
Citation: Kim, J.; Lee, S.; Kim, Y.;

Ahn, S.; Cho, S. Graph

Learning-Based Blockchain Phishing

Account Detection with a

Heterogeneous Transaction Graph.

Sensors 2023, 23, 463. https://

doi.org/10.3390/s23010463

Academic Editor: Naveen

Chilamkurti

Received: 29 November 2022

Revised: 7 December 2022

Accepted: 19 December 2022

Published: 1 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Graph Learning-Based Blockchain Phishing Account Detection
with a Heterogeneous Transaction Graph
Jaehyeon Kim 1 , Sejong Lee 2 , Yushin Kim 2 , Seyoung Ahn 2 and Sunghyun Cho 3,*

1 Department of Applied Artificial Intelligence, Major in Bio-Artificial Intelligence, Hanyang University,
Ansan 15588, Republic of Korea

2 Department of Computer Science and Engineering, Major in Bio-Artificial Intelligence, Hanyang University,
Ansan 15588, Republic of Korea

3 Department of Computer Science and Engineering, Hanyang University, Ansan 15588, Republic of Korea
* Correspondence: chopro@hanyang.ac.kr; Tel.: +82-31-400-4757

Abstract: Recently, cybercrimes that exploit the anonymity of blockchain are increasing. They steal
blockchain users’ assets, threaten the network’s reliability, and destabilize the blockchain network.
Therefore, it is necessary to detect blockchain cybercriminal accounts to protect users’ assets and
sustain the blockchain ecosystem. Many studies have been conducted to detect cybercriminal ac-
counts in the blockchain network. They represented blockchain transaction records as homogeneous
transaction graphs that have a multi-edge. They also adopted graph learning algorithms to analyze
transaction graphs. However, most graph learning algorithms are not efficient in multi-edge graphs,
and homogeneous graphs ignore the heterogeneity of the blockchain network. In this paper, we pro-
pose a novel heterogeneous graph structure called an account-transaction graph, ATGraph. ATGraph
represents a multi-edge as single edges by considering transactions as nodes. It allows graph learning
more efficiently by eliminating multi-edges. Moreover, we compare the performance of ATGraph
with homogeneous transaction graphs in various graph learning algorithms. The experimental re-
sults demonstrate that the detection performance using ATGraph as input outperforms that using
homogeneous graphs as the input by up to 0.2 AUROC.

Keywords: blockchain; cryptocurrency; phishing detection; graph learning; heterogeneous graph

1. Introduction

Blockchain is a distributed ledger technology that facilitates the recording and man-
aging of transactions in a decentralized manner. Participants in the blockchain network
record and share ledgers by consensus. Ledgers are managed transparently without a
central authority because all the participants share the same ledger. Owing to the advan-
tages of blockchain technology, many fields such as finance, healthcare, and logistics have
adopted blockchain technology [1–3]. In particular, cryptocurrencies such as Bitcoin [4] and
Ethereum [5] are among the most successful blockchain applications in finance. Ethereum
has introduced smart contracts that enable users to draft contracts without intermediaries
to support various activities such as voting and auction [6]. With the introduction of smart
contracts, Ethereum has become the most famous cryptocurrency platform. Users can
transfer assets on cryptocurrency platforms without a central authority, such as a bank.
Moreover, cryptocurrency platforms use pseudonymous transaction identities that allow
users to trade assets without revealing their real-world identities.

However, many cybercrimes have been exploiting cryptocurrencies to hide their iden-
tities [7]. In 2017, WannaCry, one of the largest cybercrimes, encrypted victims’ data and
demanded cryptocurrencies in exchange for the decryption key. WannaCry is estimated
to have caused losses worth $4 billion and affected over 300k Windows computers in
over 150 countries [8]. In Ethereum, smart contracts have created new opportunities for

Sensors 2023, 23, 463. https://doi.org/10.3390/s23010463 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23010463
https://doi.org/10.3390/s23010463
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9347-3680
https://orcid.org/0000-0001-9021-7008
https://orcid.org/0000-0003-0978-3657
https://orcid.org/0000-0001-8498-4577
https://orcid.org/0000-0002-1847-6088
https://doi.org/10.3390/s23010463
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23010463?type=check_update&version=2

Sensors 2023, 23, 463 2 of 13

cybercrimes such as Ponzi schemes [9]. Chainanalysis, the blockchain data platform, re-
ported that around 19,000 victims of Ethereum cybercrimes lost approximately $8000 per
person only in 2017 [10]. Besides, the number of phishing accounts for more than 50% of
all cybercrimes in Ethereum, indicating that phishing has become a critical issue in the
Ethereum ecosystem [11]. The rise of phishing accounts on Ethereum has threatened users’
assets and the network’s reliability, destabilizing the Ethereum network [12]. Therefore, it
is important to detect phishing accounts to protect users’ assets and make the Ethereum
ecosystem more sustainable.

