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Abstract: The state of charge (SOC) for a lithium-ion battery is a key index closely related to battery 
performance and safety with respect to the power supply system of electric vehicles. The Kalman 
filter (KF) or extended KF (EKF) is normally employed to estimate SOC in association with the rel-
atively simple and fast second-order resistor-capacitor (RC) equivalent circuit model for SOC esti-
mations. To improve the stability of SOC estimation, a two-stage method is developed by combining 
the second-order RC equivalent circuit model and the eXogenous Kalman filter (XKF) to estimate 
the SOC of a lithium-ion battery. First, approximate SOC estimation values are observed with rela-
tively poor accuracy by a stable observer without considering parameter uncertainty. Second, the 
poor accuracy SOC results are further fed into XKF to obtain relative stable and accurate SOC esti-
mation values. Experiments demonstrate that the SOC estimation results of the present method are 
superior to those of the commonly used EKF method. It is expected that the present two-stage XKF 
method will be useful for the stable and accurate estimation of SOC in the power supply system of 
electric vehicles. 

Keywords: lithium-ion battery; SOC; second-order RC equivalent model; eXogenous Kalman filter; 
estimation 
 

1. Introduction 
State of Charge (SOC) is the key index closely related to lithium-ion battery perfor-

mance and safety to reflect the characteristics the power supply system of electric vehicles. 
Online and high precision estimate SOC is required by a battery management system to 
prevent battery overcharge and discharge , low power current limiting threshold, vehicle 
control strategy threshold, etc [1]. Generally, SOC cannot be measured directly ; hence, it 
is usually estimate by detecting terminal voltage, current, impedance, temperature, and 
other parameters [2–4]. The indirect measurement of these physical quantities will lead to 
the high nonlinearity of SOC estimations. Therefore, online and effective control SOC can 
improve and prolong the efficiency and cycle life of lithium-ion batteries. Hence, it is of 
great significance to estimate the SOC of lithium-ion batteries. SOC estimation method 
based on parameter identification, such as neural networks [5,6], the Kalman filter (KF) 
method, the extended Kalman filter (EKF) method [7], and the unscented Kalman filter 
method [8]. 

Artificial intelligence (AI) models can automatically learn features without extensive 
prior knowledge and have been widely used for unknown abnormal condition detection 
and prediction [9–11], especially for SOC estimation for lithium-ion batteries [12–14]. For 
example, an adaptive back propagation neural network was introduced to improve the 
SOC estimation accuracy of an unscented Kalman filtering algorithm [15]. A recurrent 
convolutional neural network (RCNN) was employed for SOC prediction of lithium-ion 
batteries [16], and a stacked encoder–decoder bi-directional long short-term memory 
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(LSTM) was used to estimate SOC for the electric vehicle and hybrid electric vehicle [17]. 
Generally, the key factor for the success of AI model application is sufficient or even com-
plete training samples for obtaining a high classification accuracies in real-world applica-
tions. However, there is no easy way to acquire numerous training samples from running 
electric vehicles under complex working conditions in engineering practice. Conse-
quently, the Kalman filter technique and its improved versions are the best choice for SOC 
estimation. 

The theoretical basis of linear KF is well established for stochastic processes, estima-
tion, and control [18]. Furthermore, the combination of the adaptive KF method and the 
battery Thevenin equivalent circuit are dynamically combined to estimate the SOC of an 
electric vehicle power battery with measurement noises [19]; Robust KF was presented for 
estimating the non-Gaussian probability density model problem [20] by using the expec-
tation maximization (EM) algorithm [21].Generally, EKF is a kind of relatively broad esti-
mation method using nonlinear KF approximation lacking global stability, essentially 
caused by a feedback loop introduced when calculating the approximation (linearization) 
of a local linear model. The key is to linearize the current state estimate, and the lineariza-
tion will be poor due to the poor initialization of the state estimate. The KF update may 
not reduce the estimate error and thus prevent the error from converging [22]. Recently, 
researchers have provided many improvements to the KF method. Liu [23] proposed an 
adaptive square root unscented Kalman filter (ASRUKF) method to estimate the SOC of 
lithium-ion batteries, and the effectiveness of the ASRUKF method has been verified 
through experiments under different operating conditions with better accuracy, robust-
ness and convergence. To overcome the regression least squares algorithm-based ex-
tended Kalman filter (RLS-EKF), an adaptive forgetting factor-based RLS-EKF (AFFRLS-
EKF) SOC estimation strategy was used to improve the accuracy of SOC estimation under 
changes in battery charge and discharge conditions [24]. 

