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Abstract: Fused deposition modeling (FDM) is a form of additive manufacturing where three-
dimensional (3D) models are created by depositing melted thermoplastic polymer filaments in layers.
Although FDM is a mature process, defects can occur during printing. Therefore, an image-based
quality inspection method for 3D-printed objects of varying geometries was developed in this study.
Transfer learning with pretrained models, which were used as feature extractors, was combined
with ensemble learning, and the resulting model combinations were used to inspect the quality of
FDM-printed objects. Model combinations with VGG16 and VGG19 had the highest accuracy in
most situations. Furthermore, the classification accuracies of these model combinations were not
significantly affected by differences in color. In summary, the combination of transfer learning with
ensemble learning is an effective method for inspecting the quality of 3D-printed objects. It reduces
time and material wastage and improves 3D printing quality.

Keywords: fused deposition modeling; image analysis; quality inspection; transfer learning;
ensemble learning

1. Introduction

The advent of Industry 4.0 has birthed a fresh pursuit for increasingly productive
and cost-efficient manufacturing technologies, and three-dimensional (3D) printing has
become a key technology for parts manufacturing. Fused deposition modeling (FDM) 3D
printing is currently the most popular type of 3D printing in the consumer space, and it
has found applications in many industries [1–4]. FDM can be used to quickly generate
proofs of concept for geometrically complex products [5,6], and it is a valuable tool for
versatile manufacturing because of its ability to use a wide variety of filament materials [7].
Furthermore, FDM requires little postprocessing and has short processing times [8–11].
However, it takes many hours to produce large parts via FDM printing, and it is possible for
various defects to form during this process, which may degrade the final product or cause
it to fail. This increases the time, material, and effort required. Therefore, it is necessary
to monitor printing quality, and visual inspection is by far the best way to obtain timely
feedback. Hence, many technological innovations for this purpose have been based on
visual inspection.

There are numerous examples in the literature where machine learning and deep
learning have been successfully used to detect warping and delamination, measure surface
roughness, monitor the 3D printing process, and predict printing quality. For example,
supervised learning algorithms such as the naive Bayes classifier [12–14], k-nearest neigh-
bors [13], random forest [13], decision tree [13,14], and support vector machine [13,15,16]
have been used to train models to predict and detect defects. Accuracy comparisons have
been performed among various convolutional neural networks (CNNs) [13,17–19]. Further-
more, CNNs have been combined with various machine learning methods to evaluate the
accuracy of defect-detection models [20–22]. The CNNs have also been utilized in image
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quality assessments [23]. Zhou et al. proposed to utilize a dual-stream convolutional neural
network that simulates dual views of the human visual system to predict the perceptual
quality of stereoscopic images [23].

Over time, numerous CNNs have been developed to increase the classification accu-
racy. Simonyan and Zisserman were the first to propose the use of very deep CNNs to
increase the fineness of the extracted features [24], which culminated in the emergence
of the Visual Geometry Group (VGG) series of CNNs for image recognition and classifi-
cation [25–28]. Szegedy et al. proposed the Inception architecture, which increases the
computational efficiency and facilitates increases in the network depth and width [29].
Szegedy et al. subsequently added batch normalization layers to regularize intermediate
features, which significantly accelerate learning and convergence, and they reduced the size
of the feature map by using factorization with parallel pooling and convolution [30]. Since
the gradients may vanish or explode in very deep networks, and degradation can occur if
the depth of an optimal shallow network is increased, He et al. proposed the learning of
residuals to address this problem. By adding residual connections (skip connections) to
the outputs of a CNN, the accuracy could be improved in very deep networks. This led
to the creation of the ResNet series [31,32]. ResNet has been used for fault diagnosis in
industrial manufacturing [33,34], rolling bearings [35], and rotating machinery [36]. The
increases in network depth and width facilitated by the ResNet architecture led to tremen-
dous improvements in CNN performance. ResNet has also been utilized as a pretrained
model for image quality assessment. Sun et al. utilized six ResNet34s to extract features
from six views of 360-degree images and combined them with a regressor for image quality
assessment of VR devices [37].

In 2019, Tan et al. used the neural architecture search (NAS) technique in Google
AutoML to design a baseline network, and they scaled the width, depth, and resolution of
this network using the compound coefficient to create a family of models called Efficient-
Net [38]. In 2021, Tan et al. published the v2 versions of the EfficientNet models, which are
smaller and faster to train than their predecessors [39]. Zhou et al. used EfficientNetV2 for
fine-tuning the EfficientNet-B7 pretrained model to create a machine that extracts features
from whole-body portraits and generates Lego brick models [40]. This approach was also
used for dog nose print matching [41] and prediction of the energy consumption of 3D
printing processes [42].

Kim et al. adopted VGG19 pretrained for transfer learning to detect the filament
tangling in the 3D printing process [28]. Baumgartl et al. used thermographic imaging
data to train a CNN to detect defects in laser powder bed fusion in metal 3D printing [18].
Banadaki et al. used Inception-v3, which is also based on a convolutional neural network,
for real-time surface defect detection and grading during FDM printing [43]. Jin et al.
proposed the use of Inception-v3 as a transfer learning model to classify the extent of
delamination and predict warping [33]. Razaviarab et al. proposed the use of transfer
learning in combination with a closed-loop machine learning algorithm to automatically
detect defects in 3D printing [44].

