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Abstract: In 2011, the International Commission on Radiological Protection (ICRP) recommended
a significant reduction in the lens-equivalent radiation dose limit, thus from an average of 150 to
20 mSv/year over 5 years. In recent years, the occupational dose has been rising with the increased
sophistication of interventional radiology (IVR); management of IVR staff radiation doses has become
more important, making real-time radiation monitoring of such staff desirable. Recently, the i3 real-
time occupational exposure monitoring system (based on RaySafeTM) has replaced the conventional
i2 system. Here, we compared the i2 and i3 systems in terms of sensitivity (batch uniformity), tube-
voltage dependency, dose linearity, dose-rate dependency, and angle dependency. The sensitivity
difference (batch uniformity) was approximately 5%, and the tube-voltage dependency was <±20%
between 50 and 110 kV. Dose linearity was good (R2 = 1.00); a slight dose-rate dependency (~20%)
was evident at very high dose rates (250 mGy/h). The i3 dosimeter showed better performance for
the lower radiation detection limit compared with the i2 system. The horizontal and vertical angle
dependencies of i3 were superior to those of i2. Thus, i3 sensitivity was higher over a wider angle
range compared with i2, aiding the measurement of scattered radiation. Unlike the i2 sensor, the
influence of backscattered radiation (i.e., radiation from an angle of 180◦) was negligible. Therefore,
the i3 system may be more appropriate in areas affected by backscatter. In the future, i3 will facilitate
real-time dosimetry and dose management during IVR and other applications.

Keywords: radiation protection and safety; fluoroscopy; interventional radiology (IVR);
fluoroscopically guided interventional procedures; percutaneous coronary intervention (PCI);
eye lens dose; occupational radiation exposure; X-ray examination; real-time radiation sensor

1. Introduction

Medical radiation (patient radiation doses and occupational exposure) is a major
problem in radiation medicine [1–10].

Interventional radiology (IVR) plays a major role in disease diagnosis and treatment.
IVR is performed using X-ray imaging equipment, catheters, and needles [11–14].

The procedural times of sophisticated IVR and other procedures have lengthened,
increasing the radiation dose and making radiation control very important [15–22].

The 2011 statement of the International Commission on Radiological Protection (ICRP)
reduced the eye-lens exposure limit (the occupational dose) from 150 to 20 mSv/year [23].
It is expected that some medical staff will exceed this, and thus it is essential to evaluate the
dose to the lens. Currently, in Japan, radiation doses delivered to medical staff during IVR
and other procedures are assessed principally using radiation-monitoring badges attached
to the neck, chest, or abdomen. Such badges measure cumulative doses over a long period
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(e.g., 1 month), not the dose associated with each examination or procedure. We think
that it may be difficult to reduce the occupational dose further in the absence of real-time
radiation monitoring in IVR. Originally, the RaySafe i2 (i2) real-time dosimeter was used
(Figure 1a). This has been replaced by the RaySafe i3 (i3) (Figure 1b) [24,25]. According
to the manufacturer, the i3 is better than the i2 in terms of scattered-radiation detection,
easy battery replacement, and analytical performance. Here, we compared the i3 and i2
dosimeters (sensors) [26].
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Figure 1. (a) The RaySafe i2 sensor (44 × 45 mm); (b) The RaySafe i3 sensor (40 × 58 mm). Recently,
the i3 sensor has replaced the former i2 sensor.