In summary, the above research focuses on finding the relative best preprocessing 
method to improve the combination of improvement of KF and the second-order RC 
equivalent model to guarantee stability for SOC estimations. However, the structural pa-
rameters of a stochastic resonance system have a great impact on its output; each input 
signal will correspond to a set of optimal structural parameters. Therefore, another way 
is to deal directly with the linear Kalman filter (LKF). To enhance the performance of LKF, 
a two-stage estimation strategy called the eXogenous Kalman filter (XKF) is developed by 
Johansen and Fossen [25]. The model linearization is accomplished by an auxiliary state 
estimate to the LFK, which does not depend on the LKF’s own state estimation. Therefore, 
the stability properties of XKF are inherent in the auxiliary state estimator [26]. Hence, 
XKF was applied to generate a globally exponentially stable observer for the visualization 
and motion prediction of ships to solve the problem of kinematic nonlinearities [27]. Chen 
et al. developed an observer-based two-stage extended Kalman filter (TSEKF) for a satel-
lite attitude control system (ACS) with unknown time-varying actuator faults [28]. Ma et 
al. proposed a modified XKF (MXKF) for fault-tolerant stability control of a three-phase 
permanent magnet synchronous motor control system with encoder faults [29]. 

To perform KF and/or EKF and their improved versions, a second-order RC equiva-
lent model of the lithium-ion battery is commonly employed to serve as a baseline model 
with changeable parameters [30,31]. Xia et al. systematically proposed a hybrid of the sec-
ond-order RC equivalent circuit and parameters of the battery model were determined by 
the forgetting factor least-squares method, the state space equation observer method, and 
the adaptive extended Kalman particle filter (AEKPF) using a particle filter (PF) and adap-
tive Kalman filter (AKF) [32–34]. Guo et al. developed a combination of the second-order 
RC equivalent circuit and parameters and the parameter estimator using the least squares 
method with a forgetting factor and the adaptive UKF algorithm to jointly estimate SOC 
[35]. Falai et al. applied the second-order RC equivalent circuit model to predict the SOC 
of on-road lithium-ion battery tests and further validated the global battery-to-wheels ef-
ficiency [36]. 
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These works paved the way towards stability and accurate prediction of the SOC of 
lithium-ion batteries for the power supply system of electric vehicles. However, the com-
bination of KF or EKF and the second-order RC equivalent circuit model will lead to ac-
curate SOC estimation but cannot keep its stability. Moreover, XKF is in nature a stability 
estimator suitable for SOC estimation. In this paper, a combination method using the sec-
ond-order RC equivalent circuit model and XKF is developed to estimate the SOC of a 
lithium-ion battery. For this purpose, this paper is structured as follows: equivalent circuit 
model for a lithium-ion battery is given in Section 2. In Section 3, using the equivalent 
circuit model of lithium-ion batteries, approximate SOC estimation values are observed 
with relatively poor accuracy by a stable observer without considering parameter uncer-
tainty. The approximate SOC results serve as the pre-treated data to activate XKF to obtain 
the relatively stable and accurate SOC estimation values in Section 4. Finally, conclusion 
remarks are given in Section 5. 

2. Equivalent Circuit Model for a Lithium-Ion Battery 
The equal-effect circuit model makes the relationship between voltage and current of 

the battery in practice simulated by the common basic circuit components, such as re-
sistance, capacitance, and voltage source. A large number of investigations have shown 
that there is a certain relationship between the residual power and the parameters of lith-
ium batteries and the easy-access parameters. Therefore, equivalent circuit models, such 
as the Rint model [37], the Randles model [38],and the nth-order RC model [39], have been 
developed to understand the relationship between parameters and SOC of lithium batter-
ies. Moreover, equivalent circuit models can also be employed to simulate the character-
istics of lithium-ion batteries for power supply system in electric vehicles. Generally, the 
second-order RC equivalent circuit model is a commonly used equivalent circuit model 
for serving as a baseline to predict SOC of lithium-ion batteries [30–36]. 