Blockchain transaction records are historical and publicly accessible data. Tracking
and analyzing these records can infer the pattern of the specific accounts [13]. Many studies
have been conducted to detect blockchain cybercriminal accounts by analyzing transac-
tion records using machine learning [14,15]. Moreover, blockchain transaction records
can be expressed in a graph structure with accounts as nodes and transactions as edges,
such as typical financial transaction graphs. The graph structure of transaction records
has motivated the exploration of graph-based learning approaches [16]. Based on this
motivation, several studies have adopted graph-based learning methods such as network
embedding algorithms and graph neural network (GNN) to detect cybercriminal accounts
in the Ethereum network [17–19]. These studies adopted representing transactions as a
homogeneous graph with a single type of node and a single type of edge. However, the
homogeneous graph is difficult to describe for the character of the transaction records
because it ignores the heterogeneity of the Ethereum network [20]. Moreover, the homo-
geneous transaction graph can have a multi-edge with multi-dimensional edge features
between a node pair. Traditional graph learning approaches utilize one-dimensional edge
features, which will limit learning the effectiveness of the multi-edge blockchain transaction
graph [21,22].

In this paper, we propose a graph learning-based Ethereum phishing account detec-
tion framework with a heterogeneous transaction graph that has a multi-type node. First,
we design a directed heterogeneous graph structure called an account-transaction graph
(ATGraph), where transactions are considered nodes in the place of edges. ATGraph can
effectively represent the Ethereum network’s heterogeneity. Moreover, it can reduce the
complexity of Ethereum transaction graphs by representing multi-edge as single edges.
According to the designed heterogeneous graph structure, we construct Ethereum trans-
action records into ATGraphs. Then, we extract features of nodes in ATGraphs based
on their transactions. Finally, we perform graph learning-based supervised learning for
graph classification to detect Ethereum phishing accounts. Our main contributions are
summarized as follows:

Contributions

• We propose a graph learning-based Ethereum phishing account detection framework
with a heterogeneous transaction graph. Moreover, we design a novel directed het-
erogeneous graph structure called ATGraph to take the multi-edge into account and
represent the heterogeneity of the Ethereum network.

• We conduct experiments on the Ethereum phishing account detection with various
graph learning algorithms. In experiments, we compare the detection performance
using ATGraphs and homogeneous graphs as inputs in each graph learning algorithm.
Experimental results demonstrate that ATGraphs outperform homogeneous graphs in
most graph learning algorithms.

The remainder of this paper is organized as follows. Section 2 introduces related works
on the blockchain phishing account detection and graph learning approaches. Section 3
describes the methodology of the proposed Ethereum phishing account detection frame-
work, including ATGraph construction and graph learning-based graph classification. In
Section 4, we present the experimental results and analyses. Finally, Section 5 concluded
this paper.

Sensors 2023, 23, 463 3 of 13

2. Related Work
2.1. Phishing Account Detection in Ethereum

The increase in phishing on Ethereum has become a major threat to the trading security
of the Ethereum network [11]. Several studies have been conducted on phishing account
detection to prevent cybercrimes in the Ethereum network.

In [14], Chen, W. et al. proposed a graph-based cascade feature extraction method and
built the phishing scam identification model using a dual-sampling ensemble algorithm.
The dual sampling ensemble method addresses a class imbalance problem by integrating
the models trained by sampling examples and features. The results demonstrate that the
dual sampling ensemble method represents graph features effectively.

The authors in [18] proposed a self-supervised incremental deep graph learning
model for the phishing scam detection problem in the Ethereum network. It performed
self-supervised and incremental learning using pretext tasks designed from spatial and
temporal perspectives on the Ethereum transaction data. The results demonstrate that the
proposed phishing scam detection outperforms the performance of other GNN models.

Wu, J. et al. [19] proposed a novel network embedding algorithm, trans2vec, to extract
features of accounts for phishing identification. A one-class support vector machine clas-
sified the nodes into normal and phishing using the features extracted by trans2vec. The
experimental results indicated that the trans2vec method outperformed other embedding
methods in the graph data, such as Deepwalk [23] and Node2vec [24].

These studies represent transaction records as homogeneous graphs. However, the
homogeneous transaction graph ignores the heterogeneity of the blockchain network.
Moreover, it has a multi-edge between a node pair. Traditional graph learning algorithms
have limitations in inefficiently learning graph structure that has multi-edge. Therefore, we
need to consider a novel graph structure suitable for graph learning algorithms.

2.2. Graph Learning

Nowadays, there have been an increasing number of applications in which data are
represented in the form of graphs. However, the complexity of graph data has imposed
significant challenges on existing machine learning algorithms [25]. The main challenge of
analyzing graphs with machine learning is that graph data do not exist in Euclidean space.
It makes the interpretation of graph data more difficult than other Euclidean domain data,
such as text, voice, and image.

Graph analysis algorithms, such as network embedding [26] and graph kernels [27],
have been discussed to analyze non-Euclidean graph data. Network embedding methods
aim to represent network nodes in low-dimensional vector representations. The graph
kernel function measures the similarity between pairs of graphs such that kernel-based
algorithms [28] can be used for supervised learning on graphs.

