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Abstract: Accurate prediction of aviation safety levels is significant for the efficient early warning and
prevention of incidents. However, the causal mechanism and temporal character of aviation accidents
are complex and not fully understood, which increases the operation cost of accurate aviation safety
prediction. This paper adopts an innovative statistical method involving a least absolute shrinkage
and selection operator (LASSO) and long short-term memory (LSTM). We compiled and calculated
138 monthly aviation insecure events collected from the Aviation Safety Reporting System (ASRS)
and took minor accidents as the predictor. Firstly, this paper introduced the group variables and
the weight matrix into LASSO to realize the adaptive variable selection. Furthermore, it took the
selected variable into multistep stacked LSTM (MSSLSTM) to predict the monthly accidents in 2020.
Finally, the proposed method was compared with multiple existing variable selection and prediction
methods. The results demonstrate that the RMSE (root mean square error) of the MSSLSTM is
reduced by 41.98%, compared with the original model; on the other hand, the key variable selected
by the adaptive spare group lasso (ADSGL) can reduce the elapsed time by 42.67% (13 s). This shows
that aviation safety prediction based on ADSGL and MSSLSTM can improve the prediction efficiency
of the model while keeping excellent generalization ability and robustness.

Keywords: aviation safety; inducement of accident; prediction; adaptive sparse group lasso; long
short-term memory

1. Introduction

The aviation industry is of great economic value, and to adapt to the current demand
for intelligent and refined safety management, the aviation safety mitigation strategy has
been shifting from a reactive to a proactive and predictive method. Therefore, it is greatly
significant to clarify the causal mechanisms of aviation accidents and make corresponding
early warning measures to promote the development of aviation safety.

Accurate aviation safety prediction is the basis of effective accident early warning,
which has become a hot topic of research today. Recently, the aviation safety predic-
tion method used specific machine learning methods to train the features of historical
causes and accident samples, construct a mathematical analytical model, and measure the
change trend of the safety level. For example, Liang et al. [1] used the BP (backpropaga-
tion) neural network model to predict the monthly incidents per 10,000 flight hours of
an airline. Puranik et al. [2] built an online predictive model based on a Random Forest
regression algorithm to predict landing performance metrics. Rosa et al. [3] constructed
an aviation safety risk assessment model based on the Bayesian inference mechanism.
Lukacova et al. [4] proposed a model for accident severity prediction based on classifica-
tion and regression trees. Zhang et al. [5] proposed a combined method involving SVM
(support vector machine) and deep neural networks to qualify the risk. Qiao et al. [6]
constructed the RBF (radial basis function) neural network model to predict the hard land-
ing. Machine learning not only has strong self-learning ability and robustness but also
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can better fit the nonlinear relationships among complex variables. However, the input
variables of traditional machine learning models are generally regarded stand-alone, that
is, the temporal features are not fully taken into consideration, which adds interference to
the prediction results. To fully extract the temporal features, Xiong et al. [7] used LSTM
neural network model to train and predict the sign data of American bird strike accidents.
However, single-layer structures are adopted in that paper, and it’s difficult to accurately
integrate the nonlinear relationships. Zhou et al. [8] used the ACARS (aircraft communica-
tions addressing and reporting system) accident report record as the research object, using
the LSTM model to effectively capture the long-term dependency of samples and enhance
the accuracy and robustness of safety measurement. Zhang [9] applied sequential deep
learning techniques based on LSTM to perform a prognosis of adverse events. While the
aviation accident data is typically a small sample, it’s difficult to efficiently learn sample
characteristics by peer-to-peer prediction.

In addition to the selection of prediction methods, the selection of input variables
affects the predicted effect. The classic accident inducement identification model is repre-
sented by the SHEL [10] model, REASON [11], HFACS [12] (human factors analysis classifi-
cation system), OHFAM [13] (occurrence human factors analysis model) and 24 model [14].
The expansion of the inducement index is theoretically conducive to obtaining a more
accurate causality description but brings the curse of dimensionality accordingly: the
higher the dimensions of the input set are, the efficiency of safety prediction will be greatly
reduced. Existing studies have led to some explorations in variable selection: Paulet al. [15],
in the form of a questionnaire interview, intuitively modeled the greatest threat from the
perspective of pilots. Cui et al. [16] used DEA (data envelope analysis) and a Malmquist
index to calculate the civil aviation safety efficiency of Chinese airlines from 2008 to 2012, it
proved that the quality of personnel training is the most important factor affecting aviation
safety. In view of the high-dimensional samples with multiple collinearities, some scholars
have tried to introduce the LASSO penalty term in the classic regression model. LASSO
can greatly compress the value of independent variables to dilute the high-dimensional
aviation data, which verifies the feasibility in the field of fuel consumption [17]. However,
there is still a blank in the inducement of aviation accident variable selection. Meanwhile,
the classic LASSO punishes the coefficient of key variables consistently, which weakens the
feature identification of those key variables.