The second-order RC equivalent circuit model with a simple circuit structure can well 
reflect the dynamic and static characteristics of the lithium-ion battery in the power sup-
ply system of electric vehicles. Therefore, it has good real-time performance to meet the 
requirements for the development of battery management systems. Figure 1 shows the 
second-order RC equivalent circuit model, which consists of battery electromotive force 
Uoc, an ohmic internal resistance of battery R0, and a series connection of two parallel 
capacitive resistance circuits. In Figure 1, Ud is the open circuit voltage, R1 and R2, C1 and 
C2 are the polarization internal resistances and the polarization capacitors of the battery, 
respectively, with the voltage U1 and U2. It is worth pointing out that C1 and C2 are given 
to simulate the dynamic characteristics of the voltage gradient in the process of battery 
polarization. 

 
Figure 1. the second-order RC equivalent circuit model. 
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According to the second-order RC equivalent circuit model shown in Figure 1, the 
following equations can be obtained as:  

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ 𝑈௢௖ = ƒ(𝑆𝑂𝐶)𝑆𝑂𝐶 = 𝑆𝑂𝐶଴ − 1𝑄ே න 𝜂𝐼d𝑡்

଴𝐶ଵ · d𝑈ଵd𝑡 + 𝑈ଵ𝑅ଵ = 𝐼𝐶ଶ · d𝑈ଶd𝑡 + 𝑈ଶ𝑅ଶ = 𝐼𝑈଴𝑅଴ = 𝐼
 (1)

where 𝑆𝑂𝐶଴ and 𝑄ே are the initial value of SOC, and the rated capacity of the battery, 
respectively. 𝜂 is Coulomb efficiency can be obtained by charging and discharging ex-
periments of a battery, generally can be set to 1, and T is the period of charging and dis-
charging cycle of the battery. 

It is worth pointing out that in the present investigation, only the U1 and U2 are 
changed with time. Therefore, the state-space equation of Equation (1) can be written as: 

቎𝑆𝑂𝐶𝑈ଵሶ𝑈ଶሶ ቏ = ⎣⎢⎢
⎢⎡1 0 00 1 − 1𝑅ଵ𝐶ଵ 00 0 1 − 1𝑅ଶ𝐶ଶ⎦⎥⎥

⎥⎤ · ൥𝑆𝑂𝐶଴𝑈ଵ𝑈ଶ ൩ +
⎣⎢⎢
⎢⎢⎢
⎡− 𝜂 · 𝑇𝑄ே1𝐶ଵ1𝐶ଶ ⎦⎥⎥

⎥⎥⎥
⎤ · I  (2)

and 𝑈ௗ = 𝑈௢௖(𝑆𝑂𝐶) − 𝑈ଵ − 𝑈ଶ − 𝐼 · 𝑅଴ (3)

The state-space equation is discretized, and the discrete model of the equation can be 
obtained as: 

቎𝑆𝑂𝐶௞ାଵ𝑈ଵ,௞ାଵ𝑈ଶ,௞ାଵ ቏ = ⎣⎢⎢
⎢⎡1 0 00 1 − 1𝑅ଵ𝐶ଵ 00 0 1 − 1𝑅ଶ𝐶ଶ⎦⎥⎥

⎥⎤ · ቎𝑆𝑂𝐶௞𝑈ଵ,௞𝑈ଶ,௞ ቏ +
⎣⎢⎢
⎢⎢⎢
⎡− 𝜂 · 𝑇𝑄ே1𝐶ଵ1𝐶ଶ ⎦⎥⎥

⎥⎥⎥
⎤ · 𝐼௞ (4)

𝑈ௗ,௞ = 𝑈௢௖(𝑆𝑂𝐶௞) − 𝑈ଵ,௞ − 𝑈ଶ,௞ − 𝐼௞ · 𝑅଴ (5)

