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Abstract: This paper explores the feasibility of using low-resolution infrared (LRIR) image streams
for human activity recognition (HAR) with potential application in e-healthcare. Two datasets based
on synchronized multichannel LRIR sensors systems are considered for a comprehensive study
about optimal data acquisition. A novel noise reduction technique is proposed for alleviating the
effects of horizontal and vertical periodic noise in the 2D spatiotemporal activity profiles created by
vectorizing and concatenating the LRIR frames. Two main analysis strategies are explored for HAR,
including (1) manual feature extraction using texture-based and orthogonal-transformation-based
techniques, followed by classification using support vector machine (SVM), random forest (RF),
k-nearest neighbor (k-NN), and logistic regression (LR), and (2) deep neural network (DNN) strategy
based on a convolutional long short-term memory (LSTM). The proposed periodic noise reduction
technique showcases an increase of up to 14.15% using different models. In addition, for the first time,
the optimum number of sensors, sensor layout, and distance to subjects are studied, indicating the
optimum results based on a single side sensor at a close distance. Reasonable accuracies are achieved
in the case of sensor displacement and robustness in detection of multiple subjects. Furthermore, the
models show suitability for data collected in different environments.

Keywords: human activity recognition (HAR); infrared sensors; noise reduction; feature extraction;
classification; AI-enabled healthcare

1. Introduction

Interpretation of human activity for long-term health condition monitoring has become
an emerging research topic due to the deployment of smart sensors in residential and caring
house environments. This technology allows arising awareness about human wellbeing [1].
The impact of the sensor data can reveal the nature of an activity and hence can indicate
the physical and mental condition of subjects in a healthcare context [2].

The important requirements of such systems are (1) accuracy and reliability, and
(2) convenience in use and preserving user privacy. While achieving the former requires de-
signing advanced smart HAR algorithms, the latter can be addressed by using nonwearable,
nonintrusive sensing technologies.

There are different sensing technologies used for HAR. The fast-evolving microelec-
tromechanical systems (MEMS) has enabled miniaturizing acoustics, radio, and optical
sensing components. There are various commodity sensors available in the form of installed
or wearables for daily activity monitoring. Typical examples include high-definition camera
and depth sensor for detailed human body and facial feature capturing [3], Doppler radars
for modeling the dynamics patterns in daily activities, vital sign detecting [4], and wearable
accelerometers/gyroscopes for motion and orientation capturing [5]. Nevertheless, the
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application of vision-based devices for activity recognition is often constrained by privacy
concern and low user acceptance [6]. Although powerful, Doppler radars are only sensitive
to dynamic movement and cannot detect static poses [7]. Additionally, due to the high
kinematics complexity, inter body parts scattering and other RF signal interferences, the
Doppler signatures of the moving human body are complicated for subsequent model
performance. In terms of wearable sensors, the limited battery life causes issues regarding
the need to monitor individuals at all times [8]. In addition, these sensors can be regarded
as intrusive, which affects their user acceptance [9]. Infrared sensors are often cheap, small,
and easy-to-use devices, which, on the other hand, also come with their disadvantages. The
disadvantages mainly include relatively short distance range and sensitivity to background
noise; however, they have been proven to achieve robust accuracy for recognition of various
daily activities while preserving the subject’s privacy [10].

In this paper, we pay attention to the LRIR array, which is a new type of sensor,
providing thermal pixels of a subject’s silhouette [11]. In Figure 1a, four LRIR data frames
are shown. Each frame consists of 8 × 8 thermal pixels. Due to low resolution and lack of
local dependencies of pixels, for analyzing the time series of low-resolution frames, they
can be vectorized and concatenated over time to form 2D spatiotemporal maps. A total of
40 frames are used, as shown in Figure 1b, which is further explained in Section 3.1.

(a) Single frames (b) 2D spatiotemporal array
Figure 1. (a) Examples of 8× 8 pixel frames for the walking diagonally activity, and (b) the vectorized
spatiotemporal 2D array over 40 frames and 64 pixels.

Compared with PIRs, which only output the binary indicator, the LRIR thermal pixels
deliver richer subject information, suitable for activity modeling, but far from personal
identification. Thus, the LRIR is potentially a candidate for nonintrusive activity detection
and monitoring without the privacy concern in healthcare contexts. Reviewing the literature
shows that the use of LRIR has been investigated for fall detection, presence or occupation
estimation, motion and proxemics tracking, and activity recognition in different indoor
environments [11–18]. This comprehensive review of the current literature allowed us to
identify the limitations of the current solutions that impede the widespread use of this
novel sensor technology.

One of the main limitations of the existing studies is the lack of detailed understand-
ing about the impact of sensor layout and perspective for optimal deployment of LRIR
sensors for different care solutions. The majority of current studies employed a single
ceiling-mounted (e.g., [11–15]) or front-mounted sensor [18]. Although a combination of
front and side sensors were used in [16], the study lacks comparison of different sensors’
performances. Despite the efforts of the previous literature, there are some unknown factors
about the optimal use of LRIR sensors, such as the optimum sensor layout, e.g., distance
to subjects, and viewpoint. Additionally, achievable recognition rate, noise removal, and
tolerance to changes in sensor layout, for example, due to sensor displacement, still require
further research.

Another point is related to identifying the most effective strategies for time series
analysis of the IR frames. In some works, the analysis of sequence of frames is employed
based on feature extraction followed by classification, while another group of methods are
based on time series analysis using DNN methods such as CNN LSTM. Feature extraction
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is employed for dimensionality reduction purpose in most studies. For example, physical
feature extraction was proposed in [11–14]. Spatiotemporal discrete cosine transform (DCT)
for feature extraction was used in [16]. Hosono et al. [18] used a thermo-spatial histogram
for feature extraction. In terms of classification of features, different methods, for instance,
support vector machine (SVM) [11,14] and k-nearest neighbor (k-NN) [12], are employed.
Recently, k-NN, SVM, extreme learning machine (ELM), and convolutional neural networks
(CNN) methods have been compared with an LSTM model in [17]. The overall results in
that work indicated the superiority of the deep learning model based on LSTM compared
to the traditional methods and deep CNN. However, this result cannot be seen as a general
conclusion since only a limited dataset was used, including only four activities performed
in an empty scene. Besides that, the feature extraction methods were not described. In
another study, Bayesian filter was applied for human tracking [15]. In addition, background
subtraction for HAR was employed in [14–16]. Overall, a holistic comparison of the two
main analysis strategies, including feature extraction and classification as well as DNN
methods, on different datasets including variety of activities and subjects in more realistic
indoor environments is required.

There is a third concern regarding developing an appropriate noise removal prepro-
cessing strategy. Reviewing the literature shows that there are limited studies on noise
characteristics and noise reduction techniques for LRIR data. Most recently, the effect of
temperature variations was addressed by filtering the LRIR frame pixels using a combina-
tion of the J-filter noise reduction method and the Butterworth filter [17]. In another work,
Kalman filtering (KF) was used for Gaussian noise reduction [13]. While KFs have shown
suitability for dynamic environments, the defined model is expected to ideally correspond
to a real-world scenario. Besides the thermal variations causing noise on individual pixels,
depending on the way that the sequence of frames are considered in an analysis pipeline,
other types of noise might influence the HAR results. For example, in this work, the 2D
spatiotemporal maps shown in Figure 1b are considered for HAR. As can be seen, some
periodic vertical and horizontal noise appears in the vectorized 2D spatiotemporal profiles.
In this paper, a novel noise removal strategy is introduced to address this type of noise
as, so far, no effective noise removal strategy has been developed to alleviate this type of
periodic noise.