In view of the status that existing methods have an insufficient description of the
importance of aviation accidents and low prediction efficiency, this paper proposes a
new method of aviation safety prediction based on variable selection and LSTM. The
contributions of the proposed method can be described as follows: (a) the dimensions of
the security sample data are sufficiently reduced [18] by ADSGL, which reduces the cost
of a running predictor and the elapsed time. (b) the multistep stacked LSTM model is
constructed to explore the deep temporal features and complex nonlinear relationship of
aviation safety samples and achieve smaller RMSE compared with the original model.

The rest of this paper is organized as follows: Section 2 describes the required individ-
ual algorithms and the process for building the proposed methods. Section 3 demonstrates
a case study, followed by the training process for the constructed model. Section 4 provides
a comparative analysis to verify the feasibility and effectiveness of the proposed method,
and Section 5 presents the conclusions.

2. Proposed Aviation Safety Prediction Method
2.1. The Whole Process of the Proposed Method

The process of the ADSGL-MSSLSTM method is depicted in Figure 1. The detailed
descriptions are given as follows:

(1) Data preprocess. Firstly, the aviation safety data are collected by the type of
incidents from ASRS [19] reporting records, thus the text data is converted into structured
data. Next, the aviation safety data is normalized into the range of [0, 1] to eliminate the
interference of dimensional differences in data analysis.
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(2) Key variables selection based on ADSGL. In view of the fact that there are too
many manipulated variables to efficiently build predictive models, ADSGL is used to
select key variables. The selected key variables are regarded to have the most interpretable
information for incidents, which effectively reduces the operating cost and improves the
calculation efficiency.

(3) Aviation safety prediction based on the MSSLSTM. In view of the fact that the
predictors ignore the temporal dependence, which reduces the interpretability and accuracy,
a multistep prediction model of aviation safety based on a multi-layer LSTM is constructed.
Firstly, the white noise and stationarity of the data are tested. Secondly, the sample set
is reconstructed to match the supervised learning mode. Thirdly, to enhance the ability
of nonlinear fitting and temporal characteristic extraction, the hidden layer depth and
learning step are adjusted, as well the learning error minimization is the criterion of
optimal parameter establishment.
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2.2. Selection of Aviation Safety Inducement Variables Based on ADSGL
2.2.1. LASSO Penalty Operator

For the classic linear regression model [20] for aviation safety level, we defined it by

y = Xω + ε =
m

∑
i=1

Xiω
(i)+ε (1)

where y = (y1, y2, . . . , yn)
T is the n-dimensional response variable vector, and

X = (X1, X2, . . . , Xl) is the n*l-dimensional explanatory variable matrix.

ω = ((ω(1)), (ω(2)), .., (ω(l)))
T

is the regression coefficient matrix, the distribution of error
is followed as ε ∼ N(0, σ2 In).

The sum of the error is taken as the loss function, the penalized likelihood estima-
tion [21] (objective function) is defined as

ω̂ = argmin
ω
{1

2

∥∥∥∥∥y−
m

∑
i=1

Xiω
(i)

∥∥∥∥∥
2

2

+
m

∑
i=1

Pλ(
∣∣∣ω(i)

∣∣∣)} (2)

where ‖·‖2 is the 2-Norm, penalized expressions for a single input variable are usually

expressed as Pλ(|ω|)= λ
l

∑
i=1

∣∣∣ω(i)
∣∣∣q, 0 < q ≤ 2. The penalty term is called the LASSO penalty

when q = 1. λ is the adjustable coefficient, which can be adjusted to obtain the optimal
solution and scale the penalty term appropriately.
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The advantages brought by the LASSO penalty into the inducements variable selection
of aviation incidents can be illustrated as follows [22].