The work of Kadam et al. [13] is most relevant to our work, which studied the fault
detection of FDM by combining the pretrained models (AlexNet, GoogLeNet, ResNet18,
ResNet50, EfficientNet-B0) with popular classification methods including KNN, SVM,
naïve Bayes classifier, etc. Their results showed that the SVM achieved the best accuracy in
four of the five combined pretrained models, and the combination of SVM with AlexNet
resulted in the best accuracy.

Combining CNN with different machine learning methods usually results in good
performance for fault detection and classification. Although ensemble learning is an
important part of machine learning, the combination of transfer learning and ensemble
learning for surface defect detection in 3D printing, which would reduce time and material
wastage, has yet to be investigated. Furthermore, although color selection is critical for
FDM-printed objects, there are no reports about the effects of color on the accuracy of
defect-detection algorithms. Therefore, CNN-based transfer learning was combined with
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six ensemble learning models to detect and classify surface defects in FDM-printed 3D
objects. The effects of color on the accuracies of these model combinations were analyzed.
The findings of this study reveal the model combinations that are most accurate for each
color and geometry.

There have been reports in bearing fault diagnosis that using CNN for feature extrac-
tion with the boosting method LightGBM for classificiation can result in better accuracy
than using only CNN [45]. The transfer learning with CNN-based pretrained models on
large-scale image datasets such as GoogleNet and AlexNet has been successfully utilized
on 3D printing image classification [13]. In this work, we further combine the transfer
learning with bagging and boosting approaches to make an ensemble approach.

The neural network models usually have high variances, and in 3D printing image
classification, the dataset is usually rather small, which may increase the variance of
prediction. Therefore, we capitalize on the ensemble approach, the bagging and boosting,
to improve the performance on training classifiers from the features extracted by the neural
networks-based pretrained models.

The bagging algorithm trains a group of classifiers on different subsamples of the
dataset to make an ensemble classifier. Bagging can help improve the stability of prediction,
especially for unstable approaches such as neural networks. It can also reduce the variances
and prevent overfitting, benefitting the 3D printing image classification of small samples,
since collecting the samples of 3D printing is very time-consuming, and small samples
are prone to overfitting. The boosting algorithm trains a series of weak learners from the
extracted features and combine to an ensemble classifier, which is expected to reduce the
variances and biases in the classifier, and therefore improve the classification performance.

In addition to combining the existing pretrained models with the ensemble approach,
we also study the application of the newly developed pretrained models for transfer learn-
ing in 3D printing classification. The newer pretrained models, either featured with deeper
layers or different network structure, have been continuously developed to improve the
classification performance. The experimental results show that the ensemble approaches, ei-
ther bagging or boosting, can effectively improve the classification performance. Therefore,
by utilizing the transfer learning with newly developed pretrained models and combining
them with the ensemble approach, we can achieve a better classification performance in
3D-printed image classification.

The remainder of this paper is organized as follows. Section 2 introduces the materials
and algorithms used in this study. Section 3 presents the experimental data and the findings
of the data analysis. Section 4 discusses how the printing geometry and filament color are
related to the accuracy of each algorithm, as well as the contributions of these factors to
algorithm accuracy. Finally, the conclusions and outlook are presented in Section 5.

2. Materials and Methods

All the 3D printing was performed using a Prusa i3 mk3s 3D printer (Prusa, Prague,
Czech Republic) [46]. with a polylactic acid filament [47]. All the photographs were
captured using a Sony a7 III camera (Sony, New York, NY, USA) [48]. Image preprocessing
and model training and testing were performed on the Google Colab platform [49].

2.1. Classification Principles

To construct an image dataset of defective and nondefective samples based on the
classification principles shown in Figure 1, the images were manually labeled one by one.
Nondefective samples had smooth and fully filled surfaces; all other samples were classified
as defective. The filament colors were gray, green, and blue. Figure 2 shows the pictures of
the finished layer. The collected dataset contains the pictures of every printing layer.
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Figure 2. Photographs of (a) gray, (b) green, and (c) blue samples.

2.2. Experimental Procedures

The experimental procedures of this study are shown in Figure 3. First, the 3D printer
was configured, and a camera was set up to capture photographs of the 3D-printed object.
In Step 2, the collected photographs were cropped and classified to create the image dataset.
In Step 3, the image dataset was divided into training and testing sets at a 7:3 ratio using
split_train_test. In Step 4, the Python Open Source Computer Vision Library was used
to extract the red, green, and blue color model (RGB); GRAY; and hue, saturation, and
value color model (HSV) values of each image, and the angle of each image was varied to
produce images with different angles. In Step 5, a variety of CNNs were used for feature
extraction from the images. In Step 6, a variety of ensemble learning algorithms were used
to train defect-detection models; the accuracy of each model was then evaluated. Finally,
the model accuracies were analyzed. The flow graph of the proposed method is shown in
Figure 4.
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2.3. CNN

The CNNs used in this study were only used as pretrained models for feature extrac-
tion from the image dataset. Therefore, a variety of ensemble learning algorithms were used
for classification, training, and testing to increase the accuracy. The CNNs used in this study
included VGG16, VGG19, InceptionV3, ResNet50, EfficientNetB0, and EfficientNetV2L. A
brief overview of these models is presented below.