2. Materials and Methods
2.1. The i3 Dosimeter

Like the i2 dosimeter, the i3 measures scattered radiation (1 cm dose equivalent) in
real-time, displaying both the dose rate and the cumulative dose (Figure 2). The dose rate
is displayed as a red, yellow, or green bar, from the highest to the lowest dose, that is
refreshed at 1-s intervals; a glance is sufficient to determine whether the dose rate is high.
The i3 system stores dose data; a chronological dose history can be viewed and subjected to
time-series analysis using a PC running dedicated software. Additionally, the i3 dosimeter
uses a replaceable battery as opposed to the i2 dosimeter model in which the battery is
non-replaceable.
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Sensors 2023, 23, 512 3 of 11

2.2. Fundamental Evaluation

We used a diagnostic X-ray system featuring a high-frequency inverter generator
(DHF-155H, Hitachi) to evaluate the i3 system. The total filtration of this X-ray sys-
tem was 3.6-mm-aluminum equivalent. The distance from the X-ray tube to the i3 sys-
tem was 180 cm, and the exposed area (the radiation-field size) at the i3 entrance was
30 × 30 cm. Variation in the sensitivity (batch uniformity) of i3 systems was evaluated by
directly irradiating four i3 systems and an ionization chamber dosimeter simultaneously
(Figure 3). Fluoroscopy was performed for 1 min under three conditions: (1) 65 kV tube volt-
age and 1 mA tube current, (2) 65 kV tube voltage and 0.1 mA tube current, and (3) 40 kV
tube voltage and 0.1 mA tube current. These X-ray output conditions were to simulate
scattered radiation (i.e., a low dose rate). To confirm reproducibility, all measurements were
performed 10 times. An ionization chamber calibrated using the Japan national standard
exposure dose (thimble type 6 mL; Model-9015, Radcal) was used to confirm the stability
of the instrument.
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The tube-voltage dependency of the i3 system was evaluated under the same geometric
conditions as employed when assessing batch uniformity. Fluoroscopy was continuous
over 1 min, as shown in Table 1. Three measurements were made at each tube voltage, and
the averages were calculated. The tube-voltage dependency for the i3 dosimeter was the
ratio of the average i3 value to that of the ionization chamber dosimeter.

Table 1. Fluoroscopic X-ray tube voltage and half value layer.

Tube Voltage (kV) 50 60 70 80 90 100 110

Half value layer (mmAl) 2.0 2.4 2.8 3.2 3.7 4.15 4.7

Dose linearity was measured using the integrated dose for X-ray irradiation of the four
i3 systems under the same geometric conditions employed to evaluate batch uniformity.
The fluoroscopy conditions were a 65 kV tube voltage, 1.6 mA tube current, and 15 min
fluoroscopy time. The i3 integrated doses were recorded at 1, 2, 4, 6, 8, 10, 12, 14, and
15 min after fluoroscopy commencement. The experiment was repeated three times. For
each dataset, the coefficient of determination (R2) was calculated by approximating linearity
using the least-squares method in Microsoft Excel.

The dose-rate dependency of the i3 system was measured at 11 different dose rates
ranging from 20–500 mGy/h. The dose-rate dependency was the ratio of the mean i3 value
to that of the ionization chamber dosimeter. Copper plates were attached to the X-ray tube
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entrance when measuring low dose rates. The i2 dosimeter was evaluated under the same
conditions, and the dose-rate dependencies of the i2 and i3 systems were compared.

The limit of radiation detection of the i2 and i3 systems was evaluated using fluo-
roscopy scatter radiation from an acrylic phantom. The fluoroscopy tube voltages were 60,
80, and 100 kV, and the fluoroscopy durations were 3, 10, and 60 s.

A digital cine single-plane X-ray system (Infinix Celeve-I: INFX-8000F, Toshiba Med-
ical) was used to measure angle dependency. The i3 sensor was placed 75 cm from the
focal point of the X-ray tube and irradiated in free air. The dependency of the i3 sensor
on the X-ray beam angle in air was measured at 0, ±15, ±30, ±45, ±60, ±75, ±90, ±135,
and 180◦ along the vertical and horizontal axes under identical X-ray conditions (70 kV,
HVL, 2.7 mm aluminum, 10 mA, 5 ms); the 0◦ measurement served as the reference value.
The experiment was repeated five times at each angle (Figure 4). This method is that of
Inaba et al. [26].
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3. Results
3.1. Fundamental Evaluation

Table 2 shows the variations in sensitivity (batch uniformity). For the first condition,
the reproducibility of each detector (average coefficient of variation (CV), CV = standard
deviation/mean measurements) was 2.099% (range 1.380–3.192%), and the batch unifor-
mity (CV of each i3 sensor measurement) was 3.239%. For the second condition, the
reproducibility of each detector was 2.216% (range 1.934–2.398%) and the batch uniformity
was 3.431%. For the third condition, the reproducibility of each detector was 4.847% (range
2.291–6.913%) and the batch uniformity was 8.141%.