However, these algorithms suffer from computational bottlenecks and lose graph-level
information representing the graph as a low-dimensional vector. GNN, which can be
directly applied to graphs, was proposed to address these problems [29]. It learns the
representation of a target node by iteratively propagating the neighbor information for
the node, edge, or graph-level prediction. With the introduction of GNN, it is possible to
extract high-level representations of graphs explicitly. Consequently, various graph analytic
tasks such as classification, recommendation, and clustering can be effectively performed.

3. Proposed Framework for Ethereum Phishing Account Detection

In this section, we describe the proposed Ethereum phishing account detection frame-
work. Figure 1 illustrates an overview of the proposed framework. The proposed frame-
work comprises a graph construction and a graph learning-based classification phase. The
graph construction phase generates ATGraphs and extracts node features by Ethereum
transaction records. In the graph learning-based classification phase, graph learning algo-
rithms and classifiers take ATGraph as input and detect Ethereum phishing accounts.

Sensors 2023, 23, 463 4 of 13

Figure 1. Overview of the proposed Ethereum phishing account detection framework.

3.1. Graph Construction

We propose a novel heterogeneous graph structure called ATGraph to take multi-edge
into account and represent the heterogeneity of the Ethereum network. In this section, we
describe the definition, node feature extraction, and generation algorithm of ATGraph.

3.1.1. Account-Transaction Graph

Ethereum transactions can be expressed as directed graph structures with accounts
as nodes and transactions as edges. Most previous studies constructed transaction graphs
as homogeneous graphs with single-type nodes. Homogeneous transaction graphs can
have a multi-edge because multiple transactions can exist between a node pair. Multi-
edge features are represented in the multi-dimensional feature matrix. However, most
graph learning algorithms have not yet been demonstrated on the multi-edge because they
utilize one-dimensional edge features for classification, ignoring rich edge features [21,22].
Moreover, homogeneous transaction graphs can not effectively represent the Ethereum
network’s heterogeneity [20]. Therefore, we propose a novel heterogeneous transaction
graph called ATGraph to take the multi-edge into account and the heterogeneity of the
Ethereum network. ATGraph is a sub-graph of the Ethereum transaction graph, which
contains a central node to be detected and its transactions. In the ATGraph structure, we
consider transactions as nodes, not edges. In other words, ATGraph has two types of nodes:
account nodes and transaction nodes. Multi-edges between a node pair can be expressed
as single edges by expressing a transaction as a node. It represents multi-dimensional edge
features as one-dimensional node features.

Figure 2 shows structures of the homogeneous transaction graph and ATGraph. In
these figures, there are two transactions Tx1 and Tx2 between node A and B. In Figure 2a,
round nodes are account nodes and the edges are its transactions. The homogeneous trans-
action graph represents two transactions as multi-edge. In contrast, ATGraph expresses
transactions as nodes, representing the multi-edge as single edges in Figure 2b, where
round nodes are account nodes and square nodes are transaction nodes.

(a) (b)

Figure 2. Graph structure of (a) the homogeneous transaction graph and (b) the proposed ATGraph.

3.1.2. Node Feature Extraction

For graph classification, the features of each node in the ATGraph are extracted. All
features are calculated from Ethereum transaction records without any external data. The

Sensors 2023, 23, 463 5 of 13

behavior pattern of the Ethereum account is represented by statistical, topological, and
temporal features as listed in Table 1. The statistical features of the account consist of the
total, minimum, maximum, and average values for the amount received and sent assets.
The number of transactions directed into and out of the account is used as a topological
feature. Temporal features include the lifetime of the account and time intervals between
transactions. Each transaction contains the value and timestamp.

Table 1. The description of node features.

Node Type Feature Description

Account node

In-degree The number of received transactions.
Out-degree The number of sent transactions.
In-value The sum of the received value.
Out-value The sum of the sent value.
Average in-value The average of the received value.
Average out-value The average of the sent value.
Min in-value The minimum received value.
Min out-value The minimum sent value.
Max in-value The maximum received value.
Max out-value The maximum sent value.
Lifetime The active time of the account.
Balance The balance over the lifetime of the account.
Average Inter-Tx Time The average time interval between transactions.

Transaction node Timestamp Timestamp when a transaction was issued.
Value Amount of value in the transaction.

3.1.3. ATGraph Generation

ATGraph can be generated based on the Ethereum transaction records as shown in
Figure 3. Algorithm 1 describes the ATGraph construction algorithm. First, the algorithm
initiates ATGraph Ga = (V , E , r) and adds the target account node va into the set of nodes
V ; r is labeled with the label of the target account a (rows 2–5). The transaction data t
contains (i, j, timestamp, value), where account i transfers value to account j at timestamp.
Based on the transaction data t, the account node vi or vj is added to V if it does not exist in
V , and the transaction node vt is added to V (rows 7–12). Then, the edge (vi, vt) and (vt, vj)
are added to the set of edges E (rows 13–15). (timestamp, value) are defined as transaction
node features and are concatenated to the node feature matrix X (rows 16–17). After
all nodes and edges are added to ATGraph Ga, the account node features are calculated
and concatenated to the node feature matrix X (rows 19–22). As a result, the ATGraph
generation algorithm returns ATGraph Ga (row 23).