2.3.1. VGG16

VGG16 is a 16-layer CNN with 13 convolutional layers and 3 fully connected layers [29].
As this network architecture has a large number of weights and fully connected nodes, its
parameter space is large, which results in long training times. The size of the VGG16 model
is 528 MB, and its input images are 224 × 224 RGB images. The architecture of VGG16 is
shown in Figure 5.
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2.3.2. VGG19

VGG19 is a 19-layer CNN with 16 convolutional layers and 3 fully connected layers
(three more convolutional layers than VGG16) [29]. Similar to VGG16, VGG19 has a large
number of weights and fully connected nodes. Its size is 549 MB, and its inputs are also
224 × 224 RGB images. The VGG19 architecture is shown in Figure 6.
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2.3.3. InceptionV3

InceptionV3 is the third generation of the Inception architecture. It consists of several
block modules, which have a global average pooling layer instead of a fully connected
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layer at the end. These block modules give InceptionV3 a total of 47 layers [30]. In contrast
to ResNet, InceptionV3 avoids representational bottlenecks early in the network to prevent
losses of feature information. As the InceptionV3 model can increase the width and depth
while maintaining computational efficiency, its size is only 92 MB. Its inputs are 299 × 299
RGB images. The InceptionV3 architecture is shown in Figure 7.
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2.3.4. ResNet50

ResNet50 is a part of the ResNet family of models, and as its name suggests, it has 50
layers, which consist of 49 convolutional layers and 1 fully connected layer [31]. As the
model uses residual connections instead of fully connected layers and consists of residual
blocks, its size is only 98 MB. The inputs of ResNet50 are 224 × 224 RGB images. The
ResNet50 architecture is shown in Figure 8.
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2.3.5. EfficientNetB0

EfficientNetB0 is a model from the EfficientNet series. It consists of 5 large modules
with different numbers of submodules, giving it a total of 237 layers [38]. The MBConv6
modules that constitute EfficientNetB0 are depthwise separable convolutions from the
MobileNet architecture with ResNet-like residual connections, and there is an expansion
layer that increases the number of channels by a factor of 6 [50]. Furthermore, NAS was
used to determine the depth, width, and number of channels of EfficientNetB0. B0 is the
smallest model in the EfficientNet series, and its size is only 29 MB. The inputs of this
model are 224 × 224 RGB images. The EfficientNetB0 architecture is shown in Figure 9.
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2.3.6. EfficientNetV2L

EfficientNetV2L comes from the EfficientNetV2 family of models. To increase the
training speed and parameter efficiency, the V2 edition of EfficientNet uses training-aware
NAS and scaling and Fused-MBConv modules in shallow networks. EfficientNetV2 also
uses an improved progressive learning method, where the regularization strength (dropout
rate, RandAugment magnitude, and mixup ratio) is adjusted according to the image size,
which increases the accuracy and training speed [39]. As the V2L model contains a large
number of layers, its size is 479 MB. Its inputs are 480 × 480 RGB images. Details regarding
the architecture of EfficientNetV2L are presented in Table 1.

Table 1. EfficientNetV2-L architecture.

Stage Operator Stride Channels Layers

0 Conv3 × 3 2 32 1
1 Fused-MBConv1, k3 × 3 1 32 4
2 Fused-MBConv4, k3 × 3 2 64 7
3 Fused-MBConv4, k3 × 3 2 96 7
4 MBConv4, k3 × 3, SE0.25 2 192 10
5 MBConv6, k3 × 3, SE0.25 1 224 19
6 MBConv6, k3 × 3, SE0.25 2 384 25
7 MBConv6, k3 × 3, SE0.25 1 640 7
8 Conv1 × 1 & Pooling & FC - 1280 1

2.4. Ensemble Learning Algorithms
2.4.1. Bagging

The idea of bagging is to randomly sample the training set to train multiple inde-
pendent classifiers with normalized weights, which then vote on the final result [51–53].
Random forest (RF) bagging was used in this study, which is a supervised algorithm. It is an
advanced version of the decision tree architecture. An RF consists of multiple decision trees,
and besides selecting random samples from the training set (bagging), random subsets of
features are drawn to train each tree. Although overfitting tends to occur when a decision
tree becomes too deep, the RF architecture resists overfitting by having multiple deci-
sion trees, which allows RF to work accurately and efficiently on large high-dimensional
datasets [51,52].

2.4.2. Boosting

The idea of boosting is to combine multiple weak classifiers into a single strong
classifier. Boosting is an iterative approach, where input data that were misclassified by
the older classifier are given a higher weight when training a new classifier. This allows
the new classifier to learn features, and thus increases the accuracy. Finally, the iteratively
trained weak classifiers vote (with weights) to produce the final result [53–55]. The boosting
models used in this method were AdaBoost, GBDT, XGBoost, LightGBM, and CatBoost.

1. AdaBoost The idea of AdaBoost is to create a strong classifier by summing weighted
predictions from a set of weak classifiers. AdaBoost, which is short for adaptive
boosting, uses the misclassified samples of the preceding classifiers to train the next
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generation of classifiers. This is an iterative approach where weighted training data
are used instead of random training samples, so that the classifier can focus on hard-
to-classify training data. A new classifier is added at each iteration, until the error falls
below a threshold. As the model is effectively a strong classifier, it is robust against
overfitting. However, noisy data and outliers should be avoided to the greatest extent
possible [56,57].