3. Approximate SOC Estimation Using the Equivalent Circuit Model of Lithium-Ion 
Battery by Experimental Tests 

In the present study, the experiment test rig and test object are Arbin BT-ML-
100V100A (Arbin Company) and NCM532 lithium-ion batteries (4.2 V, 24 Ah), respec-
tively, as shown in Figure 2. The operating temperature range of the battery is −20 degrees 
Celsius ~50 degrees Celsius. In the experiments, the lithium-ion battery is tested with 1C 
pulse discharge, and the sampling time was 1 s/ time, the experimental temperature is 
under room temperature around 25 degrees Celsius. More details about how to use the 
Arbin BT-ML-100V100A test rig can be seen in the user’s manual of Arbin Company. 



Sensors 2023, 23, 467 5 of 14 
 

 

 
Figure 2. Arbin test rig and NCM532 lithium-ion batteries. 

Electromotive force Uoc is the potential difference between the positive and negative 
poles when the battery is in a stable state. However, the direct measurement of Uoc is 
difficult, but it can be represented by the open-circuit voltage Ud for SOC calculations. 

Table 1 shows the relationship between Ud and SOC during the test. Using polyno-
mial curve fitting technique, the specific function relation between Ud and SOC is: 

Table 1. The relationship between Ud and SOC during the test. 

SOC/% 10 20 30 40 50 60 70 80 100 
Ud/V 3.3572 3.3510 3.5810 3.6492 3.7267 3.8182 3.9127 4.0082 4.1899 

 
Uoc=-8.261SOC7+0.003158SOC6-0.04947SOC5+ 0.4086SOC4- 1.898SOC3+4.873SOC2 

-6.122SOC+6.141  
(6)

Rebound voltage is the value of electrode potential deviation from equilibrium po-
tential caused by equivalent impedance in the charging and discharging process of the 
battery, which mainly includes ohmic internal resistance and polarization internal re-
sistance. The analysis of battery rebound voltage characteristics can provide a basis for 
the estimation of basic model parameters. Figure 3 shows the single-stage discharge cur-
rent and voltage. As shown in segments A-B in Figure 3b, the voltage is dropped sharply 
at the beginning of discharge and then slowly decreased to point B. At the end of dis-
charge, as shown in segments B-C-D, the voltage is rapidly raised and then increased 
slowly. 
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Figure 3. Single-stage discharge current and voltage curves: (a) the single-stage discharge current 
curve; (b) the single-stage discharge voltage curve. 

Notes: A and B are the starting and ending points of circuit in a discharge stage, respectively; C and 
D are the inflexion and end points of circuit in a quiescent stage. 

The segments of B-C-D in the voltage curve are selected for analysis. The voltage 
drop in segment B-C is caused by ohmic internal resistance 𝑅଴ as: 𝑅଴ = 𝑈(𝐶) − 𝑈(𝐵)𝐼   (7)

where 𝑈(𝐵) and 𝑈(𝐶) are circuit voltages at point B and C. 
For segment C-D, the zero-input voltage response is 𝑈(𝑡) = 𝑈(𝐷) · 𝑒ି௧ ఛൗ , where 𝑈(𝐷) is the circuit voltage at point D, 𝜏 =RC is the time constant of the RC of the series 

connection of two parallel capacitive resistance circuits as shown in Figure 1. The single 
stage discharge voltage curve shown in Figure 3b presents the shape of an exponential 
function. Therefore, the zero-input voltage response 𝑈(𝑡)ଵ and 𝑈(𝑡)ଶ of R1C1 and R2C2 
circuits are: 𝑈(𝑡)ଵ = 𝑈(𝐷)ଵ · 𝑒ି௧ ఛభൗ   𝑈(𝑡)ଶ = 𝑈(𝐷)ଶ · 𝑒ି௧ ఛమൗ   

where 𝜏ଵ = 𝑅ଵCଵ and 𝜏ଶ = 𝑅ଶCଶ with the restraint 𝜏ଵ > 𝜏ଶ are the time constants of R1C1 
and R2C2 circuits, respectively. Therefore, the terminal voltage at any time in segment C-
D can be expressed as: 𝑈஻(𝑡) = 𝑈௢௖௩(𝐷) − 𝑈ଵ(𝑡) − 𝑈ଶ(𝑡) = 𝑈௢௖௩(𝐷) − 𝐼𝑅ଵ · 𝑒ି௧ ఛభൗ − 𝐼𝑅ଶ · 𝑒ି௧ ఛమൗ   (8)

where 𝑈௢௖௩(𝐷) is the open-circuit voltage at point D. 
Furthermore, Equation (8) can be written as follows: 