Figure 3. Overview of ATGraph generation based on Ethereum transaction records.

Sensors 2023, 23, 463 6 of 13

Algorithm 1 ATGraph generation

Input: The labeled Ethereum accounts a, The list of transactions Ta
Output: The ATGraph Ga

1: Feature matrix of nodes X
2: Initialize the directed graph Ga = (V , E , r)
3: r ← Label of a
4: V ← {va}
5: E ← {}
6: for each t = (i, j, timestamp, value) ∈ Ta do
7: if vi /∈ V then
8: V ← V ∪ {vi}
9: end if

10: if vj /∈ V then
11: V ← V ∪ {vj}
12: end if
13: V ← V ∪ {vt}
14: E ← E ∪ {(vi, vt)}
15: E ← E ∪ {(vt, vj)}
16: ~xt ← {(timestamp, value)}
17: X ← (X||~xt)
18: end for
19: for each account node vi ∈ V do
20: ~xi ← feature_extraction(vi)
21: X ← (X||~xi)
22: end for
23: return Ga

3.2. Graph Learning-Based Phishing Account Detection

This section describes the definition of the graph classification problem and the process
of the graph classification method. We adopt supervised learning for graph classification to
detect Ethereum phishing accounts. It takes ATGraph as input and returns the probability
that the target account node is a phishing account.

3.2.1. Problem Definition

The goal of the detection model is to classify the Ethereum account a by ATGraph Ga.
Ga = (V , E , r) is a directed heterogeneous graph, where each node v ∈ V can be Ethereum
accounts consisting of a and its transactions Ta. E = {(vi, vt), (vt, vj)|vi, vt, vj ∈ V} is a set
of edges, where (vi, vt) indicates the direction from account node vi to transaction node vt
and vice versa. r is the label of a. In summary, the objective of the detection model can be
expressed, that given a set of ATGraphs G, train a graph learning-based binary classifier to
classify the types of a.

3.2.2. Process of Graph Learning-Based Detection Method

The process of the proposed detection method consists of a graph learning layer, a
readout layer, and a multi-layer perceptron (MLP) classifier. Figure 4 shows the process
of graph learning-based Ethereum phishing account detection method. The graph learn-
ing layer generates a node representation of the input ATgraph. The readout operation
generates a graph-level representation based on node representations. Finally, the MLP
performs a binary classification for detecting phishing accounts. Graph learning-based
graph classification for phishing account detection proceeds as follows.

Sensors 2023, 23, 463 7 of 13

Figure 4. The overall processes of the graph learning-based Ethereum phishing account detection
method.

(1) Graph Learning for Node-level Representations: Graph learning layers take ATGraph
as inputs and learn node features using graph learning algorithms. Graph learning
algorithms, such as network embedding and GNN models, can be used for node-level
representation learning. Network embedding learns latent low-dimensional feature
representations for the nodes and edges. Network embedding is to learn encodings
for the nodes such that the similarity in the embedding space reflects the similarity
in the network [30]. GNN adopted deep learning strategies, where input is fed into
the hidden nodes to learn the representations and exploit relation information in the
graph. GNN is to aggregate the features of neighboring nodes into the target node
iteratively. After the graph learning process, graph learning layers return node-level
representations of all nodes in the ATGraph.

(2) Readout for Graph-level Representation: The readout layer takes node-level repre-
sentations and returns graph-level representations. The graph-level representation
is a single vector representing the entire ATGraph. The readout layer obtains the
graph-level representation by aggregating node-level representations by the mean or
sum operation. We use the mean readout operation given as (1).

hG =
1
N

N

∑
i=1

h(L)
i (1)

where hG is the graph-level representation of ATGraph G and N is the number of units
of node-level representation. h(L) is the node-level representations that are outputs of
the graph learning layer.

(3) MLP for Graph Classification: The MLP classifier takes the graph-level representation
hG as input and returns probabilities of account types. The MLP classifier classifies
the category of a based on graph-level representations, which are the outputs of the
readout layer. We use the cross-entropy loss function as the training objective given
as (2).

L = −wylog
exp(xn,y)

∑C
i=1 exp(xn,c)

(2)

where x, y, and C are the input, target, and number of classes, respectively.

Finally, the Ethereum phishing detection method classifies phishing accounts by the
classification probability, which is the output of the MLP classifier.

Sensors 2023, 23, 463 8 of 13

4. Experiment and Results

This section describes experiments and results to evaluate the detection performance
with ATGraphs. We compare the performance of ATGraph and homogeneous transaction
graphs as inputs of various graph learning-based detection methods.

4.1. Data Collection

We collected labeled Ethereum accounts from authoritative sources for experiments
listed in Table 2. We collected 1,659 verified phishing accounts and 1,700 normal ac-
counts from XBlock (https://xblock.pro/) (accessed on 9 May 2022), Then, we crawled
the transaction records of each labeled account using the API provided by Etherscan (https:
//etherscan.io/labelcloud/) (accessed on 9 May 2022). We collected 111,956 Ethereum
accounts and 220,714 Ethereum transactions by parsing these transaction records.