Table 2. Variations in sensitivity (reproducibility, batch uniformity).

Reproducibility (%) Batch Uniformity (%)

condition (1) 2.099 (range 1.380–3.192) 3.24
condition (2) 2.216 (range 1.934–2.398) 3.43
condition (3) 4.847 (range 2.291–6.913) 8.14

Figure 5 shows the i3 tube-voltage dependency with respect to that of the ionization
chamber dosimeter. Although the i3 value decreased with decreasing tube voltage, the dif-
ference in the i3 and chamber dosimeter values was <±20%, using the 70 kV measurement
as the reference value.
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Figure 6. Dose linearities of the i3 system (vertical axis: i3 measurements; horizontal axis: ionization-
chamber measurements).

Figure 7 shows the dose-rate dependencies. The dose per hour is shown on the
horizontal axis, and the ionization-chamber dosimeter reading divided by those of the i2
or i3 is shown on the vertical axis. At low dose rates, the i2 and i3 responses were similar.
At very high dose rates (250 mGy/h), both the i2 and i3 evidenced dose-rate dependency
(~20%).
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Table 3 shows the limit of radiation detection of the i3 and i2 dosimeters. The i3
dosimeter showed better performance for the lower radiation detection limit compared
with the i2 system.

Table 3. Low radiation detection limit of the i2 and i3 systems.

Tube Voltage 60 kV 80 kV 100 kV

Fluoroscopy Duration 3 s 10 s 60 s 3 s 10 s 60 s 3 s 10 s 60 s

i3 measurements (µSv/h) 57.5 30.5 19.5 59.6 34.5 21.3 48.4 27.3 16.6
i2 measurements (µSv/h) 185.7 46.3 41.3 101.3 31.2 35.2 99.8 39.8 22.2

3.2. Angle Dependency

Figure 8a,b show the results in the horizontal and vertical directions, respectively.
All doses are expressed as relative values, where 1 is the dose at 0◦. In the horizontal
direction, the i3 exhibited a reliable dose response from 0 to ±75◦ with a sensitivity >80%.
In the vertical direction, the i3 exhibited a reliable dose response from 0 to +65◦ and
0 to +270◦ (−90◦) with a sensitivity >80%. Figure 9a,b show the i2 sensitivities in the
horizontal and vertical directions, respectively. i3 evidenced better angle dependency than
that of i2. Furthermore, using the i2 sensor, the influence of backscattered radiation must
be considered.
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4. Discussion

Safety measures to prevent radiation exposure are important due to the risk of
radiation-induced injuries, such as skin damage in patients and cataracts in medical
staff [27–37]. Therefore, increasing attention is being paid to radiation safety and pro-
tection for patients and medical staff, particularly related to IVR [38–47].

Radiation monitoring badges (e.g., glass badges) and pocket dosimeters are used
extensively to assess radiation doses to medical staff. Glass badges measure long-term
exposure, but they cannot be used for real-time measurements. Pocket dosimeters measure
doses in real-time, but must be constantly checked. Unlike the i3 system, pocket dosimeters
do not display doses in real-time on a monitor. Dosimeters placed in the vicinity of the
lens, such as the Eye-D and DOSIRIS, can also be used [26,48–52]; the passive DOSIRIS
dosimeter, which does not provide real-time monitoring, was designed to measure the lens
dose, but the real-time i3 system may be more effective for reducing occupational doses.
The use of dosimeters such as the i3 will be valuable in situations such as IVR, in which
exposure doses are high and instantaneous monitoring is required [53–58].