2. Gradient-Boosting Decision Tree (GBDT) The GDBT is a multiple-additive regres-
sion tree and is a technique where a strong classifier is formed by combining many
weak classifiers. The GDBT model is applicable to both classification and regression
problems. Every prediction differs from the actual value by a residual; in GDBT, the
log-likelihood loss function is used to maximize the probability that the predicted
value is the real value. To prevent overfitting, the residual and predicted residual are
calculated, and the predicted residual is multiplied by the learning rate. New trees
are generated one after another to correct the residual until it approaches 0, that is,
until the prediction approaches the true value [58–61].

3. Extreme Gradient Boosting (XGBoost) XGBoost is a method where additive training
is combined with gradient boosting. In each iteration, the original model is left
unchanged, and a new function is added to correct the error of the previous tree.
The risk of overfitting is minimized through regularization and the addition of a
penalty term Ω to the loss function. XGBoost combines the advantages of bagging
and boosting, as it allows the trees to remain correlated with each other while utilizing
random feature sampling. In contrast to other machine learning methods that cannot
handle sparse data, XGBoost can efficiently handle sparse data through sparsity-aware
split finding. In this method, the gains obtained from adding sparse data to the left
and right sides of a tree are calculated, and the side that gives the highest gain is
selected [61–64].

4. LightGBM LightGBM is a type of GDBT that uses histogram-based decision trees,
which traverse the dataset and select optimal splitting points based on discrete val-
ues in a histogram. This reduces the complexity of tree node splitting and makes
LightGBM very memory- and time-efficient. LightGBM uses gradient-based one-side
sampling to retain training instances with large gradients, as well as exclusive feature
bundling to reduce the dimensionality [61,65–67].

5. CatBoost CatBoost is another GDBT-based model. To create unbiased predictions,
CatBoost uses ordered boosting to reduce the degree of overfitting and uses oblivious
trees as base predictors. In many competitions hosted by Kaggle, CatBoost achieved
the highest accuracies and smallest log-loss values [61,66–70].

3. Experiments

The gray dataset contains 1275 samples, where 575 are nondefective and 700 are
defective. The green dataset contains 1464 samples, where 735 are nondefective and 729 are
defective. The blue dataset contains 1274 samples, where 644 are nondefective and 630 are
defective. Detailed statistics for each shape are shown in Table 2. The printing temperature
of extruder is 210 ◦C and bed is 60 ◦C, and the fill density is 20%. The retraction speed is
35 mm/s, and printing speed is 20 mm/s. The layer thickness is 0.1 mm, and there are two
top solid layers.

3.1. Effects of Geometric Differences

To present all the pretrained model + ensemble learning combinations and their accu-
racies, we provide a visual representation of their accuracies on gray-colored geometries
in Figure 10. We also show the accuracy of using AlexNet with SVM (raw data are pre-
sented in Appendix D), which was the best combination reported in [13], as the baseline
for comparison. The performance of the baseline is shown as a dotted regular hexagon in
each color–shape combination.
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Table 2. Statistics of the dataset.

Gray
Nondefective

Gray
Defective

Green
Nondefective

Green
Defective

Blue
Nondefective

Blue
Defective

Square 90 104 144 114 117 83

Star 124 134 97 119 76 90

Circle 112 98 156 126 112 127

Oval 71 122 107 131 124 107

Diamond 62 106 134 133 108 105

Triangle 116 136 97 106 107 118
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in Appendix A). The dotted regular hexagon is the baseline using AlexNet with SVM.

Here, we summarize the results for each gray-colored geometry. Gray squares: For
this dataset, VGG16, VGG19, and ResNet50 consistently obtained high accuracies with
all the ensemble learning models; EfficientNetV2L, by contrast, performed poorly with
all the ensemble learning models. Gray circles: The highest accuracy was achieved by
VGG19 + AdaBoost (90.91%), followed by InceptionV3 + AdaBoost (88.64%), whereas Effi-
cientNetB0 had the lowest accuracy with all the ensemble learning models. Gray diamonds:
InceptionV3 + CatBoost had the highest accuracy (93.18%), followed by VGG19 + AdaBoost
(90.91%). Again, EfficientNetB0 had the lowest accuracy, regardless of which ensemble
learning model it was paired with. Gray ovals: The VGG16 + Catboost, VGG16 + Xgboost,
VGG16 + GradientBoosting, and ResNet50 + XGboost pairings were tied for the highest
accuracy (92.37%), followed by VGG19 + RandomForest and EfficientNetV2L + Random-
Forest (91.60%). Gray stars: VGG16 + RandomForest, VGG19 + RandomForest, and VGG19
+ AdaBoost were tied for the highest accuracy (92.45%); the lowest accuracies were obtained
with EfficientNetV2L + any ensemble learning model. Gray triangles: VGG16 + Random-
Forest achieved the highest accuracy (94.44%), followed by VGG16 + Catboost (92.59%). All
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gray pictures: VGG16 + LightGBM and VGG16 + GradientBoosting achieved the highest
overall accuracy (92.44%), followed by VGG16 + XGboost (91.41%).