Table 2. Summary of collected data.

Data Number of Data Source

Normal account 1659 Xblock
Phishing account 1700 Xblock

Unlabeled account 108,597 Etherscan
Transaction 220,714 Etherscan

4.2. Dataset and Evaluation Metrics

We constructed 3359 ATGraphs and homogeneous transaction graphs for each labeled
Ethereum account. In the case of homogeneous transaction graphs, edge features are set to
transaction node features of ATGraph. ATGraphs include 332,670 nodes and 441,428 edges
and homogeneous transaction graphs include 111,956 nodes and 220,714 edges. We adopted
five metrics to evaluate the performance of the ATGraph including accuracy, precision,
recall, the F1 score, and the area under the receiver operating characteristic (AUROC). The
precision indicates the number of accurate predictions from the perspective of the prediction
results. The recall indicates the number of true positive classes that are successfully recalled.
The F1 score is the harmonic mean of the precision and recall used for the imbalanced
dataset. The AUROC indicates the model’s ability to discriminate between positive and
negative examples. Note that higher accuracy, precision, recall, F1 score, and AUROC
indicate better prediction performance.

4.3. Experimental Setup

In the experiments, we adopted four graph learning algorithms to evaluate the
performance of ATGraph including SF [31], Graph2Vec [32], graph convolutional net-
work (GCN) [33], graph isomorphism network (GIN) [34], and GraphSAGE [35]. SF and
Graph2Vec are the network embedding algorithm, and others are the GNN models. We set
the parameters of Graph2Vec as the default provided by the library with wl_iterations = 2,
dimensions = 128, down_samplings = 0.0001, and min_count = 5. For SF, we set the parameters
as a default with dimension = 128 and seed = 42. We used Adam [36] as the optimization
method in GNN models. We set the parameters of GNN models with n_layers = {2, 3, 4},
batch_size = 64, and hidden_unit = {16, 32, 64, 128}. In the GIN, we used sum, max, and
mean aggregators. For the GraphSAGE, we used mean, GCN, and pool aggregators. The
candidates of the parameters are shown as Table 3. We found a set of parameters for
the best performance using the grid search with 5-fold cross-validation in all approaches,
including homogeneous transaction graphs and ATGraph. The models were run in PyTorch
1.11 [37]. We used a deep graph library (DGL) 0.8.0 [38] for the implementation of GNN
models. For graph embedding algorithms, we used a karateclub library 1.2.3 [39] and
NetworkX 2.5.1 [40].

https://xblock.pro/
https://etherscan.io/labelcloud/
https://etherscan.io/labelcloud/

Sensors 2023, 23, 463 9 of 13

Table 3. The candidates of the parameters. The best parameters based on the AUROC are indicated
in bold.

Algorithms Parameters Value

SF dimensions 128
seed 42

Graph2Vec

wl_iterations 2
dimensions 128
down_samplings 0.0001
min_count 5

GCN
n_layers 2, 3, 4
batch_size 64
hidden_unit 16, 32, 64, 128

GIN

n_layers 2, 3, 4
batch_size 64
hidden_unit 16, 32, 64, 128
aggregator sum, max, mean

GraphSAGE

n_layers 2, 3, 4
batch_size 64
hidden_unit 16, 32, 64, 128
aggregator mean, GCN, pool

4.4. Experimental Results and Analysis
4.4.1. Performance Comparison Analysis

We compare the performance of phishing account detection using ATGraph and the
homogeneous transaction graph as input to evaluate ATGraph. The results of phishing
account detection performance with the best parameters are presented in Table 4. The
performance of phishing account detection with ATGraph outperforms the performance
with homogeneous transaction graphs in all graph learning algorithms. SF and Graph2Vec
show the biggest performance difference of more than about 0.2 AUROC. It is because these
methods are a network embedding algorithm based on a lower-dimensional structure. The
network embedding algorithm utilizes the similarity of neighbor nodes, which means that
it has a limitation in embedding multi-dimension edge features. In contrast, GraphSAGE
has the lowest performance gain between the ATGraph and the homogeneous transaction
graph. GraphSAGE aggregates neighbor node features and edge features to generate the
center node features. It indicates that the detection performance with ATGraphs is more
efficient in graph learning methods that utilize edge features less, such as SF. Moreover,
the average AUROC with homogeneous transaction graphs is 0.8110, and that with the
ATGraph is 0.9085. ATGraph outperforms the homogeneous graph by 0.0975 AUROC. It
indicates that ATGraph eliminates multi-edges, making graph learning algorithms learn
graph structures more efficiently Consequently, the detection performance using ATGraph
as input outperforms using homogeneous transaction graphs, especially in the network
embedding algorithms.

Sensors 2023, 23, 463 10 of 13

Table 4. Performance comparison using ATGraph and homogeneous transaction graph as input.

