, accuracy, and efficiency in
training time. In addition, various CNN baselines are tested for the Detectron-2 feature
extraction process. Various ResNet [37] model sizes of the tested baselines are compared
in Table 7.
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Table 4. The detection results of the different YOLO v5 models.

Model Precision
% Recall% mAP%

(IOU = 0.5:0.95)
mAP%

(IOU = 0.5:)
Inference
Time (s)

YOLO v5s 0.999 0.985 0.928 0.995 3500
YOLO v5m 0.999 0.985 0.936 0.994 3880
YOLO v5n 0.998 0.985 0.884 0.993 3500
YOLO v5l 0.998 0.985 0.994 0.947 4548

Table 5. The detection results with the different YOLO v7 models.

Model Precision
% Recall% mAP%

(IOU = 0.5:0.95)
mAP%

(IOU = 0.5:)
Inference
Time (s)

YOLO v7 0.999 0.985 0.871 0.997 18,292
YOLO v7-X 0.999 0.985 0.891 0.997 7998

YOLO
v7-W6 1.000 0.985 0.896 0.997 7815

Table 6. A comparison with the state-of-the-art one-stage detector.

Model Precision % Recall% mAP%
(IOU = 0.5:0.95)

mAP%
(IOU = 0.5:) Epoch Inference

Time (s)

Faster
RCNN 0.835 0.907 0.953 0.987 1500 2724

YOLO v5s 0.999 0.985 0.928 0.995 100 3500
YOLO v7s 0.999 0.985 0.871 0.997 55 18,292

Table 7. A comparison of the different ResNet backbones for Detectron-2.

Methods Depth Iteration Inference Time (s) Validation Accuracy

ResNet 18 18 1000 3500 0.894
ResNet 50 50 + FPN 1000 3800 0.916

ResNet 101
Original

800 2500 0.914
900 3200 0.921
1000 3340 0.948
1100 3500 0.948

C4 3x 1000 4200 0.929
32 × 8d FPN 3 × 1000 4300 0.948

Table 8. The performance of the two-stage detector for comparison.

Methods mAP @ 0.5 (%) Inference Time (s)

Detectron-2 0.927 6300

4.2. Tracking Results

To evaluate the performance of long-term tracking, a long video of 60 min is used
to test the model’s performance. For a comprehensive analysis of the proposed tracking
method, Table 8 shows the experimental setup and results. Table 9 provides an analysis of
tracking 20 cattle using 15-min video segments. Sometimes, the ID switching issue occurred
because the occlusion between cattle often resulted in false negative detections. If a lost
track reappeared, it was not associated with the correct ID. This was due to the detection
limitations and challenges. Tables 9–11 show the execution time (inference time), which is
the overall processing time for each one-hour video for retrieving the results.
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Table 9. A comparison of the Multi-Object tracking methods.

Methods MOTA ID-Switch Inference Time (s)

YOLO v5 + Deep-SORT 92.52% 10 1260
YOLO v7 + Strong-SORT 95.32% 7 1800

Ours (YOLO v7 + Modified Strong-SORT) 96.88% 4 3600
Ours (Detectron-2 + Tracking) 96.88% 4 3900

Table 10. Details of the counting results for each video clip.

Videos #Cattle Ground Truth #Tracked Cattle MOTA (%)

Clip 1 20 19 98
Clip 2 21 20 98
Clip 3 22 21 98
Clip 4 21 21 100
Clip 5 25 23 97

Table 11. The execution time of each module in the proposed tracking system.

Modules Inference Time (s)

Detection module 1700
Tracking module 7200

Total 8400

Figure 10 shows the results of using one-stage and two-stage detectors. In the result,
the YOLO v7 outperforms the other one-stage detector, which was tested on the same video
clip. The Faster R-CNN object detector achieved especially poor results in detecting small
cattle which were further away from the camera.

Figures 11 and 12 show the qualitative results of using the YOLO v7 with the modified
Strong-SORT, compared with using the YOLO v5 with the Deep-SORT, which contains
the largest number of cattle that were recorded in extreme lighting conditions. Each video
shows the typical cattle movement in the ranch where the cattle were detected and tracked
properly. Despite the inclusion of many cattle, the system tracked accurately. This shows
the proposed system is robust, even with a high density of cattle moving frequently and
with the overlapping images.