(1) Increase the sparsity of the regression coefficient matrix. Sparsity refers to the
existence of several sample points with a value of 0, which conforms to the actual selection
of incident inducement variables; when a candidate variable is an irrelevant interference
variable, the corresponding regression coefficient is 0. The ω(i) is strictly equal to 0 when λ

takes a large value, so as to realize the sparsity of the coefficient matrix and to achieve the
variable selection.

(2) Increase in model stability. The input variable matrix is often followed by mul-
ticollinearity, and the obtained result may be non-inferior, which only satisfies the local
optima. Daubechies, Defrise and De Mol [23] prove that any penalty for the coefficient
matrix satisfying 1 ≤ p ≤ 2 can make the solution of the original model more stable.

However, the classic LASSO algorithm still has obvious defects: when making a
univariate selection, LASSO agrees with the shrinkage multiple of the regression coefficient,
which will impose more penalty on the coefficient term, resulting in the inconsistency and
bias of the dimensionality reduction model.

2.2.2. Construction of the Algorithm for Aviation Safety Variable Selection

To address some limitations of the classic LASSO algorithm, this paper adopts a
variable selection method based on the adaptive sparse group LASSO: when optimizing
the minimum loss function, the function is univariate, that is, to adapt to the various
inducement variables and the vastly different punishment strategy features, only one
variable is optimized each time and cycled repeatedly until all variables converge.

l explanatory variables are divided into N non-overlapping groups. The objective
function of ADSGL is formulated as

ω̂ADSGL= argmin
1
2

∥∥∥∥∥y−
N

∑
i=1

Xiω
(i)

∥∥∥∥∥
2

2

+ λ(1−α)
N

∑
i=1

τi(
∥∥∥ω(i)

∥∥∥
2
) + λα

N

∑
i=1

(ξ(i))
T∣∣∣ω(i)

∣∣∣ (3)

where [τ]1×N is the weight matrix explaining the group variables, [ξ]1×l is the weight matrix
explaining the univariate. The weight matrix introduced by ADSGL can effectively reduce
the penalty of the biggish coefficient, which keeps the model consistent and unbiased
and improves the accuracy of variable selection. The algorithmic steps are summarized
as follows:

Step 1 the initial value of the regression coefficient is set as

ω̂ = ((ω
(1)
0 )

T
, (ω(2)

0 )
T

, . . . , (ω(N)
0 )

T
) (4)

Step 2 for k = 1, 2, . . . , N, if k satisfies the (5), then ω̂(k) = 0; Otherwise, turn to the
Step 3. ∥∥∥∥∥K(XT

k (y−∑
i 6=k

Xiω̂(i)),αλξ(k))

∥∥∥∥∥ ≤ (1− α)λτk (5)

K(·) is defined as

K(a, b) = (K(a, b)1, K(a, b)2, . . . , K(a, b)m) (6)

K(a, b)i = sign(ai){max{0, |ai| − bi}} (7)

Step 3 In the k th group of the regression coefficient, for j = 1, 2, . . . , lk, if k satisfies the
(8), then ω̂

(k)
j = 0; Otherwise, turn to the Step 4.

(Xki)
T [(y−∑

i 6=k
Xiω̂(i))− ∑

p 6=j
(Xkp)

Tω̂
(k)
p ] ≤ αλξ

(k)
j (8)
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Step 4 ω̂
(k)
i is taken in (9) to solve the optimized regression coefficient values.

ω
(k)
j = argmin

ω
(k)
j

{1
2

∥∥∥∥∥y−
N

∑
i=1

Xiω
(i)

∥∥∥∥∥
2

2

+(1− α)λτk

∥∥∥ω(k)
∥∥∥

2
+ αλξ(k)

∣∣∣ω(k)
∣∣∣} (9)

Step 5 The threshold of absolute error is set and Step 2~Step 4 is cycled until conver-
gence. The convergence algorithm is expressed as

f (ω) = f0(ω)+
N

∑
i=1

fi(ω) (10)

f0(ω) =
1
2

∥∥∥∥∥(y− N

∑
i=1

Xiω(i))

∥∥∥∥∥
2

2

(11)

fi(ω) = (1− α)λτi(
∥∥∥ω(i)

∥∥∥
2
)+αλ(ξ(i))

T∣∣∣ω(i)
∣∣∣ (12)

where f 0 is a strictly convex function and f j(ω) can be differentially. The algorithm avoids
premature convergence and falling into a local optimum [24], and dynamically adjusts the
penalty term according to the size of the regression coefficient, effectively reducing the
calculation errors.