Input Graph Method Accuracy Precision Recall F1-Score AUROC

Homogeneous
transaction graph

SF 0.5818 0.5804 0.5818 0.5805 0.5777
Graph2Vec 0.6342 0.6337 0.6343 0.6342 0.6323

GCN 0.9086 0.9082 0.9172 0.9086 0.9097
GIN 0.9494 0.9494 0.9519 0.9494 0.9500

GraphSAGE 0.9851 0.9851 0.9854 0.9851 0.9852

Average 0.8118 0.8114 0.8141 0.8116 0.8110

ATGraph

SF 0.7738 0.7822 0.7738 0.7737 0.7779
Graph2Vec 0.8143 0.8144 0.8158 0.8143 0.8150

GCN 0.9816 0.9816 0.9817 0.9816 0.9816
GIN 0.9804 0.9803 0.9809 0.9804 0.9802

GraphSAGE 0.9878 0.9878 0.9880 0.9878 0.9876

Average 0.9076 0.9093 0.9080 0.9076 0.9085

4.4.2. Node Features Analysis

We compared node features between normal and phishing accounts to provide a
better understanding of cybercriminal accounts. Table 5 compares normal and phishing
account nodes’ average value of features. There are several notable feature differences.
Phishing accounts have a short lifetime than normal accounts. Normal users use the same
account to transfer their assets for a long period. In contrast, phishing accounts have a
short active time versus normal accounts because they only used these accounts for fraud
in a short period. Moreover, the balance of phishing accounts almost converges to zero.
It is because phishing accounts are only used for fraud and transfer assets to their actual
activated accounts. Therefore, the balance of normal accounts is more than zero, whereas
the balance of phishing accounts is almost zero. For this reason, the ratio between the
average of in-value and out-value also has a notable difference. Normal accounts have
more in-value than out-value, but phishing accounts have more out-value than in-value.
One more notable feature difference is the average interval between transactions. Phishing
accounts steal multiple users’ assets in a short period because they are active for a short
period. It means that there are many transactions for a short period in the phishing account.
Therefore, the average interval between transactions of phishing accounts is shorter than in
normal accounts.

Table 5. The average value of account node features. The result shows that phishing accounts have
the most notable differences in temporal features such as the lifetime and the average interval of
transactions indicated in bold.

Features Normal Account Phishing Account

In-degree 76 23
Out-degree 23 8
In-value 18,676 138
Out-value 14,157 162
Average in-value 1922 40
Average out-value 1045 45
Min in-value 580 27
Min out-value 217 28
Max in-value 6056 90
Max out-value 4189 120
Lifetime 134,158,600 75,671,864
Balance 4519 −23
Average Inter-Tx Time 788,229 541,912

Sensors 2023, 23, 463 11 of 13

5. Conclusions

In this paper, we proposed graph learning-based blockchain phishing account de-
tection with a heterogeneous transaction graph. We proposed a novel graph structure
called ATGraph, which represents transactions as nodes to eliminate the multi-edge. With
ATGraph as input, graph learning algorithms can embed a graph structure effectively.
We conducted experiments comparing Ethereum phishing account detection performance
between ATGraph and homogeneous transaction graphs. The experimental results demon-
strate that the detection performance with ATGraph outperforms that of a homogeneous
transaction graph by up to 0.2 AUROC. It indicates that detecting phishing accounts with
ATGraph is more efficient than using homogeneous transaction graphs as input. Moreover,
ATGraphs are more efficient in the network embedding algorithms, which do not utilize
edge features. We expect cybercriminal account detection to make blockchain networks
more sustainable by regulating or blacklisting these accounts.

This work has several issues to be improved. ATGraph has a trade-off in the size
of the graph. The number of nodes and edges is more than in homogeneous transaction
graphs because ATGraph represents transaction edges as transaction nodes. Therefore, the
more nodes and edges, the more time consumed to learn ATGraph than homogeneous
transaction graphs. Moreover, the Ethereum network has two types of accounts, such as
contract accounts and externally owned accounts, but we did not consider these account
types in this work. In the future, we will design a novel graph learning model suitable
for ATGraph to detect phishing accounts more effectively. In addition, we will consider
various node/edge types to represent the heterogeneity of the Ethereum network more.

Author Contributions: Conceptualization, J.K., S.L. and Y.K.; methodology, J.K., S.L., S.A. and S.C.;
software, J.K. and Y.K.; validation, S.L., Y.K. and S.A.; formal analysis, J.K., Y.K. and S.A.; investigation,
J.K. and S.L.; resources, J.K.; data curation, J.K.; writing—original draft preparation, J.K. and S.L.;
writing—review and editing, Y.K., S.A. and S.C.; visualization, J.K.; supervision, J.K. and S.L.; project
administration, S.C.; funding acquisition, S.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2022-0-00704,
Development of 3D-NET Core Technology for High-Mobility Vehicular Service) and by the Institute
for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2021-0-00368, Development of the 6G Service Targeted AI/ML-based
Autonomous-Regulating Medium Access Control (6G STAR-MAC)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during the current study are available from the
authors on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ATGraph Account-transaction graph
AUROC Area under the receiver operating characteristic
GCN Graph convolutional network
GIN Graph isomorphism network
GNN Graph neural network
MLP Multi-layer perceptron