In order to address the reviewed issues for the use of LRIR sensors for HAR, a holistic
study is conducted in this paper. In the following, the main contributions are highlighted:

• LRIR datasets for community: For the first time, our synchronized multichannel
LRIR dataset, referred to as Coventry-2018 [19], is utilized as the main dataset in this
paper for activity recognition. In addition, another existing dataset, the Infra-ADL2018,
is used in order to verify models based on two different datasets. These are the first
two LRIR datasets that include multiple view angles, single, and multiple subjects
in the scene. The datasets will help the researchers in the community to identify the
optimum experimental settings in terms of the number of required sensors for highest
accuracy, the optimum sensor position, noise removal, model generalization, and
sensitivity to sensor layouts.

• Comprehensive comparison and verification of main analysis strategies: Two main
groups of analysis strategies are considered: (1) the 2D spatiotemporal maps shown in
Figure 1b are used for applying different feature extraction strategies to achieve deep
insight about the new LRIR data. These include (i) orthogonal transformation based
on the singular-value decomposition (SVD) and the Fisher’s canonical variables, (ii)
two texture feature extraction techniques, including spectral domain analysis using
2D DCT and the gray-level co-occurrence matrix (GLCM). Then, the extracted features
are fed to a selected group of classifiers including SVM, k-NN, random forest (RF), and
logistic regression (LR) for activity recognition. (2) The series of 8 × 8 LRIR frames are
used as video streams to train a deep convolutional LSTM model for activity detection.

• Novel periodic noise reduction technique: To alleviate the horizontal and vertical
periodic noise in 2D spatiotemporal maps shown in Figure 1b, a new supervised noise
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removal algorithm based on Fourier transform is proposed to improve the quality
of 2D profiles before feature extraction and activity classification. To the best of our
knowledge, no previous research addressed the periodic noise issue for such 2D
spatiotemporal maps.

• Model sensitivity and generalization interpretation: Leveraging rich sensor settings
during data collection, including multiple sensors and layouts, comprehensive inter-
pretations are derived. This includes the following: (1) Feature robustness and model
sensitivity and generalization against different layout properties, such as geometry
size, prospects, and environmental factors, as well as the recommended optimal room
setup and sensor subset; (2) model sensitivity against the number and diversity of the
subjects under test, even unseen subjects.

The rest of the paper is organized as follows: Section 2 covers data collection and
description. The analysis methods are described in Section 3, and the results are presented in
Section 4. Finally, the discussion and conclusion are given in Sections 5 and 6, respectively.

2. Data Collection and Data Description

In this paper, two datasets, named Coventry-2018 and Infra-ADL2018 [16], are con-
sidered. In this section, the multichannel LRIR sensor system design, experiment layout,
and other settings for acquisition of Coventry-2018 dataset are described, and then, the
dataset content in terms of activities and subjects is presented in detail. In addition, the
Infra-ADL2018 dataset captured based on multiple LRIR sensors, in Bristol Robotic Lab,
with different subjects and activities is described.

2.1. Coventry-2018 Dataset Collection and Description
2.1.1. Sensor and Processing System Design

The Coventry-2018 dataset was collected in the Faculty of Engineering, Environment
and Computing, Coventry University. The Panasonic® Grid-EYE sensor (AMG8833) is
used as an instance of LRIR data. Grid-EYE represents the front-view (roughly 60°) scene
by an 8 × 8 thermal pixel array, which is named as frame in this work. The multichannel
LRIR sensor system consists of three AMG8833 evaluation boards. They are connected to a
host PC via universal asynchronous receiver–transmitter (UART) interfaces. Three LRIR
data streams are synchronized and timestamped with up to 10 frames per second (FPS)
per channel, and saved in a .csv format. The 10 FPS is chosen for (1) having appropriate
acquisition rate to capture frames and having detailed states transition records during ges-
ture cycle; (2) reserving enough time for sensor reaction to the changes in temperature and
obtaining accurate thermal reading. The configuration of the AMG8833 evaluation boards
and controlling of the data streams are coordinated by National Instruments LabVIEW®.

2.1.2. Sensors Layout

Two layouts for positioning the sensors in the experiment scene are considered in this
work. They are small layout and large layout. The geometry details are shown in blue color
in Figure 2a. In the small layout, three Grid-EYE sensors are placed equally 1.5 m away
from a space assigned for subjects activity. All three sensors were elevated roughly 1 m
from the ground. In the large layout, the sensors were distributed at a similar shape and
height, while 2.5 m away from the region of interest. Both layouts ensure that the subjects
are visible in the field of view of the sensing system. The actual setup of the three sensors
and subjects can be observed in Figure 2b.
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(a) Experiment layout (b) Experiment venue
Figure 2. Sensor layouts and experiment scenario. (a) Small and large experiment layouts; (b) a real
experiment scenario with the three sensors.

2.1.3. Environmental Temperature of Coventry-2018 Dataset

The pixels of LRIR array indicate temperature of area in front of the sensor. At the
beginning of the data acquisition experiments, the ambient temperature of the surrounding
room was measured to be 18° centigrade. However, during the time taken to perform the
experiments and capture gestures, the ambient temperature of the surrounding room rose
to 21°. The participants were wearing normal daily clothes in order to be compliant with a
real-world scenario.

2.1.4. Coventry-2018 Dataset Description

The dataset is composed of gestures that are distinguished into two categories in
terms of the number of subjects. As shown in Table 1, the first category contains eight
single-subject activities, while the second category contains seven double-subject activities.
Single-subject activities refer to activities performed by one person. For example, a “Sit-
Down” or “Stand Still” activity is performed only by one of the subjects in the field of view
of the sensors. On the other hand, double-subject activities are performed by two people
simultaneously. For example, in a "Walking Across" activity, two subjects walk in opposite
directions in front of the sensors. In the experiments, three participants (with diverse body
sizes and genders) were used. They act individually as a single-subject or in groups of
two as double-subject. In the single-subject category, eight activities were performed by
all three participants and each participant repeated each activity for 10 times. The eight
single-subject activities are coded as AS1–8 in the small-layout scenario, and as AL1–8 in
the large-layout scenario. In the double-subject category, seven activities (B1–B7) were
performed by three participants pairs (2 out of 3 participants), and each participant pair
repeated the activity 10 times. The double-subject activities were only performed in the
large layout. Thus, there are a total of 480 single-subject records (240 in small layout and
240 in large layout), and 210 double-subject records (only in large layout).

Table 1. Two categories of activities in the Coventry-2018 dataset.

1-Subject 2-Subject
Activities Small Large Activities Large

Sit-Down AS1 AL1 Both Sitting B1
Stand-Still AS2 AL2 Sitting & Moving B2
Sit-Down & Stand-Up AS3 AL3 Sitting & Standing B3
Stand-Up AS4 AL4 Random Moving B4
Left & Right Move AS5 AL5 Both Standing B5
For-backward Move AS6 AL6 Standing & Moving B6
Walking-Diagonally 1 AS7 AL7 Walking Across B7
Walking-Diagonally 2 AS8 AL8
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2.2. Infra-ADL2018 Dataset

The Infra-ADL2018 dataset also uses Grid-EYE sensors. This dataset was collected
by researchers in Bristol Robotic Lab (BRL), University of West of England. It is used
for verification of the feature representation and recognition methods derived from the
Coventry-2018 dataset. In addition, the Infra-ADL2018 dataset was acquired in a different
environment. This can provide useful insights regarding the applicability of the derived
methods in this study.