(a) 

(b) 
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𝑈஻(𝑡) = 𝑘଴ − 𝑘ଵ · 𝑒ି௧ ఛభൗ − 𝑘ଶ · 𝑒ି௧ ఛమൗ   (9)

in which 

⎩⎪⎪⎨
⎪⎪⎧ 𝑅ଵ = ௞భூ𝑅ଶ = ௞మூ𝐶ଵ = ூ·ఛభ௞భ𝐶ଶ = ூ·ఛమ௞మ

. (10)

The voltage response data of the segment C-D is imported, and the function can be 
fitted and values of parameters 𝑘଴ , 𝑘ଵand 𝑘ଶ  can be obtained. The parameters of the 
model can be obtained from (5) and (6) 

Finally, the parameters of the second-order RC equivalent circuit model are identi-
fied and listed in Table 2. 

Table 2. Battery model parameter table. 𝑅଴/Ω 𝑅ଵ/Ω 𝑅ଶ/Ω 𝐶ଵ/𝐹 𝐶ଶ/F 
0.04474 0.016603 0.0058259 10358 18862 

To validity the performance of the second-order RC equivalent circuit model, simu-
lations using MATLAB/Simulink are given as shown in Figure 4. The NCM532 lithium-
ion battery is tested using the Arbin BT-ML-100V100A test rig, and the measured values 
of 1C pulse discharge are used for the verification of the second-order RC equivalent cir-
cuit model. Comparing the measured values with simulated values through the second-
order RC equivalent circuit model, the response voltage curve obtained from the Simulink 
simulation model is shown in Figure 5. Figure 6 shows the error curve of the response 
voltages between the Simulink simulations and the experiments. From Figure 6, we can 
clearly see that the errors in response voltages between the simulations and experiments 
are all within 7%. Therefore, the second-order RC equivalent circuit model we adopted 
herein can be employed to simulate the chemical reaction characteristics inside the battery 
with certain precision. 

 
Figure 4. Block diagram of Simulink for the second-order RC equivalent circuit model. 
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Figure 5. Response voltage curve from the Simulink simulation model: (a) the discharge current 
curve; (b) the response voltage curve. 

 
Figure 6. Error curve of response voltages between the Simulink simulations and experiments4. 
eXogenous Kalman filter to estimate SOC. 

4. eXogenous Kalman Filter to Estimate SOC 
4.1. Extended Kalman Filter to Estimate SOC 

KF uses the measured data of the state-space equation and output equation of the 
system to get the state or parameter to be estimated under the condition that the system 
noise, mathematical model, and initial state value are known. The standard Kalman filter 
can estimate the state variables of linear systems optimally and is a globally exponentially 
stable and robust algorithm. However, the lithium-ion battery itself is a nonlinear dy-
namic system, and the nonlinear system requires some extension or modification of KF, 
such as EKF, untraced KF, etc. More details about EKF can be seen in Ref. [7]. Using the 
second-order RC equivalent circuit model, the block diagram of EKF to estimate SOC by 
MATLAB/Simulink are given as shown in Figure 7. The divergent SOC estimation results 
by EKF are shown in Figure 8. 

Er
ro

rs
 

(a) 

(b) 
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Figure 7. Block diagram of Simulink for the SOC estimation of the lithium-ion battery using EKF. 

 
Figure 8. Divergent SOC estimation results using EKF. 

The core idea of the EKF algorithm is to expand nonlinear functions in nonlinear sys-
tems according to the first-order Taylor series, ignore second-order and higher-order 
terms, transform the original system into an approximate linearized model, and then use 
a linear Kalman filter algorithm for state estimation. In the process of estimating the SOC 
of lithium-ion batteries using EKF, as shown in Figure 8, the results are not convergent. 
The reason is that the feedback loop is introduced in the calculation of local linear model 
approximation (linearization), but the performance is determined by the quality of the 
state estimation initialization. However, generally, EKF cannot reduce estimation errors 
and thus prevent error convergence. 