Sensors 2023, 23, 463 12 of 13

Notations
The following notations are used in this manuscript:

a The labeled Ethereum account
S Set of labeled Ethereum accounts
Ta The set of account a’s transactions
Ga The ATGraph of account a
G Set of ATGraphs
V Set of nodes in the graph
E Set of edges in the graph
r The label of account a in the graph
~xi Feature vector of the node vi
X Feature matrix of nodes
(p||q) The concatenation of p and q

References
1. Patel, S.B.; Bhattacharya, P.; Tanwar, S.; Kumar, N. Kirti: A blockchain-based credit recommender system for financial institutions.

IEEE Trans. Netw. Sci. Eng. 2020, 8, 1044–1054. [CrossRef]
2. Bhattacharya, P.; Tanwar, S.; Bodkhe, U.; Tyagi, S.; Kumar, N. Bindaas: Blockchain-based deep-learning as-a-service in healthcare

4.0 applications. IEEE Trans. Netw. Sci. Eng. 2019, 8, 1242–1255. [CrossRef]
3. Pournader, M.; Shi, Y.; Seuring, S.; Koh, S.L. Blockchain applications in supply chains, transport and logistics: A systematic

review of the literature. Int. J. Prod. Res. 2020, 58, 2063–2081. [CrossRef]
4. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260. [CrossRef]
5. Buterin, V. A Next-Generation Smart Contract and Decentralized Application Platform. White Paper. 2014. Volume 3. Available

online: https://github.com/ethereum/wiki/wiki/White-Paper (accessed on 9 May 2022).
6. Mohanta, B.K.; Panda, S.S.; Jena, D. An overview of smart contract and use cases in blockchain technology. In Proceedings of the

2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Bengaluru, India,
10–12 July 2018; pp. 1–4. [CrossRef]

7. Reddy, E.; Minnaar, A. Cryptocurrency: A tool and target for cybercrime. Acta Criminol. Afr. J. Criminol. Vict. 2018, 31, 71–92.
[CrossRef]

8. Chen, Q.; Bridges, R.A. Automated behavioral analysis of malware: A case study of wannacry ransomware. In Proceedings of
the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December
2017; pp. 454–460. [CrossRef]

9. Bartoletti, M.; Carta, S.; Cimoli, T.; Saia, R. Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact. Future
Gener. Comput. Syst. 2020, 102, 259–277. [CrossRef]

10. Team, A.C. The Rise of Cybercrime on Ethereum. 2017. Available online: https://blog.chainalysis.com/reports/the-rise-of-
cybercrime-on-ethereum/ (accessed on 9 May 2022).

11. Conti, M.; Kumar, E.S.; Lal, C.; Ruj, S. A survey on security and privacy issues of bitcoin. IEEE Commun. Surv. Tutor. 2018, 20,
3416–3452. [CrossRef]

12. Corbet, S.; Cumming, D.J.; Lucey, B.M.; Peat, M.; Vigne, S.A. The destabilising effects of cryptocurrency cybercriminality. Econ.
Lett. 2020, 191, 108741. [CrossRef]

13. Kim, J.; Lee, S.; Kim, Y.; Cho, S. A Graph Embedding-based Identity Inference Attack on Blockchain Systems. In Proceedings of
the 2022 International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 6–9 February
2022; pp. 1–3. [CrossRef]

14. Chen, W.; Guo, X.; Chen, Z.; Zheng, Z.; Lu, Y. Phishing Scam Detection on Ethereum: Towards Financial Security for Blockchain
Ecosystem. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 7–15
January 2020. [CrossRef]

15. Ostapowicz, M.; Żbikowski, K. Detecting fraudulent accounts on blockchain: A supervised approach. In Proceedings of the
International Conference on Web Information Systems Engineering, Amsterdam, The Netherlands, 20–24 October 2020; Springer:
Cham, Switzerland, 2020; pp. 18–31. [CrossRef]

16. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

17. Yuan, Z.; Yuan, Q.; Wu, J. Phishing detection on Ethereum via learning representation of transaction subgraphs. In Proceedings of
the International Conference on Blockchain and Trustworthy Systems; Springer: Singapore, 2020; pp. 178–191. [CrossRef]

18. Li, S.; Xu, F.; Wang, R.; Zhong, S. Self-supervised Incremental Deep Graph Learning for Ethereum Phishing Scam Detection.
arXiv 2021, arXiv:2106.10176.