Compared with the Coventry-2018 dataset, the Infra-ADL2018 dataset presents four
main differences: (1) One more sensor is deployed from the ceiling. (2) Besides the single-
subject category (containing 9 activities) and double-subject category (containing 10 activi-
ties), the Infra-ADL2018 contains an extra three-subject category. Similarly in this dataset,
the single-subject and double-subject activities refer to those performed by one or two
participants, respectively. In the case of three-subject activity, three participants performed
the “Free Movement-Stand Still” activity in front of the sensors simultaneously, so that
two subjects performed free movements and the third subject was standing still. This
latter category contains only 2 activities, as shown in Table 2. (3) There were a total of
nine participants. (4) Only one layout size was considered in the Infra-ADL2018 dataset, as
illustrated in Figure 3. Each activity was repeated three times by each participant or combi-
nation of participants. This led to 243 samples for single-subject activities, 240 samples for
double-subject activities, and 18 samples for triple-subject activities.

Table 2. The three categories of activities of the Infra-ADL2018 dataset.

1-Subject Stand to Sit; Sit to Stand; Sitting Still; Standing Still.
Walking LR; Walking RL; Walking Away; Walking Toward; Falling;

2-Subject
Standing+Walking Behind; Sitting+Standing; Falling+Walking.
Sitting+Walking Front; Sitting+Walking Behind; Standing+Walking Front;
Walking Opp Direction; Walking Same Direction; Sitting; Standing;

3-Subject Free Movement; Stand Still.
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(a) The experiment layout (b) The experiment venue
Figure 3. Illustration of the (a) experiment layout; (b) real experiment scenario, for the Infra-ADL2018
dataset, where S1, S2, S3, and S4 refer to Sensor-1, Sensor-2, Sensor-3, and Sensor-4 respectively.

3. Data Analysis

This section focuses on the analysis strategies employed for the LRIR datasets. Since
the acting duration is not equal for different activities and participants, there is a diverse
range of records duration in both of the Coventry-2018 and Infra-ADL2018 datasets. Thus, the
records are equalized before being used for activity recognition for both analysis strategies
based on (1) feature extraction from the 2D spatiotemporal maps and classification and (2)
DNN applied on video streams of 8 × 8 LRIR frames based on convolutional LSTM.

As stated earlier in Section 1, the 2D spatiotemporal maps, used in the first group of
analysis strategy, suffer from horizontal and vertical periodic noise, as shown in Figure 1b.
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Therefore, a periodic noise removal strategy is developed to alleviate the effect of noise
in the developed 2D spatiotemporal arrays after frame equalization. This is performed
to improve the activity recognition. This noise removal strategy was not required for
the 8 × 8 frames used in the DNN strategy. Figure 4 shows two flowcharts depicting the
procedures of the two analysis strategies considered in this paper.

SVD

Feature Extraction
Fisher’s 

Canonical 
VariablesGLCM

DCT
Frames

Equalization

Periodic
Noise

Removal

Pre-processing Classification
SVM

K-NN

RF

LR

Automatic Feature 
Extraction + Classification

CNN-LSTM

1)

2)

Pre-processing

Frames
Equalization

Figure 4. The data processing flow for the two analysis strategies.

3.1. Data Preprocessing
3.1.1. Frames Equalization and Vectorization

The duration of the gestures captured by the sensors varies between 2 and 28 s. The
average number of recorded frames for different activities and subjects is 69 and the
standard deviation is 27 frames. After some primary tests, it was observed that equalizing
the number of frames into 40 for all activities and subjects is the best compromise in terms
of accuracy for HAR. Therefore, to implement the feature extraction and training processes,
the records are equalized to 4 s (equivalent to 40 frames) for all activities in the Coventry-
2018 dataset. For the records longer than 4 s, extrapolation is used by removing frames
at regular intervals. In the case of records shorter than 4 seconds, a new frame is added
between two already existing frames. The newly added frame is computed by averaging
those two frames. The same equalization strategy is applied on the Infra-ADL2018 dataset.

Frame equalization yields 40 frames per activity with 8 × 8 temperature pixels. Con-
sidering the low resolution of IR images and low level of correlation between local pixels,
the individual pixels can be considered as independent variables. Therefore, in order to
form the 2D spatiotemporal maps shown in Figure 1b in Section 1, each 8 × 8 frame is
vectorized. This is performed for all frames of each activity. Thus, the equalized 4-second
records of each activity are reformed into a 40 × 64 2D spatiotemporal array. This 2D array
can be treated as an image. In the analyses performed in this paper, the 2D spatiotemporal
arrays are formed for both Coventry-2018 and Infra-ADL2018 datasets. This strategy will be
compared later with time series analysis of the 8 × 8 frames, explained in Section 3.4, and
its efficiency will be demonstrated in the results section.

In the case of the Coventry-2018 dataset, the equalized and vectorized data consist of a
3D array of size 240 × 40 × 64 for single-subject activities in small layout, a 3D array of size
240× 40× 64 for single-subject activities in large layout, and a 3D array of size 210× 40× 64
for double-subject activities in large layout. To simplify the writing and avoid confusion,
the 3D array size is considered as Z× 40× 64. Z = 240 is used for the single-subject data (in
both small and large layout), and Z = 210 for the double-subject data (only in large layout).
An example of the equalized and vectorized LRIR frames is visualized in Figure 5 for eight
classes of single-subject and seven classes of double-subject activities from Coventry-2018
dataset. They are the 2D spatiotemporal maps used for activity recognition in this paper.
The LRIR frames vectorization process is also shown in Figure 6.
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Figure 5. Illustration of the 2D spatiotemporal maps for the single-subject activities (first row) and
double-subject activities (second row) of the Coventry-2018 dataset.

. 
. .

A single 8 X 8 frame

Vectorized 64 X 1 

64 

40
 

64 
40

 

Duration 
equalized frames

A Dataset

2D spatio-temporal
array

Figure 6. LRIR frames vectorization and concatenation (left) for shaping a 2D spatiotemporal array
per activity (middle) and stacking all 2D maps for all activities in the dataset (right).

3.1.2. The Proposed Periodic Noise Removal Algorithm

In order to improve the activity classification accuracy, having high-quality data is
important. The 40 × 64 2D spatiotemporal maps formed for each activity show periodic
noise effect in both horizontal and vertical directions. This can be observed in Figure 1b.
The periodic noise includes both horizontal and vertical stripes, though the vertical noise is
visually more clear. The reason can be due to the low resolution of the frames that cannot
encode small local variations. Then, the same value is assigned for adjacent pixels with
a small level of variation. For example, the horizontal noise stripes are formed due to
similarity of vectorized sequential frames. This can occur, for example, when an activity
includes slow movements or still condition. On the other hand, the vertical noise stripes
correspond to some unchanged pixels over all 40 frames, such as pixels that have never
been occluded by the subjects. As can be seen, these effects are prominent in the arrays,
and the classification tests demonstrated that they can negatively affect the classification
accuracy in both training and validation stages.

In order to alleviate the effect of noise, 2D discrete Fourier transform (DFT) is used. It
is a digitized version of the Fourier transform, such that it contains sampled frequencies of
an image rather than all continuous frequency information. The 2D DFT of an image array
is a 2D array of the same size. Each pixel in this 2D array corresponds to the coefficient in a
specific frequency. They show the main spectral information of the image. The equation for
2D DFT is shown in (1).