4.2. eXogenous Kalman Filter to Stablilty Estimate SOC 
As mentioned in Section 4.1, if the quality of the state estimation initialization is poor, 

EKF will fail to estimate the SOC of the lithium-ion battery. Johansen and Fossen [25] de-
veloped the XKF and proved that XKF is a cascade of auxiliary state estimators not 
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dependent on the linear Kalman filter’s own state estimation. The design of the auxiliary 
state estimator is listed below. 

The main requirement of an auxiliary state estimator is strong (nominal) stability in 
the absence of noise, preferably global exponential stability. In an XKF environment, its 
response to noise is considered less important. Therefore, the discretized state-space equa-
tions, as shown in Equations (4) and (5), are represented by: 

቎𝑆𝑂𝐶௞ାଵ𝑈ଵ,௞ାଵ𝑈ଶ,௞ାଵ ቏ = ⎣⎢⎢
⎢⎡1 0 00 1 − 1𝑅ଵ𝐶ଵ 00 0 1 − 1𝑅ଶ𝐶ଶ⎦⎥⎥

⎥⎤ · ቎𝑆𝑂𝐶௞𝑈ଵ,௞𝑈ଶ,௞ ቏ +
⎣⎢⎢
⎢⎢⎢
⎡− 𝜂 · 𝑇𝑄ே1𝐶ଵ1𝐶ଶ ⎦⎥⎥

⎥⎥⎥
⎤ · 𝐼௞ + 𝑤௞ (11)

𝑈ௗ,௞ = 𝑈௢௖(𝑆𝑂𝐶௞) − 𝑈ଵ,௞ − 𝑈ଶ,௞ − 𝐼௞ · 𝑅଴ + 𝑣௞ (12)

in which, 𝑤௞ and 𝑣௞ are the uncorrelated and zero mean Gaussian white noises. Figure 
9 shows the flowchart of the SOC estimation using XKF. 

 
Figure 9. The flowchart of the SOC estimation using XKF. 

From Figure 9, we can see clearly that the differences of the XKF are: (1) the second-
best estimation using auxiliary estimator; (2) KF using approximation local linear time-
varying model to obtain the best estimation of SOC. 

The main step of the auxiliary estimator is to calculate the rough 𝑈෡ଵ  and 𝑈෡ଶ  by 
Equation (13). By plugging into the lithium-ion battery’s equation of state, we can get the 
rough SOC estimate, 𝑆𝑂𝐶෢ . 𝑥௞ = [𝑆𝑂𝐶௞𝑈ଵ,௞ 𝑈ଶ,௞]୘, where T denotes transpose. 

Suppose 𝑥௞ = [𝑆𝑂𝐶෢ ௞, 𝑈෡ଵ,௞, 𝑈෡ଶ,௞]୘ the initial values 𝑈෡ଵ,଴ = 𝑈෡ଶ,଴=0, according to Equa-
tions (11) and (12), the second-best estimation values 𝑈෡ଵ, 𝑈෡ଶ and 𝑆𝑂𝐶෢  can be estimated 
using the state-space equations as: 
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቎𝑆𝑂𝐶෢ ௞ାଵ𝑈෡ଵ,௞ାଵ𝑈෡ଶ,௞ାଵ ቏ = ⎣⎢⎢
⎢⎡1 0 00 1 − 1𝑅ଵ𝐶ଵ 00 0 1 − 1𝑅ଶ𝐶ଶ⎦⎥⎥

⎥⎤ · ቎𝑆𝑂𝐶෢ ௞𝑈෡ଵ,௞𝑈෡ଶ,௞ ቏ +
⎣⎢⎢
⎢⎢⎢
⎡− 𝜂 · 𝑇𝑄ே1𝐶ଵ1𝐶ଶ ⎦⎥⎥

⎥⎥⎥
⎤ · 𝑖௞ + 𝑤௞ (13)