19. Wu, J.; Yuan, Q.; Lin, D.; You, W.; Chen, W.; Chen, C.; Zheng, Z. Who are the phishers? phishing scam detection on ethereum via
network embedding. IEEE Trans. Syst. Man Cybern. Syst. 2020, 52, 1156–1166. [CrossRef]

http://doi.org/10.1109/TNSE.2020.3005678
http://dx.doi.org/10.1109/TNSE.2019.2961932
http://dx.doi.org/10.1080/00207543.2019.1650976
http://dx.doi.org/10.2139/ ssrn.3440802
https://github.com/ethereum/wiki/wiki/White-Paper
http://dx.doi.org/10.1109/ICCCNT.2018.8494045
http://dx.doi.org//10.10520/EJC-14d902942d
http://dx.doi.org/10.1109/ICMLA.2017.0-119
http://dx.doi.org/10.1016/j.future.2019.08.014
https://blog.chainalysis.com/reports/the-rise-of-cybercrime-on-ethereum/
https://blog.chainalysis.com/reports/the-rise-of-cybercrime-on-ethereum/
http://dx.doi.org/10.1109/COMST.2018.2842460
http://dx.doi.org/10.1016/j.econlet.2019.108741
http://dx.doi.org/10.1109/ICEIC54506.2022.9748281
http://dx.doi.org/10.24963/ijcai.2020/621
http://dx.doi.org/10.1007/978-3-030-34223-4_2
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1007/978-981-15-9213-3_14
http://dx.doi.org/10.1109/TSMC.2020.3016821

Sensors 2023, 23, 463 13 of 13

20. Wang, Y.; Liu, Z.; Xu, J.; Yan, W. Heterogeneous Network Representation Learning Approach for Ethereum Identity Identification.
IEEE Trans. Comput. Soc. Syst. 2022, 1–10. [CrossRef]

21. Xiong, C.; Li, W.; Liu, Y.; Wang, M. Multi-Dimensional Edge Features Graph Neural Network on Few-Shot Image Classification.
IEEE Signal Process. Lett. 2021, 28, 573–577. [CrossRef]

22. Gong, L.; Cheng, Q. Exploiting Edge Features for Graph Neural Networks. In Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9203–9211. [CrossRef]

23. Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’14), New York, NY, USA, 24–27 August
2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 701–710. [CrossRef]

24. Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016;
Association for Computing Machinery: New York, NY, USA, 2016; pp. 855–864. [CrossRef]

25. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef]

26. Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications. arXiv 2017, arXiv:1709.05584.
27. Vishwanathan, S.V.N.; Schraudolph, N.N.; Kondor, R.; Borgwardt, K.M. Graph kernels. J. Mach. Learn. Res. 2010, 11, 1201–1242.

[CrossRef]
28. Hofmann, T.; Schölkopf, B.; Smola, A.J. Kernel methods in machine learning. Ann. Stat. 2008, 36, 1171–1220. [CrossRef]
29. Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the 2005 IEEE International

Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; Volume 2, pp. 729–734. [CrossRef]
30. Arsov, N.; Mirceva, G. Network embedding: An overview. arXiv 2019, arXiv:1911.11726.
31. de Lara, N.; Pineau, E. A Simple Baseline Algorithm for Graph Classification. arXiv 2018, arXiv:1810.09155.
32. Narayanan, A.; Chandramohan, M.; Venkatesan, R.; Chen, L.; Liu, Y.; Jaiswal, S. graph2vec: Learning Distributed Representations

of Graphs. arXiv 2017, arXiv:1707.05005.
33. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
34. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? arXiv 2018, arXiv:1810.00826.
35. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the Advances in Neural

Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.;
Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [CrossRef]

36. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
37. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:

An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 1–12. [CrossRef]
38. Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.; Zhou, J.; Ma, C.; Yu, L.; Gai, Y.; et al. Deep graph library: A graph-centric,

highly-performant package for graph neural networks. arXiv 2019, arXiv:1909.01315.
39. Rozemberczki, B.; Kiss, O.; Sarkar, R. Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning

on Graphs. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM ’20),
Online, 19–23 October 2020; ACM: New York, NY, USA, 2020; pp. 3125–3132. [CrossRef]

40. Hagberg, A.; Swart, P.; S Chult, D. Exploring Network Structure, Dynamics, and Function Using NetworkX; Technical Report; Los
Alamos National Lab. (LANL): Los Alamos, NM, USA, 2008.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TCSS.2022.3164719
http://dx.doi.org/10.1109/LSP.2021.3061978
http://dx.doi.org/10.1109/CVPR.2019.00943
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.5555/1756006.1859891
http://dx.doi.org/10.1214/009053607000000677
http://dx.doi.org/10.1109/IJCNN.2005.1555942
http://dx.doi.org/10.48550/ARXIV.1706.02216
http://dx.doi.org/10.48550/ARXIV.1912.01703
http://dx.doi.org/10.1145/3340531.3412757

	Introduction
	Related Work
	Phishing Account Detection in Ethereum
	Graph Learning

	Proposed Framework for Ethereum Phishing Account Detection
	Graph Construction
	Account-Transaction Graph
	Node Feature Extraction
	ATGraph Generation

	Graph Learning-Based Phishing Account Detection
	Problem Definition
	Process of Graph Learning-Based Detection Method

	Experiment and Results
	Data Collection
	Dataset and Evaluation Metrics
	Experimental Setup
	Experimental Results and Analysis
	Performance Comparison Analysis
	Node Features Analysis

	Conclusions
	References