F[u, v] =
M−1

∑
m=0

N−1

∑
n=0

X[m, n]e−j2π(u m
M +v n

N ) (1)

In (1), M and N show the number of rows and columns of X, and X[m, n] is one pixel
in the original image, which is the 2D spatiotemporal map in this work. F(u, v) is the
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element in row u and column v of the output array F. This 2D DFT equation computes
each element, F(u, v), in the spectral domain by multiplying the spatial image X with the
corresponding sinusoidal and cosinusoidal base functions and summing up the result. For
example, F(20, 32) describes the information in zero frequency called DC. If u and v are set
to zero in (1), the DC component is calculated as the average of the gray levels in the 2D
spatiotemporal map. In this work, 2D DFT is calculated for each 40 × 64 2D spatiotemporal
map, which is illustrated in Figure 6. Although F(u, v) is a complex value matrix, the
amplitude of the complex coefficients are considered for further processing. Due to the
large dynamic range of the DFT coefficients, the logarithm function is applied, yielding a
2D power spectrum array.

Next, the resulting power spectrum in the DFT domain is visualized, as shown in
Figure 7. Due to the Hermetian symmetry property of DFT, the elements in F[m, n] =
F(M − 1 − m, N − 1 − n), such that there is symmetry about (M−1

2 , N−1
2 ), the central pixel

in the 2D DFT array. For more information, the readers are referred to [20]. The coefficients
in the central horizontal and vertical lines in this 2D spectrum are considered for periodic
noise removal, as previously used in other works [21–23]. As expected, there exist pixels
with noticeable symmetric peak values with respect to the center in both directions of the
central horizontal and vertical stripes, as shown with red boundaries in Figure 7. These
symmetric peaks indicate periodic effect of noise. The horizontal periodic noise corresponds
to the peaks in vertical stripes coefficients and the vertical periodic noise is connected to
the peaks in horizontal stripes, as shown in Figure 7.

Figure 7. The 2D power spectrum with prominent symmetric peaks on central horizontal and vertical
stripes highlighted with red color edges, corresponding to the vertical and horizontal periodic noise
on the 2D spatiotemporal maps, respectively.

In order to reduce the noise, the peaks should be identified and their values should be
changed into a lower level over the central stripes. This can be achieved by thresholding the
pixel values over the central stripes in the 2D power spectrum array so that pixels higher
than a threshold will be numerically reduced. The DC component is not considered for
thresholding as it represents zero frequency, or, in other words, shows the average values
of the elements in the array and is not responsible for the noise. Two early issues regarding
the choice of threshold values for changing the peak values should be addressed.

The first issue is the strategy for selection of an appropriate threshold value for each
horizontal and vertical direction. Two possible methods can be considered in this case:
(1) A unique constant threshold value for each direction based on the overall mean of the
horizontal and vertical stripes over all 2D power spectrum arrays for all activities; and
(2) a variable calculated based on the individual power spectrum arrays’ statistics for the
threshold value.

The first method was tested statistically. For this aim, the mean values over the
horizontal and vertical stripes (excluding the DC component) µh and µv for all activities
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of the three sensors (of Coventry-2018 dataset) were calculated. Under the null hypothesis
that all power spectral arrays have similar mean values (over the stripes) for each of the
horizontal and vertical directions, a one-way ANOVA test was performed. The p-value
rejects the null hypothesis, and, thus, general thresholds (for the two directions) based on
the stripes’ mean values cannot be used for all 2D arrays. Therefore, the second method
is considered and the threshold values are customized for each 2D power spectrum array
over the two directions. For this aim, a supervised strategy will be introduced later in
this section.

The second initial issue is regarding finding an appropriate strategy for reduction of
the numerical values of the identified peaks based on thresholding. Two possible options
for replacing the values of the identified peaks are (1) replacing with 0, and (2) replacing
by a statistical measure computed based on the mean of the elements at each horizontal
or vertical stripe, µh and µv. By performing experiments, we found that the latter strategy
resulted in better activity recognition accuracy. Therefore, for replacing the identified
peaks values, the statistical approach based on the mean and standard deviation will
be considered.

After addressing these two initial issues, as mentioned earlier, a supervised algorithm
is developed for finding the best parameters for noise removal. This includes the thresholds
and the appropriate number of pairs of identified peaks whosevalues should be reduced.
For this aim, the threshold parameters Th and Tv for each horizontal and vertical direction
are formulated based on the mean and the standard deviation of all the coefficients in the
corresponding stripes, as follows:

Th = µh + i1 ∗ 0.5 ∗ σh; Tv = µv + i1 ∗ 0.5 ∗ σv (2)

where i1 is an integer value within the range {−2, 8} that is learned based on a supervised
strategy. In addition, as there exists a number of pixel pairs greater than the threshold, it
needs to be decided how many of them should be reduced to achieve the highest accuracy.
The number of pairs of pixels to be changed depends also on the threshold value. In
other words, the smaller the threshold, the bigger the number of pixel pairs violating the
threshold. Overall, the parameters Th and Tv, and number of pairs of pixels, Numh and
Numv, that influence the quality of noise removal, are found based on a supervised learning
strategy in order to achieve optimum accuracy.

The supervised learning strategy is based on the K-fold cross-validation (CV) model
selection technique, so that 10-fold CV is used to find the optimum parameters T∗

h /T∗
v and

Num∗
h/Num∗

v for each of the horizontal and vertical directions. For this aim, candidate sets
of values are formed for these parameters, TCandSet and NumCandSet, first. The TCandSet is
formed based on the variable i1, as shown in (2), and the NumCandSet is formed based on
the maximum pairs of pixels in each direction. Thus, based on the CV loop, a 3D array of
validation accuracy of size K × length(TCandSet)× length(NumCandSet) is calculated.

In each CV iteration, one candidate threshold value from TCandSet is used to find
the pairs of peaks that violate the threshold (in the corresponding direction). Then, one
candidate number of pixel pairs is selected from (NumCandSet) and is used to select a
number of highest peaks. The selected peaks values are reduced to µh or µv depending
on the direction. Next, based on the 2D inverse DFT (iDFT) function shown in (3), the
denoised 2D spatiotemporal maps are calculated.

X(m, n) =
1

MN

M−1

∑
u=0

N−1

∑
v=0

F[u, v]ej2π(u m
M +v n

N ) (3)

The image with alleviated horizontal noise is merged with the image with reduced
vertical noise, by averaging the two maps calculated based on the inverse transform. After
repeating this for all training and validation images, they are used to perform activity
recognition in the next step.
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Then, the recognition performance for both train and validation sets is calculated.
This process is iterated inside the three nested loops for all feasible combinations of the three
parameters, namely, K (of CV loop), TCandSet, and NumCandSet (of the candidate sets). This
is repeated for both horizontal and vertical stripes parameters. Based on these three nested
loops, the reason for the aforementioned dimension of the performance arrays to be three
for both training and validation sets can be explained. The three-dimensional array is also
referred to as training and validation tensor. Figure 8 shows the 3D tensor of validation
accuracy for the horizontal stripe parameters as well as the averaged 2D array of validation
performances over the K-folds. In the validation and training tensors, only the elements
corresponding to the feasible combinations of candidate thresholds and number of pixel pairs
are filled. This is explained further in the following.

Figure 8. Illustration of the 3D array of validation accuracy for the horizontal stripe parameters and
the 2D array of average validation performance obtained by averaging over K-folds of the 3D tensor
for selection of T∗

h and Num∗
h parameters.

Not all combinations of the candidate thresholds and number of pairs of pixels are
feasible for noise removal, because the number of violating peaks of pixel pairs changes
based on the threshold value such that the smaller threshold increases them and the bigger
threshold value reduces their number. Then, there might not exist any candidate pair of
peaks for some combinations of the TCandSet and NumCandSet. As a result, the elements
of the validation tensor corresponding to those infeasible combinations of the candidate
thresholds and the number of pixel pairs are empty and will be ignored.