2.3. Aviation Safety Prediction Based on LSTM Neural Network
2.3.1. LSTM Architecture

To evaluate the selected key variables in improving the prediction accuracy, the LSTM
architecture is used as an aviation safety predictor. The LSTM architecture has a memory
unit and forget gate, which can update the cell state in real-time: the previous output (ht−1)
and the current input (xt) enter the forget gate and determines how much information is
forgotten from the previous state (ct−1). Accordingly, the input gate determines how much
the updated state is retained in the current state (ct); the output gate determines how much
information the ct export, thus continuously updating the state parameters over time. The
network architecture of LSTM is shown in Figure 2.
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Where f is the forget gate, i is the input gate, and o is the output gate. σ is the incentive
function, which generally takes the sigmoid function. The tanh is a hyperbolic tangent
function. sigmoid and hyperbolic tangent function can be implemented as

σ(x) =
1

1 + ex (13)
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tanh(x) =
ex − ex

ex + ex (14)

The updated formulas [25] for each gate and cell state can be implemented as

ft = σ[Wt
f
, Ut

f
]·[Xt, ht−1]

T + bt
f
) (15)

it = σ([Wt
i , Ut

i
]·[Xt, ht−1]

T + bt
i ) (16)

ot = σ([Wt
o , Ut

o ]·[Xt, ht−1]
T + bt

o ) (17)

c̃t = tanh([Wt
c , Ut

c ]·[Xt, ht−1]
T + bt

c) (18)

ct = it·c̃t + ft·ct−1 (19)

ht = ot·tanh(ct) (20)

where W is the weight of xt, U is the weight of ht−1, b is the biases, c̃t is the critical state of
the cell.

When processing the RNN model, the iterations of BPTT (backpropagation through
time) increase due to the higher amounts of steps, which is most likely to initiate the
gradient disappearance so that each parameter cannot be accurately updated. However,
the unique gate structure of LSTMs can better alleviate such problems. BPTT can be
implemented as

∂Jt
∂W

=
t

∑
K=0

∂Jt
∂ht
· ∂ht

∂ct
· ∂ct

∂ct−1
· · · ∂c2

∂c1
· ∂c1

∂W
=

t

∑
k=0

∂Jt

∂ht
· ∂ht

∂ct
·

t

∏
h=k+1

(
∂h

∂ch−1
) · ∂ck

∂W
(21)

where Jt represents the cumulative training loss from the start to the current moment.

In RNN:
∂ch

∂ch−1
≈ σ′(W − X + b)= σ(1− σ) and the value is [0, 1/4]. While in LSTM:

∂ch
∂ch−1

≈ σ and the value is [0, 1]. When the training time is too long, the cumulative effect

makes the training gradient of RNN tend to 0, greatly reducing the learning rate. LSTM

can control
t

∏
h=k+1

∂ch
∂ch−1

≈ σ at about 1, to prevent the gradient disappearance or explosion,

and ensure the accurate update of parameters.

2.3.2. Prediction Process

(1) Stationarity and white noise test

The research object of the LSTM predictor is a temporal aviation safety sample, so the
stationarity and white noise of the sample should be tested first, and the tested sample can
be analyzed and predicted by the predictor.

A stationary sequence refers to a temporal sample with no obvious volatility, trend, or
cyclicity. A white noise sequence is randomly generated and mutually uncorrelated, and it
is characterized by 3 features:

1) E(xt = 0); 2) D(xt) = σ2; 3) Cov(xt, xt + k) = 0 (k 6= 0). A schematic drawing of white
noise sequence is shown in Figure 3.

(2) Refactoring the data

Input and output feature vectors (xt, yt) are refactored and fit into the sequence-to-
sequence learning in the LSTM network: xt and yt−1 (t = 2, . . . , n) are merged as.

X′ = {(x2, y1), (x3, y2), . . . , (xn, yn−1)}

Y′ = {y2, y3, . . . , yn}
(22)
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The training set is also divided according to each step size.