3.2. Effects of Color

Next, defect classification was performed on the green and blue geometries. Figure 11
shows the accuracy of each model combination for green geometries. Green squares:
VGG16 + ResNet50 and VGG19 + ResNet50 were both highly accurate, but in contrast
to the case of gray squares, InceptionV3 + RandomForest and EfficientNetV2L + Ad-
aBoost also achieved the highest level of accuracy. Green circles: VGG19 + InceptionV3
and VGG19 + RandomForest were the most accurate combinations (93.94%), followed by
VGG19 + LightGBM (92.42%). EfficientNetV2L consistently exhibited the lowest accuracy,
regardless of the ensemble learning model. Green diamonds: EfficientNetB0 + LightGBM
was the most accurate combination (92.59%), followed by EfficientNetB0 + GradientBoost-
ing (90.74%). Green ovals: VGG19 + CatBoost, VGG19 + InceptionV3, and VGG19 + XG-
boost were tied for the highest accuracy (98.31%). EfficientNetB0 and EfficientNetV2L were
consistently the least accurate models, with all the ensemble learning models. Green stars:
ResNet50 + AdaBoost, ResNet50 + GradientBoosting, and EfficientNetB0 + GradientBoost-
ing were tied for the highest accuracy (95.83%), whereas EfficientNetV2L had the lowest
accuracy with all the ensemble learning models. Green triangles: VGG16 + LightGBM,
VGG16 + AdaBoost, and InceptionV3 + AdaBoost were tied for the highest accuracy (94%),
followed by VGG16 + XGboost and VGG16 + GradientBoosting (92%). All green geome-
tries: VGG19 + XGboost and InceptionV3 + Catboost were tied for the highest accuracy
(92.33%), followed by VGG16 + RandomForest and VGG16 + LightGBM (92.02%).
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Figure 11. Accuracy of each model combination for green-colored geometries (raw data are presented
in Appendix B). The dotted regular hexagon is the baseline using AlexNet with SVM.

Figure 12 shows the accuracy of each model combination for blue geometries. Blue
squares: VGG19 + Catboost and VGG19 + AdaBoost had the highest accuracy (97.96%),
whereas EfficientNetV2L had the lowest accuracy when combined with ensemble learning.
Blue circles: VGG16 + GradientBoosting had the highest accuracy (98.31%), followed
by VGG16 + LightGBM, VGG16 + XGboost, and InceptionV3 + Catboost, which were
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tied for second place (96.61%). Blue diamonds: VGG16 + RandomForest had the highest
accuracy (96.15%), followed by VGG16 + LightGBM and VGG16 + XGboost (both 94.23%).
EfficientNetV2L had the lowest accuracies with ensemble learning. Blue ovals: VGG19
+ Catboost had the highest accuracy (98.18%), whereas EfficientNetB0 had the lowest
accuracies with ensemble learning. Blue stars: InceptionV3 + Catboost had the highest
accuracy (96.36%). Blue triangles: EfficientNetB0 + Catboost had the highest accuracy
(96.23%), followed by EfficientNetB0 + GradientBoosting and ResNet50 + RandomForest,
which both had an accuracy of 90.57%. All blue geometries: VGG16 + RandomForest
had the highest overall accuracy (93.73%), followed by VGG16 + LightGBM (92.74%).
EfficientNetV2L had the lowest accuracies with ensemble learning.

Figure 12. Accuracy of each model combination for blue-colored geometries (raw data are presented
in Appendix C). The dotted regular hexagon is the baseline using AlexNet with SVM.

4. Discussion

According to the literature, bagging ensembles are outperformed by boosting en-
sembles in most scenarios [71]. However, our experimental results indicated that this
does not hold true for surface defect detection in 3D-printed geometries. As shown in
Figures 10–12, bagging ensembles yielded the highest accuracies. This may be because
bagging reduces variance instead of bias, which can prevent overfitting. Furthermore, in
contrast to bagging ensembles, the trees in boosting ensembles are correlated with each
other. This makes it possible to form incorrect correlations, leading to worse performance
compared with bagging.

The performance of a CNN can be significantly improved by increasing its depth or
using novel structures, e.g., by using residual learning, factorization, and modules instead
of layers, which increases the accuracy [72,73]. However, the results in Figures 10–12
indicate that this is not always true. Although deeper networks and novel CNN structures
allow for the extraction of finer details, if the details are too fine, the network can be
misled. Correct predictions may then be misjudged as being incorrect and vice versa. This
phenomenon was apparent in the visualized feature maps of the last layer in the VGG16
and EfficientNetV2L networks (Figure 13), where VGG 16 features 16 layers in the network
and EfficientNetV2L features 1028 layers. The last layer of the VGG16 network always
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contained a well-defined feature, in contrast to EfficientNetV2L, which did not contain
a clear feature in its last layer because of its excessive depth, causing the degradation in
classification accuracy.
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In theory, different filament colors result in different levels of hue saturation and
brightness, which can yield significant differences in accuracy. Studies on the correlation
between color data and image classification have revealed that the classification accuracy
tends to be higher with bright colors [74]. However, the results of this study indicated
that the classification accuracy does not differ significantly among the gray-, green-, and
blue-colored geometries. This is because the surface defect (roughness) detection is only
affected by the surface smoothness and voids (whether the surface is fully filled); as long
as the pictures are sufficiently clear, the classification accuracy does not vary significantly
with respect to the color.