As shown in Figure 8, by averaging the 3D tensor of validation performances over
the K-folds, a 2D array of validation accuracy is obtained. The size of this 2D array is
length(TCandSet)× length(NumCandSet) for each of the horizontal and vertical stripes. The
2D array shows the variation in performance for different feasible combinations of the
candidate parameters TCandSet and NumCandSet, shown as two heat maps in Figure 9 for
the two directions. Then, the highest performance in the 2D arrays corresponds to the
optimum parameters T∗

h /T∗
v and Num∗

h/Num∗
v. Using these parameters, the vertical and

horizontal noises are removed, resulting in two denoised images after applying 2D iDFT
transform. The two denoised images are merged by averaging. This is performed for all
training images in the dataset, making them ready for activity recognition in the next step.

(a) (b)
Figure 9. Heat maps of average CV validation accuracy array for selection of optimum T and Num
parameters for (a) horizontal and (b) vertical stripes.
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Algorithm 1 shows the step-by-step procedure using training data. Thus, the required
parameters, T∗

h /T∗
v and Num∗

h/Num∗
v , are derived and applied to the test images. A sample

noisy image and its corresponding denoised image using this algorithm are illustrated in
Figure 10.

Algorithm 1: DFT-based periodic noise removal.
Input: Training data (Xtr, Ytr), Number of folds K.
1. Divide data into K training and validation sets: xtrk, ytrk, xvk, yvk.
2. Repeat the following steps for both horizontal and vertical stripes
represented as horizontal/vertical for showing all parameters.
3. Form the TCandSet = 2, ..., 8 and NumCandSet =1,..., Maximum number of pixel
pairs.
4. (1) For k=1,. . . , K

(2) For i1 = 1, ..., length(TCandSet)
(3) For i2 = 1, ..., length(NumCandSet)

(4) For j=1,. . . ,number of images in xtrk and xvk
-Compute the power spectrum coefficients of
the jth image,
-Compute µhj/µvj, σhj/σvj
-Find pixel pairs in horizontal/vertical stripes
> Thji1

= µhj + TCandSet(i1) ∗ 0.5 ∗ σhj/
Tvji1

= µvj + TCandSet(i1) ∗ 0.5 ∗ σvj,

-Reduce the first ith
2 greatest pixel pair

values to µhj/µvj,
-Compute the denoised image using 2D
iDFT,

End Loop 4
-Use the denoised image sets xtrdk and xvdk
to classify the activities and calculate the
element (k, i1, i2) in the training and validation
performance arrays, Pr ftr and Pr fv.

End Loop 3,2,1
5. Average the Pr ftr and Pr fv arrays over the K-folds
6. Find the highest validation accuracy corresponding to
the optimum threshold T∗

h /T∗
v and number of pixel pairs Num∗

h/Num∗
v .

Output: T∗
h /T∗

v and Num∗
h/Num∗

v

(a) (b)
Figure 10. Illustration of (a) an original 2D spatiotemporal map with horizontal and vertical periodic
noise; (b) noise-reduced 2D map using the proposed algorithm.

3.2. Feature Extraction Methods

As stated in Section 1, in this paper, two main categories of feature extraction ap-
proaches are considered and applied on the denoised 2D spatiotemporal maps dataset.
These include (1) orthogonal transformations based on singular-value decomposition (SVD)
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and the Fisher’s canonical variables, and (2) texture analysis in frequency domain based on
2D DCT and in spatial domain based on GLCM.

SVD is one of the most common methods for transforming data into a lower-dimensional
space based on calculating and sorting the directions of highest variance [24,25]. It is used to
transform the vectorized 2D maps of 40 × 64 = 2560 features to a lower dimensional space.
This is achieved by computing the transformed features into a lower dimension orthogonal
feature space ZSVD = SZ×2560V1:k, where SZ×2560 is the original matrix of samples formed
based on the vectorized 2D map features, Z denotes the number of samples, and V1:k are
the first k eigenvectors corresponding to the highest singular values. In this work, k = 45
eigenvalues are used, describing more than 95% of the variance of the data. This means
that the feature dimension is reduced from 2560 to 45. A linear combination of all variables
is used to transform data to a much smaller orthogonal feature space.

Fisher’s canonical variables are a widely-used supervised method for dimensionality
reduction [26–28]. The method transforms the vectorized features (2560 in our work) to a
maximum of Q − 1 eigenvectors, where Q refers to the total number of classes. The overall
aim of the method is to maximize the Euclidean distances between samples of differing
classes, and minimize the distances between samples belonging to the same class. This is
achieved by solving a generalized eigendecomposition problem using the between-class
covariance matrix using all data as well as sum of each class covariance matrix (within-class
covariance). The found eigenvectors are used to transform samples to a new orthogonal
space of dimension Q − 1. Considering the Coventry-2018 dataset, a 15-class scenario is
used as a combination of single-subject (8 classes) and double-subject (7 classes) activities.
This yields a maximum of 14 eigenvectors extracted by the Fisher’s method.

The 2D DCT can be considered as a texture analysis strategy that transforms 2D inputs
(signals or images) to the frequency domain [29]. The smooth variations correspond to
low-frequency information in spectral domain while sharp variations correspond to the
high-frequency coefficients. The method sorts the frequencies in ascending order, which
allows filtering high- or low-frequency coefficients. This allows a limited number of features
to be extracted. In our work, each 2D 40 × 64 feature map is divided into 40 local patches of
size 8 × 8, and 2D DCT is applied to these local patches. Then, six coefficients are extracted
in a zigzag pattern from the top-left corner of the 2D DCT array corresponding to each
local patch. This results in a data matrix of Z × 40 × 6 = Z × 240, with 240 features and Z
number of samples.

GLCM is another image texture analysis technique [30]. It aims to quantify the
frequency of occurrence of different combination of gray values in an image, which shapes
image patterns.For example, determining how often a pixel with a given intensity La occurs
at a distance d and angle Θ to another pixel with intensity Lb. This will be recorded in a
matrix and some statistics are then derived from the matrix. Considering the nature of
GLCM, it is applied to the 40× 64 2D maps. Four second-order statistics are then calculated
from the GLCM matrix, including correlation, contrast, dissimilarity, and energy. For more
information, refer to [30]. In this work, first, the 40 × 64 images are divided into five local
patches of size 8 × 64, and then, for each local patch, GLCM matrices are calculated for
two different distances (one and three number of pixels) and three different angles, 0°,
45°and 90°. This results in 5 × 2 × 3 GLCM matrices. For each GLCM matrix, four GLCM
statistics are calculated. Then, for each 40× 64 map, 120 texture features are extracted based
on GLCM analysis, resulting in GLCM features of size Z × 120 for the 3D array datasets
Z × 40 × 64. Z denotes the number of samples.

3.3. Classification Methods for Activity Detection

In this work, four traditional classification methods are used: SVM, RF, k-NN, and LR.
All four techniques are supervised and show suitability for multiclass classification prob-
lems.
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3.4. Deep Neural Networks (DNNs) for Activity Recognition

DNNs are powerful models capable of learning a hierarchy of features from low-level
ones to automatically build high-level ones. Thus, the feature extraction is automated,
which eliminates the need for handcrafted feature extraction. In our work, the LRIR data
can be treated as a sequence of 8 × 8 IR images, which leads to the exploration of CNN and
LSTM models. Therefore, the CNN layers are used for extracting features, while the LSTM
layers classify the extracted outputs [31–33].