Real-time monitoring is important to minimize the exposure of medical staff and to
ensure adequate protection [59–64]. To the best of our knowledge, this is the first detailed
fundamental study of the ability of the i3 dosimeter to monitor the real-time occupational
doses of IVR staff. The reproducibility of each i3 system and the batch uniformity among
the systems were both approximately 5%, thus comparable with or better than those of the
i2 system.

In terms of tube-voltage dependency, the lower the tube voltage, the slightly lower the
i3 value. However, if the ratio of the values measured at 70 kV was set to 1, the difference
between the 50 and 110 kV values was <±20%, thus well within the ±25% range of the
Raysafe instruction manual [25].

The dose linearity of the i3 system was good (R2 = 1). It was reported previously
(Inaba [26]) that the i2 dose linearity is also good (R2 = 1). The i2 and i3 systems may be
similar in this respect.

In terms of the dose-rate dependency, a decrease in sensitivity was observed at high
dose rates (e.g., 250 mGy/h) for both dosimeters. As the scattered radiation received by
an IVR physician is lower than this, we do not perceive a clinical problem. In detail, the
diagnostic reference level (DRL) of the patient reference fluoroscopy dose rate during IVR
in Japan (Japan DRL2020 [65]) is 17 mGy/min (i.e., 102 mGy/h). An IVR physician may
receive between 1/1000 and 1/500 of the patient entrance dose, so, it has been thought that
IVR physicians are not exposed to high dose rates (e.g., 250 mGy/h).
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The angle dependency of the i3 system was good in both the horizontal (0 to ±75◦)
and vertical (0◦ to +65◦ and –90◦) axes. The angle dependency of the i3 was better than that
of the i2. Regarding the semiconductor sensor and the internal structure of the dosimeter,
there is no detailed information disclosure from the manufacturer. Figure 10 shows X-ray
photographs from the i3 and i2 dosimeters. We speculate that the X-ray sensor of the i3
dosimeter has improved angle dependency by being placed at the bottom of the sensor
compared to the i2 dosimeter in which the sensor is located at the upper right side.
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Figure 10. X-ray photographs for the i3 and i2 dosimeters.

Behind the sensor, i2 sensitivity almost doubled, whereas i3 was insensitive. When a
dosimeter is mounted on the head or neck, backscattering must be considered. As the i3 is
insensitive behind the sensor, such effects can be ignored.

The basic performance of the i3 system was thus equal to or better than that of the
i2 system; the i3 should be preferred by medical staff. Although pocket dosimeters can
measure doses in real-time, the i3 dosimeter is better because a glance at the display reveals
the current dose, increasing radiation awareness.

In summary, the dose limits for medical personnel have been reduced in many
countries; in Japan, the dose limit was significantly reduced from 150 to an average of
20 mSv/year over a 5-year period. Personal dose management is becoming increasingly
important. Currently, badges (e.g., glass badges) and pocket dosimeters are used by med-
ical staff; in the future, real-time dosimeters may become more important, especially in
IVR. We previously reported the basic performance of the former i2 system (i2 sensor).
Recently, a new i3 dosimeter (sensor) was developed to replace the i2 sensor. Here, we
evaluated the basic performance of the new sensor (i3 system). The results show that the
basic performance of the new i3 sensor is the same as or better than that of the i2 sensor. To
date, it has not been possible to determine the chronological dose history (e.g., the dose
rate, and exposure duration); the i3 system enables history determination at a glance. The
i3 dosimeter is appropriate for clinical use, exhibiting especially good angle dependency.
Such dosimeters will remain important in the future.

5. Conclusions

The i3 dosimeter performs as well as, or better than, the i2 dosimeter. The angle
dependency of the i3 is particularly good. Furthermore, unlike the i2, the i3 can be used in
areas exposed to backscatter. In the future, i3 will facilitate real-time dosimetry and dose
management during IVR and other applications.
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