In industrial manufacturing, ensemble learning can be applied to various sensor data
to accurately diagnose and predict faults. Studies [75–80] have indicated that ensemble
learning can be used to predict and evaluate the performance of industrial machinery and
detect faults. In the present study, the mean accuracy of surface quality classification was
>90%, and an accuracy of 100% was achieved in some cases. Therefore, it is feasible to
evaluate the quality of FDM-printed products by using image recognition technology in
conjunction with a CNN.

5. Conclusions

Transfer learning with pretrained models was combined with ensemble learning to
classify the quality of 3D-printed objects. The objective was to identify the combination of
algorithms that yields the highest classification accuracy with variations in object geometry
and color. The following conclusions are drawn.

1. The surface quality of FDM 3D-printed objects can be accurately classified by combin-
ing transfer learning with ensemble learning.

2. The combination of VGG16 or VGG19 with ensemble learning gave the highest accu-
racy for gray-colored geometries. Although model combinations with EfficientNetB0
and EfficientNetV2L exhibited the highest accuracy in a few instances, these models
were relatively inaccurate in most situations.

3. Although boosting ensembles usually outperform bagging ensembles, in this case
(quality inspection of 3D-printed objects), the combination of a transfer learning model
with a bagging ensemble often resulted in better accuracy. Therefore, it was unable to
prove that boosting is superior to bagging (or vice versa) in this study.
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4. Although deeper networks with novel structures often achieve better CNN perfor-
mance (and a higher classification accuracy), this rule does not apply to quality
inspections for FDM-printed objects.

5. In this study, the highest classification accuracy of the model combinations did not
vary significantly with respect to the color and geometry. Therefore, the filament color
does not significantly affect the classification accuracy.

In our future work, we will develop real-time solutions to monitor 3D printing quality
and detect printing failures by combining machine learning with a camera module. In addi-
tion, we will continue to incorporate the latest machine learning techniques for increasing
the overall classification accuracy, to automate visual anomaly detection and eliminate the
time and financial costs associated with manual inspections.

Author Contributions: Conceptualization, C.-J.Y. and K.-P.L.; methodology, W.-K.H.; software, W.-
K.H.; validation, C.-J.Y., W.-K.H. and K.-P.L.; formal analysis, W.-K.H.; investigation, C.-J.Y. and
W.-K.H.; resources, C.-J.Y.; data curation, W.-K.H.; writing—original draft preparation, C.-J.Y. and
W.-K.H.; writing—review and editing, C.-J.Y. and K.-P.L.; visualization, C.-J.Y.; supervision, C.-J.Y.
and K.-P.L.; project administration, C.-J.Y.; funding acquisition, C.-J.Y. and K.-P.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Science and Technology Council,
Taiwan, under Grant NSTC 111-2621-M-110-001 and 110-2410-H-110-030-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Accuracy of each model combination for gray squares.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 100% 100% 100% 96.30% 96.30% 87.04%

Catboost 100% 98.15% 100% 96.30% 94.44% 85.19%

LightGBM 100% 98.15% 98.15% 98.15% 98.10% 90.74%

XGboost 100% 96.30% 100% 96.30% 94.44% 92.59%

AdaBoost 100% 100% 100% 96.30% 94.44% 88.89%

GradientBoosting 96.3% 94.44% 100% 96.30% 94.44% 90.74%

Table A2. Accuracy of each model combination for gray circles.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 86.36% 84.09% 72.73% 63.64% 86.36% 75.00%

Catboost 81.82% 86.36% 84.09% 65.91% 84.09% 79.55%

LightGBM 86.36% 86.36% 81.82% 65.91% 86.40% 77.27%

XGboost 84.09% 86.36% 86.36% 65.91% 86.36% 77.27%

AdaBoost 84.09% 90.91% 79.55% 68.18% 88.64% 70.45%

GradientBoosting 81.82% 81.82% 86.36% 63.64% 84.09% 75.00%
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Table A3. Accuracy of each model combination for gray diamonds.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 86.36% 86.36% 81.82% 63.64% 84.09% 75.00%

Catboost 77.27% 84.09% 81.82% 70.45% 93.18% 79.55%

LightGBM 86.36% 86.36% 84.09% 65.91% 84.10% 77.27%

XGboost 84.09% 86.36% 86.36% 63.64% 84.09% 77.27%

AdaBoost 84.09% 90.91% 79.55% 70.45% 86.36% 72.73%

GradientBoosting 84.09% 79.55% 88.64% 63.64% 86.36% 79.55%

Table A4. Accuracy of each model combination for gray ovals.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 81.82% 91.60% 89.31% 82.44% 88.55% 91.60%

Catboost 84.09% 92.37% 88.55% 83.21% 90.08% 90.84%

LightGBM 84.09% 92.37% 90.84% 88.55% 87.80% 90.08%

XGboost 81.82% 92.37% 92.37% 87.02% 87.02% 90.84%

AdaBoost 81.82% 88.55% 89.31% 83.21% 89.31% 90.08%

GradientBoosting 84.09% 92.37% 89.31% 84.73% 86.26% 90.84%

Table A5. Accuracy of each model combination for gray stars.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 92.45% 92.45% 86.79% 84.91% 84.91% 83.02%