The robustness of the model is evaluated to discover the most optimum combination
of CNN and LSTM layers. As a result, three convolutional and two LSTM layers are
considered for the CNN-LSTM architecture. The inputs are samples that each consist of
40 frames of size 8 × 8 and their corresponding activity label.

A total of 1000 number of epochs are used for training the model, and the batch
size of 32 achieved better results compared to other values, 64 and 128. The developed
CNN-LSTM architecture with the remaining hyperparameters is represented in Figure 11.
The first convolutional layer has 16 filters of size 3 × 3. Regarding the second and third
convolutional layers, 32 filters with the same size are used. The two LSTM layers both have
32 filters.
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Figure 11. Illustration of the CNN-LSTM architecture.

4. Evaluation and Results

The datasets in this study are divided into training (75%) and testing (25%). The
testing accuracy is used to evaluate and compare the models. In this section, the following
experiments are presented:

• Noise-reduction test—the test is performed on the Coventry-2018 dataset to compare
the models’ performances on noisy data and noise-reduced data.

• Comprehensive model comparison test—all combinations of feature extraction and
classification methods, as well as CNN-LSTM, are compared based on the Coventry-
2018 dataset to discover the most optimum modeling strategy. Then, the best model is
applied to different scenarios of the Infra-ADL2018 dataset.

• Layout-sensitivity test—the test is performed on the Coventry-2018 dataset to compare
the effect of sensor distance to the subject using the small-layout and large-layout
data.

• Model-generality in terms of layout—the test is performed to evaluate the generaliza-
tion of a model trained on one layout datum (large or small), when tested on another
layout datum. In addition, a mixture of small-layout and large-layout samples is
applied as the second scenario evaluation. The Coventry-2018 dataset is used for this
test.

• Subject-sensitivity test—the test is performed to evaluate the effect of number of
subjects (one or more) on the performance of the models. The Coventry-2018 dataset
and Infra-ADL2018 dataset are used for this experiment.

• Optimum sensor test—the test is performed to identify the optimum number and
position of sensor(s) that can give the highest performance. All individual sensors
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and combinations of them are used for this experiment using the Coventry-2018 and
Infra-ADL2018 datasets.

4.1. Result of Periodic Noise Removal

In order to evaluate the effect of the proposed periodic noise removal strategy, the
classification results of data before preprocessing and after preprocessing are compared.
For this aim, the Coventry-2018 dataset for a 15-class problem including both single-subject
and double-subject activities of Sensor-1 was used. Sensor-1 was selected since it was
found to be the optimum sensor based on the test results that will be presented later in this
section.

The four feature extraction methods, SVD, Fisher’s method, DCT, and GLCM, with
LR were used to train the classification models. The LR classifier was chosen because it
was one of the best classifiers compared to others in terms of accuracy. This will be shown
in the next section. The models were trained using the raw data (before denoising) first.
Then, the same modeling strategies were applied on the denoised datasets. The results of
this experiment show an increase in accuracy. Figure 12 shows the result of classification.
The Coventry-2018 large-layout Sensor-1 data was used for these tests. The results show
improvement in the classification performance in all cases.

Figure 12. Comparison of the classification performances before denoising and after applying the
DFT-based periodic noise removal algorithm, using different feature extraction methods and LR
classification. The Coventry-2018 large-layout data (15-class problem) of Sensor-1 was used.

4.2. Comprehensive Comparison of Activity Recognition Techniques

This section compares the capability of different combinations of feature extraction
and classification methods described in Section 3.2 as well as the CNN-LSTM in activity
recognition. The idea is to evaluate the methods using the most challenging dataset at hand.
Therefore, instead of evaluating based on the 8-class data (of single-subject activities) or
7-class data (using double-subject activities), the 15-class dataset, including both single-
subject and double-subject activities from the Coventry-2018 large-layout Sensor-1, are
considered in this section. The handcrafted feature extraction methods are SVD, Fisher’s
canonical variables, DCT, and GLCM. The investigated classifiers include SVM, RF, k-NN,
and LR.

K-fold CV (K = 10 in this work) was used in order to find the optimum parame-
ters for the classifiers. The main parameters found based on K-fold CV for the models
include a linear kernel for SVM, 100 trees for RF, k = 1 for k-NN, and the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization solver for LR. The dataset was
divided randomly into training and test set 10 times to perform the tests, and the average
and standard deviation of the results are reported.

Table 3 presents the results achieved based on different feature extraction–classifier
combinations as well as the CNN-LSTM model. The results show that the applied method-
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ologies were successful in discriminating activities. The highest accuracies are based on the
unsupervised SVD feature extraction and CNN-LSTM, where the former achieved 100%
when using LR classifier. Although the CNN-LSTM model is more complicated compared
to SVD+LR in terms of computation time, its performance is not higher.

Table 3. Testing performances for all combinations of the feature extraction and classification methods
as well as CNN-LSTM using the Sensor-1 large-layout dataset from Coventry-2018 for 15 classes of
single-subject and double-subject activities.

SVM RF k-NN LR CNN-LSTM

SVD 96.66 ± 0.9% 97.02 ± 1.04% 88.88 ± 1.57% 100 ± 0% —
Fisher 87.03 ± 2.28% 88.14 ± 0.52% 86.29 ± 1.04% 83.33 ± 1.6% —
DCT 84.95 ± 0.72% 94.1 ± 0.83% 79.97 ± 0.39% 84.36 ± 1.66% —

GLCM 77.39 ± 2.09% 82.22 ± 1.81% 73.7 ± 2.09% 73.44 ± 1.91% —
CNN-LSTM — — — — 95.88 ± 1.1%

Based on the classification results for the Coventry-2018 dataset, SVD feature extraction
with LR classifier was selected as the optimum modeling strategy. Therefore, it is used
for the rest of the experiments in this paper. Then, it is also applied on the Infra-ADL2018
dataset. In this dataset, among the three categories of single-subject, double-subject, and
three-subject activities, the number of samples for the latter are very limited (18 samples
per sensor). This makes the model training very difficult. Therefore, in this paper, only the
single-subject (9 classes) and double-subject (10 classes) activities data were used separately,
as shown in Table 4. In addition, all three groups, including single-, double-, and three-
subject activities, of data were used to develop a model for classification of all activities (21
classes) using each sensor’s data. The achieved results show the robustness of SVD and LR
on this dataset.

Table 4. Testing performance of the classification models using SVD with LR classifier for different
number of activities of Infra-ADL2018.

Data Single-Subject
Activity

Double-Subject
Activity

All Activities
(21 Classes)

Sensor-1 93.44 ± 0% 100 ± 0% 93.91 ± 0.37%
Sensor-2 95.08 ± 0% 100 ± 0% 100 ± 0%
Sensor-3 100 ± 0% 100 ± 0% 97.61 ± 0%
Sensor-4 90.16 ± 0% 100 ± 0% 95.76± 0.37%

4.3. Layout-Sensitivity Test Results

One of the concerns regarding the use of LRIR sensors is sensitivity in their distance
to the target. In this section, the impact of distance when using the LRIR sensor for
human target activity recognition is presented based on the experiments. For this aim,
the single-subject small layout (1.5 m away from area of interest), including 240 × 40 × 64
data, and the single-subject large layout (2.5 m away from area of interest), also including
240 × 40 × 64 samples, were utilized. The performance of the four SVD, Fisher, DCT, and
GLCM feature extraction methods using the LR classifier as well as the CNN-LSTM model
were compared. In Figure 13, the recognition performances are shown.
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Figure 13. Comparison of the effect of small-layout and large-layout data in classification performance.
The LR classifier with the four feature extraction methods are applied on the single-subject activities
for small-layout and the single-subject activities for large-layout, as well as the CNN-LSTM using
Coventry-2018 Sensor-1 large- and small-layout datasets.