The knowledge of social interactions between cattle is fundamental to enhancing
farming conditions and promoting animal welfare. The main goal of the proposed system
was to observe interactions between cattle and identify behavior patterns associated with
estrus. The system first focused on proximity contacts between at least two cattle and then
constructed a trajectory map using this information to highlight the individual patterns of
movement. Figure 13 provides an example of identifying behavior in a test video sequence
with cattle, which can also be used for extracting a distinct contact period by restricting the
frame and ID information.
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5. Conclusions

This study compares various combinations of detectors and tracking methods in the
effort to improve both functions. For tracking cattle, the system also compared the use of a
modified Strong-SORT with the proposed customized light-weight tracking system. As
the main contribution of this study is to develop a complete end-to-end system that can
process raw RGB images in the accurate detection and tracking of black cattle. This system
has overcome the challenges of occlusion and cattle density in real-world conditions on a
farm, with a single RGB camera in a fixed location.

In interpreting the findings of this study, we confirmed that the system achieved
the tracking of the cattle even when tracking is interrupted by occlusion or changes in
illumination. Long-term tracking can provide continuous and automatic monitoring of the
health and welfare status of the animals. Moreover, this tracking methodology can be used
for other species besides cattle, and for detecting behavior such as lameness and mounting.
With improved detection of behavior in estrus, the system can pinpoint the optimal time
for artificial insemination. One challenge of this system is the computing time required for
the real-time processing of the video data. The comparison between the one and two-stage
detection algorithms showed that the one-stage model provided a higher inference speed.

The proposed system compares favorably with other cattle detection and identification
methods. The accuracy achieved in [38] was only 85.4%. This study used a dataset with
5042 images of full cattle bodies and featured the Mask R-CNN detection method using
VGG 16 as the baseline backbone. In contrast [39], achieved 73% accuracy using the YOLO
v3 on 11,754 frames and Dark Net as the backbone. In [40], an accuracy of 94% was
achieved using the deep learning Mask R-CNN on 750 images. In [41], a Faster R-CNN,
this one-stage detection network achieved an accuracy of 89.1%; however, only 43 images
were used. An accuracy of 89.95% was achieved in [42], which used an SDAE detection
method on 1000 images with CNN as the baseline network. In paper [43], the authors used
CNN and LSTM-based identification methods, achieving an accuracy of 88%. In paper [44],
the authors used Temporal Segment Networks (TSN) identification methods and achieved
an accuracy of 84.4%. It is evident that the proposed method is a significant improvement
over other dairy cattle detection algorithms, and the feasibility of detecting and tracking
black cattle is validated at a significant level.

Compared to the aforementioned studies, the proposed system in the present study
used a black cattle dataset. The aim of constructing this dataset is to meet the formidable
challenge of detecting and tracking black cattle without the additional infrastructure.
However, despite the improved performance of the method, the system could still not fully
overcome the ID switching issue, which is one of the most frequently stated problems in
MOT. In this study we found that the ID switching issue mainly resulted from occlusion,
and from when the cattle left the camera’s field of view. Through the combination with other
systems, we are confident that our work will soon enable the more intelligent monitoring
of livestock.

We developed a system based on a comparison of various combinations of deep
learning detection and tracking technologies applied to a black cattle dataset. The ability
to track individual cattle with deep learning is the key to creating a full system that can
provide all the information required for farm management, including the early detection of
the optimal time for artificial insemination. The experiment results show that the proposed
method allows the tracking of cattle for up to 1 h, with a MOTA of 96.88% without the
use of additional hardware and using only a standard RGB camera. The tracks derived
from this system can be used to calculate the behavioral metrics for future work. The
proposed system also introduced different deep learning-based trackers. In summary, we
have proven that our proposed customized light-weight tracking algorithm performs the
best tracking accuracy and is better than the modification of Strong-SORT in our black
cattle dataset.
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In future research we plan to make our tracker more stable by improving the optical
flow and addressing the variability in light intensity. A more significant challenge lies
in effectively implementing deep learning methods. Future work will involve testing
the strategy on more complex trackers and extending our work to apply in real-time
cattle monitoring.
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