Catboost 86.79% 90.57% 86.79% 88.68% 84.91% 77.36%

LightGBM 88.68% 90.57% 88.68% 84.91% 84.90% 81.13%

XGboost 86.79% 90.57% 88.68% 84.91% 84.91% 81.13%

AdaBoost 88.68% 92.45% 88.68% 86.79% 84.91% 79.25%

GradientBoosting 83.02% 90.57% 86.79% 86.79% 84.91% 81.13%

Table A6. Accuracy of each model combination for gray triangles.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 94.44% 90.74% 79.63% 72.22% 81.48% 77.78%

Catboost 92.59% 90.74% 87.04% 79.63% 79.63% 81.48%

LightGBM 90.74% 88.89% 81.48% 87.04% 85.20% 83.33%

XGboost 85.19% 90.74% 85.19% 79.63% 77.78% 85.19%

AdaBoost 90.74% 90.74% 75.93% 77.78% 83.33% 88.89%

GradientBoosting 90.74% 87.04% 83.33% 87.04% 75.93% 85.19%

Table A7. Accuracy of each model combination for all gray-colored geometries.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 90.72% 88.66% 83.16% 82.16% 86.94% 83.16%

Catboost 90.72% 88.32% 85.91% 84.19% 88.32% 78.69%

LightGBM 92.44% 89.00% 87.63% 83.51% 89.30% 84.44%

XGboost 91.41% 88.66% 87.29% 84.88% 88.32% 84.79%

AdaBoost 87.97% 84.88% 83.16% 79.73% 85.91% 74.57%

GradientBoosting 92.44% 87.63% 86.25% 84.19% 88.32% 79.73%
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Appendix B

Table A8. Accuracy of each model combination for green squares.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 100% 100% 98.44% 96.88% 100% 92.19%

Catboost 100% 100% 100% 95.31% 98.44% 96.88%

LightGBM 100% 100% 98.15% 95.31% 98.40% 93.75%

XGboost 100% 100% 100% 95.31% 94.44% 96.88%

AdaBoost 100% 100% 98.44% 96.88% 98.44% 100%

GradientBoosting 100% 100% 100% 96.88% 98.44% 96.88%

Table A9. Accuracy of each model combination for green circles.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 90.91% 93.94% 84.85% 89.39% 93.94% 83.33%

Catboost 89.39% 90.91% 89.39% 81.82% 84.85% 75.76%

LightGBM 89.39% 92.42% 90.91% 83.33% 86.40% 75.76%

XGboost 90.91% 87.88% 87.88% 81.82% 83.33% 69.70%

AdaBoost 84.85% 84.85% 89.39% 83.33% 81.82% 68.18%

GradientBoosting 84.85% 90.91% 87.88% 81.82% 86.36% 74.24%

Table A10. Accuracy of each model combination for green diamonds.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 85.19% 83.33% 81.48% 88.89% 77.78% 85.19%

Catboost 87.04% 88.89% 79.63% 88.89% 77.78% 83.33%

LightGBM 85.19% 87.04% 77.78% 92.59% 83.30% 74.07%

XGboost 81.48% 83.33% 77.78% 88.89% 77.78% 72.22%

AdaBoost 77.78% 83.33% 74.07% 81.49% 79.63% 77.78%

GradientBoosting 79.63% 81.48% 84.48% 90.74% 79.63% 79.63%

Table A11. Accuracy of each model combination for green ovals.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 91.53% 96.61% 86.44% 86.44% 96.61% 81.36%

Catboost 94.92% 98.31% 93.22% 88.14% 96.61% 81.36%

LightGBM 89.83% 93.22% 86.44% 88.14% 91.50% 81.36%

XGboost 89.83% 94.92% 93.22% 86.44% 98.31% 79.66%

AdaBoost 89.83% 89.83% 88.14% 79.66% 91.53% 71.19%

GradientBoosting 91.53% 96.61% 91.53% 88.14% 91.53% 91.36%
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Table A12. Accuracy of each model combination for green stars.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 87.50% 89.58% 89.58% 93.75% 89.58% 83.33%

Catboost 89.58% 91.67% 93.75% 93.75% 89.58% 83.33%

LightGBM 87.50% 93.75% 93.75% 89.58% 87.50% 85.42%

XGboost 87.50% 93.75% 93.75% 93.75% 87.50% 87.50%

AdaBoost 89.58% 91.67% 95.83% 91.67% 87.50% 89.58%

GradientBoosting 85.42% 89.58% 95.83% 95.83% 83.33% 83.33%

Table A13. Accuracy of each model combination for green triangles.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 86% 90% 80% 76% 90% 84%

Catboost 90% 90% 80% 78% 88% 82%

LightGBM 94% 84% 76% 80% 86% 88%

XGboost 92% 88% 82% 80% 84% 82%

AdaBoost 94% 88% 78% 78% 94% 76%

GradientBoosting 92% 86% 82% 78% 86% 82%

Table A14. Accuracy of each model combination for all green-colored geometries.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 91.72% 92.02% 83.74% 86.50% 90.18% 82.82%