As expected, the accuracy for the small layout is higher as the subject body profile
covers more pixels. Nevertheless, the difference in the accuracy is not significant, which
showcases that gestures are correctly classified in both cases. This indicates that the applied
techniques, including preprocessing, feature extraction, and classification, are applicable
for sensor settings placed at different distances with respect to the subject.

4.4. Model-Generality in Terms of Layouts

A classical machine learning problem is determining whether a model can generalize
for different scenarios. In the Coventry-2018 experiments, two facts are worth noticing: (1)
there are small and large layouts; (2) the room temperature increased during the exper-
iments when collecting the large-layout data. These two facts can be utilized to test the
models’ generalization when having unseen layout condition after training. For this aim,
two different scenarios are arranged.

1. In the first experiment of the first scenario, the model which was trained using the
single-subject Sensor-1 data in small layout was tested on the single-subject Sensor-1
data in large layout. The second experiment was also repeated for the large layout as
train and small layout as test. The distances from sensors to the subjects are different.
In addition, the average and standard deviation of the pixels for the small layout
are 17.47 ± 1.21, while for the large layout, they are 18.65 ± 0.72. All combinations
of feature extraction and classification methods as well as CNN-LSTM were tested.
GLCM for feature extraction with LR for classification achieved the best accuracy in
both experiments using Sensor-1. In the first experiment, the accuracy was 71%. In
the opposite scenario, where the large layout is used for training and the model is
evaluated on the small layout, the testing accuracy was 64.58% using the same feature
extraction and classification strategy. This shows that the (GLCM + LR) can still
generalize and show intermediate levels of results of 71% for small-layout training
and large-layout testing. This is a positive indication that such systems still work in
the case of changes in the original settings such as displacement, etc.

2. In the second scenario, the single-subject data from both small layout (240 samples)
and large layout (240 samples) were mixed, which represents the moderate scenario.
Similar to the previous experiment, all classification models were tested in the pursuit
of the most optimum model. As a result, the most accurate model was the automatic
feature extraction and classification with the deep CNN-LSTM architecture, achieving
94.99% ± 1.66 average testing accuracy. Considering the very high accuracy, this
experiment shows that having approximately equal distribution of data from both
layouts in the training phase provides a very rich representation of the data, leading
to a strong generalized model.
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4.5. Sensitivity to the Number of Subjects

In this section, the sensitivity of the algorithms in detection of the activities with
different number of subjects is evaluated. For this aim, the single-subject dataset of size
240 × 40 × 64 and double-subject of size 210 × 40 × 64, both from the Coventry-2018 large-
layout settings of Sensor-1, were used for comparison. In addition, single-subject activities
of size 243 × 40 × 64 and double-subject activities of size 240 × 40 × 64 from the Infra-
ADL2018 were also compared. Table 5 describes the test accuracy of LR classifier when
applied on SVD, Fisher’s method, DCT, and GLCM features, as well as the CNN-LSTM
structure. The graph shows that the double-subject activities outperform the single-subject
activities for all five models developed from the two datasets.

Table 5. Testing performances for all feature extraction methods and LR classifier as well as the CNN-
LSTM method using the Sensor-1 large-layout dataset for 8 classes of single-subject and 7 classes of
double-subject activities from the Coventry-2018 dataset, as well as 9 classes of single-subject and 10
classes of double-subject activities from the Infra-ADL2018 dataset.

Coventry-2018 Infra-ADL2018

Single Double Single Double

SVD 88.33 ± 0% 98.11 ± 0% 97.90 ± 1.6% 100 ± 0%
Fisher 86.67 ± 0% 91.82 ± 0.89% 83.05 ± 2.78% 97.21 ± 0.78%
DCT 78.33 ± 0% 94.33 ± 0% 89.34 ± 0.82% 100 ± 0%

GLCM 78.33 ± 2.71% 80.49 ± 2.35% 66.11 ± 3.36% 97.77 ± 0.78%
CNN-LSTM 90.74 ± 1.31% 95.83 ± 2.94% 95.13 ± 5.77% 96.66 ± 6.66%

4.6. Optimum Room Setup and Sensor Selection

The room setup was part of a comprehensive discussion prior to any experiment
conduction. For Coventry-2018 experiments, instead of using one sensor attached to the
ceiling of the room, it was decided to use three sensors in total. Then, it appeared that the
most successful results were achieved using Sensor-1 with a side view to the subjects. In
order to identify the optimum sensor arrangement, the classification accuracies for different
combinations of sensors were compared. The results of this comparison are shown in
Figure 14 for both Coventry-2018 and Infra-ADL2018 datasets. In the case of the former
dataset, as shown in Figure 2a, Sensor-1 and Sensor-3 are the side sensors and Sensor-2 is
the front sensor in the scene. In the case of the Infra-ADL2018 dataset, as shown in Figure 3a,
Sensor-2 and Sensor-3 are the side sensors (comparable with Sensor-1 and Sensor-3 of the
Coventry-2018) and Sensor-4 is the front sensor (comparable with Sensor-2 of the Coventry-
2018). Then, these three sensors were used in the optimization experiments for comparison
with the Coventry-2018 dataset. In the case of the extra ceiling-mounted Sensor-1 of the
Infra-ADL2018 dataset, it was excluded from the sensor optimization experiments due to
two reasons: (1) it did not achieve better results than the other sensors (2, 3, and 4), as
shown in Table 4, perhaps because of the weaker silhouette view of the subjects from the
ceiling; (2) there is no comparable sensor in the Coventry-2018 dataset for that sensor.

For these experiments, the models were trained using the SVD feature extraction and
LR classifier. The large layout of the Coventry-2018 dataset was used, including both single-
and double-subject activities. In the case of Infra-ADL2018, all 21 activities were used
for evaluation.
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(a) (b)
Figure 14. Classification accuracy for individual sensors and combinations of them for (a) Coventry-
2018 dataset and (b) Infra-ADL2018 dataset.

As observed in these results, in both cases, the individual side sensors achieved highest
accuracies. Sensor-1 from the Coventry-2018 and Sensor-2 from the Infra-ADL2018 show
100% prediction results. Similarly, the other two side sensors, including Sensor-3 of the
Coventry-2018 dataset and Sensor-2 from the Infra-ADL2018 dataset, achieved the next
highest accuracies. These show an agreement between the two datasets regarding the
optimal use of side sensors for the dominant viewpoints, as it is promising in terms of
accuracy and simplicity in the system design and computations for activity recognition.
Although different combinations of the three sensors caused a decrease in the testing
accuracy, they are still at a high level. This drop of the results might be also connected to
the increase in the number of variables by including more sensor frames while having the
same number of samples. This should be further explored in future studies by providing
more samples for the experiments.

5. Discussion
5.1. Optimum Sensor Selection

By using multiple sensors, a systematic review of the performance of each sensor can be
performed. As seen in Section 4, using Sensor-1 data, the best activity recognition accuracy
was achieved. Based on this result, a conclusion might be derived on exclusion of the
other two sensors, which simplifies both hardware and software requirements. However,
due to the variations in the orientation of subjects with respect to a sensor in real scenario,
the expected accuracy might vary depending on the subject’s direction with respect to
the sensor, as seen for the three individual sensors’ results in Figure 14. Furthermore, as
mentioned earlier, the temperature of the room rose from 18° centigrade to 21° over the
experiments in the large layout. However, the classification models still remain accurate
despite the higher temperature in the room.