𝑈ௗ,௞ = 𝑈௢௖൫𝑆𝑂𝐶෢ ௞൯ − 𝑈෡ଵ,௞ − 𝑈෡ଶ,௞ − 𝑖௞ · 𝑅଴ + 𝑣௞ (14)

Linearizing the state-space equations shown in Equations (13) and (14), we obtain the 
local linear model of the lithium-ion battery as: 𝑥௞ାଵ = 𝐴ሚ௞𝑥௞ + 𝐵௞ · 𝑖௞+𝑤௞ (15)𝑦௞ = 𝐶ሚ௞𝑥௞ + 𝐷௞ · 𝑖௞ + 𝑣௞ (16)

in which 

𝐴ሚ௞ = 𝜕𝑓(𝑥௞, 𝑢௞)𝜕𝑥௞ |௫ೖୀ௫෤ೖ = ⎣⎢⎢
⎢⎡1 0 00 1 − 1𝑅ଵ𝐶ଵ 00 0 1 − 1𝑅ଶ𝐶ଶ⎦⎥⎥

⎥⎤
 (17)

𝐵௞ = [− 𝜂 · 𝑇𝑄ே  1𝐶ଵ  1𝐶ଶ]୘ (18)

𝐶ሚ௞ = 𝜕𝑓(𝑥௞, 𝑢௞)𝜕𝑥௞ |௫ೖୀ௫෤ೖ = ቈ∂𝑈௢௖(𝑆𝑂𝐶௞)∂SOC |ௌை஼ୀௌை஼෫ೖ − 1 − 1቉ (19)

𝐷௞ = −𝑅଴ (20)

Therefore, the approximation local linear time-varying model is estimated by KF to 
obtain the best estimation of SOC. More details about the algorithm can be seen in Refs. 
[25–27]. 

Figure 10 shows the estimated XKF and reference values of SOC for the lithium-ion 
battery (experimental SOC values). The red line is the XKF estimation SOC values and the 
blue line is the SOC reference values, which are matched well, except for the points of 
inflection similar to the response voltage curve as shown in Figure 5b. The relative errors 
between the XKF estimated and reference values (experimental values) of SOC are shown 
in Figure 11. The relative errors are almost below 1%, except for the sudden changed in 
currents and voltages. Reasons for sudden change value are: XKF mainly predicts the bat-
tery SOC through the battery current and voltage; the battery current and voltage test 
results will not be sudden changes. Therefore, sudden changes will occur in the prediction 
results but will not influence the prediction results if they persevered convergences. 
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Figure 10. XKF estimated and reference values (experimental values) of SOC. 

 
Figure 11. Relative errors between the XKF estimated and reference values (experimental values) of 
SOC. 

Therefore, it proves that the SOC estimation results using XKF are relatively stable 
and accurate. Moreover, compared to the EKF estimation results as shown in Figure 8, we 
found that EKF cannot effectively reduce the errors but continuously accumulate errors 
to be larger and larger. 

5. Conclusions 
To solve the stability problem that occurred in SOC estimation using the Kalman fil-

ter or extended Kalman filter, the eXogenous Kalman filter combined with the second-
order RC equivalent circuit model for the lithium-ion battery is developed. The eXoge-
nous Kalman filter is a cascade of auxiliary state estimators not dependent on the linear 
Kalman filter’s own state estimation but the design of the auxiliary state estimator as the 
alternate one. Therefore, the procedures are: (1) Construct the second-order RC equivalent 
circuit model of the lithium-ion battery and further determine the model parameters by 
experiments; (2) Build up the discretized state-space equations of the second-order RC 
equivalent circuit model to generate an auxiliary estimator; (3) Obtain the second-best es-
timation using auxiliary estimator; (4) Perform Kalman filter using approximation local 
linear time-varying model to obtain the best estimation of SOC. Experimental results show 
that SOC estimation using the eXogenous Kalman filter is superior to the commonly used 
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extended Kalman filter for maintaining stability while having sufficient accuracy. It is 
worth pointing out that the influence of temperature and/or battery aging have not been 
directly considered in the present investigations and needs to be further investigated us-
ing the present method or its improved versions. 
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