Catboost 91.41% 91.10% 87.42% 86.81% 92.33% 84.05%

LightGBM 90.80% 92.02% 88.34% 84.36% 91.40% 83.44%

XGboost 91.10% 92.33% 87.12% 80.67% 91.72% 84.97%

AdaBoost 82.21% 88.65% 80.67% 77.61% 85.28% 76.38%

GradientBoosting 90.18% 92.02% 86.50% 80.67% 91.10% 84.66%

Appendix C

Table A15. Accuracy of each model combination for blue squares.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 93.88% 93.88% 93.88% 91.84% 93.88% 67.35%

Catboost 89.80% 97.96% 89.80% 93.88% 91.84% 65.31%

LightGBM 93.88% 93.88% 91.84% 91.84% 95.90% 77.55%

XGboost 87.76% 91.84% 91.84% 91.84% 95.92% 77.55%

AdaBoost 87.76% 97.96% 83.67% 89.80% 95.92% 77.55%

GradientBoosting 91.84% 93.88% 89.80% 93.88% 93.88% 67.35%
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Table A16. Accuracy of each model combination for blue circles.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 91.53% 89.83% 88.14% 69.49% 93.22% 76.27%

Catboost 94.92% 91.53% 93.22% 74.58% 96.61% 74.58%

LightGBM 96.61% 93.22% 93.22% 83.05% 94.90% 74.58%

XGboost 96.61% 93.22% 91.53% 77.97% 94.92% 76.27%

AdaBoost 89.83% 86.44% 93.22% 79.66% 89.83% 72.88%

GradientBoosting 98.31% 93.22% 94.92% 77.97% 94.92% 76.27%

Table A17. Accuracy of each model combination for blue diamonds.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 96.15% 92.31% 69.23% 76.92% 92.31% 63.46%

Catboost 92.31% 92.31% 73.08% 76.92% 75.00% 65.38%

LightGBM 94.23% 88.46% 82.69% 76.92% 80.80% 63.46%

XGboost 94.23% 86.54% 76.92% 75.00% 78.85% 61.54%

AdaBoost 90.38% 90.38% 73.08% 76.92% 80.77% 53.85%

GradientBoosting 92.31% 88.46% 78.85% 78.85% 84.62% 61.54%

Table A18. Accuracy of each model combination for blue ovals.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 92.73% 92.73% 80.00% 61.82% 92.73% 70.91%

Catboost 89.09% 98.18% 80.00% 63.64% 90.91% 72.73%

LightGBM 90.91% 94.55% 83.64% 65.45% 89.10% 69.09%

XGboost 92.73% 94.55% 80.00% 65.45% 89.09% 69.09%

AdaBoost 89.09% 85.45% 81.82% 67.27% 94.55% 61.82%

GradientBoosting 90.91% 94.55% 80.00% 69.09% 90.91% 74.55%

Table A19. Accuracy of each model combination for blue stars.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 90.91% 94.55% 81.82% 67.27% 92.73% 72.73%

Catboost 89.09% 92.73% 85.45% 74.55% 96.36% 72.73%

LightGBM 90.91% 94.55% 81.82% 76.36% 94.50% 65.45%

XGboost 89.09% 94.55% 81.82% 74.55% 92.73% 70.91%

AdaBoost 83.64% 85.45% 85.45% 69.09% 85.45% 69.09%

GradientBoosting 90.61% 94.55% 81.82% 72.73% 94.55% 65.45%

Table A20. Accuracy of each model combination for blue triangles.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 84.91% 88.68% 90.57% 84.91% 81.13% 69.81%

Catboost 84.91% 84.91% 83.02% 96.23% 81.13% 64.15%

LightGBM 83.02% 83.02% 83.02% 86.79% 86.80% 67.92%

XGboost 84.91% 83.02% 88.68% 88.68% 84.91% 69.81%

AdaBoost 86.79% 84.91% 81.13% 83.02% 81.13% 69.81%

GradientBoosting 88.68% 83.02% 83.02% 90.57% 84.91% 69.81%
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Table A21. Accuracy of each model combination for all blue-colored geometries.

VGG16 VGG19 ResNet50 EfficientNetB0 InceptionV3 EfficientNetV2L

RandomForest 93.73% 91.75% 81.19% 72.94% 87.46% 64.03%

Catboost 90.43% 90.10% 81.85% 73.60% 90.43% 62.71%

LightGBM 92.74% 91.42% 82.84% 78.88% 89.10% 67.99%

XGboost 89.11% 89.77% 83.17% 74.59% 89.44% 65.35%

AdaBoost 87.13% 86.80% 77.23% 69.31% 84.16% 58.09%

GradientBoosting 87.46% 90.10% 80.86% 73.60% 89.11% 63.70%

Appendix D

Table A22. Accuracy of the baseline (AlexNet with SVM) for all geometries in three colors.

Gray Green Blue

Square 96.30% 95.31% 73.47%

Triangle 85.19% 90.00% 77.36%

Circle 85.71% 90.30% 83.05%

Oval 84.09% 81.36% 67.27%

Diamond 81.82% 61.11% 69.23%

Star 90.57% 85.42% 78.05%

All pictures 88.32% 86.50% 78.22%
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