Another issue to investigate is the reason for the difference in the performance of the
two side sensors, Sensor-1 and Sensor-3. While they are symmetric with respect to the
subject’s position, Sensor-3 shows lower accuracy compared to Sensor-1. The confusion
matrices shown in Figure 15 outline that the lower accuracy of Sensor-3 is due to the double-
subject gestures such as B4 (Small Movements) and B6 (Standing; Moving). This is due to
the fact that these gestures are not symmetric, as visualized in Figure 16. Furthermore, the
confusion matrices in Figure 15 prove that the pair-subject gestures are problematic and
this leads to lower performance of the data captured by Sensor-3.
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(a) (b)
Figure 15. Comparison between the confusion matrices of the two side sensors, Sensor-1 (a) and
Sensor-3 (b) of the Coventry-2018 dataset. The large layout with single- and double-subject data was
used for training a model based on SVD and LR.

(a) Sensor-1 (b) Sensor-3
Figure 16. Comparison between Coventry-2018 Sensor-1 (a) and Sensor-3 (b) for "Standing + Small
Movements" gesture.

5.2. Analysis of Model Accuracy

As stated in Section 1, one of the initial targets in this paper was a comprehensive
comparison of supervised methods, including the group of feature extraction and classifica-
tion as well as DNN based on CNN-LSTM, in the pursuit of discovering the most accurate
model for LRIR data and activity prediction. Furthermore, having a diverse group of analy-
sis methods helped in achieving reasonable accuracy in scene generalization experiments
where both large-layout and small-layout data were used together. The obtained results
demonstrated that specifically SVD was the most successful feature extraction method in ac-
tivity detection using LR, RF, and SVM classifiers. This means that the most discriminating
features lie along the directions with highest variance in orthogonal subspace. SVD uses
the whole training samples of all classes to find the eigenvectors, that is, 75% of the total
450 number of samples (of the Coventry 15-class problem), 0.75 × 450 = 337. However,
the Fisher technique requires computing the within-class covariances. Since there are only
30 samples in each of the 15 classes, then 0.75 × 30 = 22 training samples are used for
computation of the within-class covariance matrices. This is very low compared to the
large number of variables, 2560. This probably places SVD in a better rank condition when
referring to the achieved accuracies. Another successful architecture was the CNN-LSTM
model, where features were extracted from the CNN layers. Therefore, the LSTM layers
learned the temporal variations of the sequences.

On the other hand, GLCM showed some level of success for model generalization
when a model trained on small-layout data was used to classify samples of large layout.
This is due to the nature of the GLCM in quantifying image texture patterns. With regard
to SVD, the main directions of variations found in orthogonal subspaces might not match
between the small and large layout. In addition, due to the changes in spectral variations
of 2D arrays in the two layouts, a previously trained model on the compressed DCT
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coefficients of small layout does not work on large-layout data. However, a model trained
on the texture patterns captured by GLCM for small layout identifies the same patterns
in large-layout data and shows generalization capability. In addition to this, the deep
CNN-LSTM architecture showed superiority when recognizing activities in the mixed
model generalization scenario.

5.3. Data Augmentation

The number of existing samples per activity is 30 for the Coventry-2018 and 27 for
the single-subject activities of the Infra-ADL2018 dataset. These are limited number of
samples. Then, evaluating the models using a higher number of training samples can
better reveal their capability and accuracy. To the best of our knowledge, there is no
available dataset with similar level of diversity in the number of subjects and activities
to the two datasets used in this paper. Therefore, to evaluate the optimum model using a
larger number of training and test samples, data augmentation is considered. There are
different strategies to artificially expand the size of samples. One group of methods are
based on applying functions such as rotation, flipping, and changing image heights and
width. However, this cannot be adopted for augmenting the 2D maps, and care must be
taken in their augmentation to preserve the validity of the generated 2D spatiotempral
maps. This is because they are shaped by vectorization and concatenation of the IR frames.
The abovementioned augmentation methods can result in generation of frames including
nonrealistic activities or silhouettes.

Therefore, in this paper, image augmentation was performed by interpolation of the 2D
spatiotemporal maps. This was performed for the 15-class problem of the large layout, side
Sensor-1 of the Coventry-2018 dataset. For this aim, the average of two spatiotemporal maps
of the same subject was calculated to generate a new spatiotemporal map. In total, 10 new
maps were generated out of the 10 original maps of each subject for each activity. The order
of the maps was selected as (map1, map2), (map2, map3), ..., (map9, map10), (map2, map4).
This doubled the number of samples from 450 to 900. Figure 17 shows one example of
the 2D maps from two repeats of a subject and an artificially generated map using the
two repeats.

(a) (b) (c)
Figure 17. Illustration of the 2D spatiotemporal maps of subject 1 performing activity “Walking-
Diagonally 1”: (a) repeat 1; (b) repeat 2; (c) the artificially generated 2D map using the (a,b) maps.

Next, the augmented data are randomly divided into train (75%) and test (25%). This
is followed by periodic noise removal based on the proposed FFT-based algorithm. To
estimate the classification accuracy, the most optimum model, SVD+LR, is used. The result-
ing confusion matrix for the test data is shown in Figure 18. While the training accuracy
remained at 100%, compared to the original samples’ test results shown in Figure 15a, there
is a slight reduction in the new overall test accuracy (98.66%). This is due to the increased
diversity in the test samples. Interestingly, the few wrongly classified activities belong
to the same challenging class of B4 (Small Movements) activity, which was also wrongly
classified for some samples of Sensor-3 previously (shown in Figure 15b). The proposed
periodic noise reduction method increased the overall testing accuracy from 96% to 98.66%.
The results achieved after data augmentation confirm the accuracy and reliability of the
optimum methods found for HAR using LRIR data in this paper.
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Figure 18. Confusion matrix describing the prediction accuracy based on the augmented dataset
Coventry-2018 for the 15-class problem using the large-layout Sensor-1 data.

6. Conclusions

In this paper, the problem of human activity recognition using low-resolution IR
sensors was addressed. Experiments were conducted in large-layout and small-layout
settings by changing the distance from sensors to the subjects. For the first time, our
generated dataset, called Coventry-2018, was used for HAR. In addition, a previously created
dataset, Infra-ADL2018, was analyzed for comparison. Furthermore, the experiments
included single-subject activities as well as double-subject activities. A novel supervised
denoising algorithm based on 2D DFT was proposed for removing the horizontal and
vertical periodic noise from the 2D spatiotemporal image maps formed by concatenation of
the vectorized frames over the activity period. The use of the proposed strategy improved
the activity classification accuracy. For classification of the activities, two main approaches
were used: the feature extraction for dimensionality reduction followed by classification
modeling and a deep learning strategy. The former strategy included SVD, Fisher’s method,
DCT, and GLCM for feature extraction and dimension reduction, and SVM, LR, RF, and
k-NN for classification modeling. The deep learning strategy involved a CNN-LSTM
model. In terms of data features, the most successful method was SVD. The most accurate
classifier among the employed techniques was LR. Furthermore, comparison of the sensor
settings demonstrated that by using only one side sensor, the most accurate results can be
obtained, which simplifies the hardware and software. In addition, the generalization of
the algorithms were tested in terms of deviation in layout and environmental temperature
between the train and test data successfully. Regarding the layout settings, it was concluded
that small layout produced better accuracy. Finally, the methodologies were also validated
successfully on another dataset called Infra-ADL2018, including four LRIR sensors, and
single-, double-, and three-subject activities.
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