{(X′t−p, . . . , X′t−1), (Y
′
t , . . . , Y′t+q), t = p + 1, . . . , n− q} (23)

The test set is refactored as.

{(X′n−p−q+1, . . . , X′n−q), (Y
′
n−q+1, . . . , Y′n−1)} (24)

where n is the sum of the time steps, p is the length of the input sample, and q is the length
of the output sample.
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(3) Constructing a multistep stacked predictor of aviation safety

Peer to peer prediction adopted by the original LSTM cannot accurately describe the
changes of the aviation safety level. Additionally, a single layer network lacks the ability to
capture the temporal dependence of dataset. To address the above problems, the training
layers and step size of the classic LSTM model are adjusted. The MSSLSTM model is
constructed in turn, as shown in Figure 4.
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In the same training batch, the input step size is set as p, the output step size is set as 
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In the same training batch, the number of hidden layers neuron is set as k, and the
number of hidden layers is set as l. The output of the previous hidden layer is used as
the input of the current layer, the dropout layer is set between adjacent hidden layers
to reduce the model complexity, and the last hidden layer and output termination are
fully connected [26]. Finally, the n-dimensional output vector is activated by the softmax
function. The fully connected layer can be implemented as.

[
_
y i]q×1 = ∑

j ∈ [1, q]
K ∈ [1, p]

[
ωjk

]
q×p
·[
_
h K]p×1 (25)

The multistep stacked LSTM predictor not only increases the input sizes, which helps
calculate the digital features of multiple historical samples in the input gate, improving the
usage of existing samples but also increases the length of the output sample, which helps to
describe the change trend of the aviation safety level more intuitively. Compared with the
original LSTM model, the multistep stacked LSTM predictor strengthens the cell’s learning
performance on the temporal features, explains the trendy changes in safety level more
visually, and helps conduct better forward-looking and real-time prediction. Additionally,
the stacked architecture not only greatly strengthens the deep learning ability, but improves
the robustness and adaptability of the predictor.

(4) Optimizing hyperparameters

The learning rate is optimized by the Adam algorithm with weight decay, the number
of hidden layers and nodes are ergodic by step search, the MAE (mean absolute error) of the
training results are compared under different parameter combinations, and it is recorded
when the MAE takes the minimum value.

MAE can be implemented as

MAE =

n
∑

i=1

∣∣∣yi − y′
i

∣∣∣
n

(26)

where yi is the test value, y′
i

is the predicted value.
The Adam optimization process is as follows.
Firstly, the first-order and second-order moment estimation of the gradient is calculated:

mt ← β1mt−1 + (1− β1) · gt (27)

vt ← β2vt−1 + (1− β2)·g2
t (28)

where β1 and β2 are decay rates for the first-order and second-order moment estimates.
Secondly, the deviation term of the correction moment estimate is calculated:

_
mt ← mt/(1− βt

1) (29)

_
v t ← vt/(1− βt

2) (30)

Finally, the learning rate update value is calculated based on the correction:

∆θ =− η0

_
mt√
_
v t + δ

(31)

where η0 is the initial learning rate. Adam controls the updated learning rate in the
measurable range, and accelerates the collection speed and ensures the robustness of
the model.

(5) Model accuracy evaluation
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To intuitively evaluate the accuracy of the prediction model, single layer-multistep
LSTM (LSTM′), the original LSTM, ML-RNN, TCN (temporal convolutional network), DT
(decision tree), SVM, and ARMA (autoregressive moving average) predictors are used as
control models to compute in the same experimental environment. RMSE is used as the
accuracy evaluation indicator. RMSE can be implemented as

RMSE =

√√√√√ N
∑

i=1
(yi − y′

i
)2

n
(32)

3. Examples of Aviation Safety Predictions Based on Variable Selection and LSTM
3.1. Data Preprocessing

The study sample was taken from ASRS. The complete report record [27] includes
Time, Environment, Aircraft, Component (faulty parts, accident recorded with mechanical
failure), Person, Events, Assessments, and Synopsis. The text data example is shown in
Table 1.

Table 1. An example of the safety report taken from ASRS.

Attribute Content

Time/Day Date: 202006
Local Time Of Day: 1201–1800

Place Altitude. MSL.Single Value: 39,000

Environment
Flight Conditions: IMC
Weather Elements/Visibility: Turbulence
Weather Elements/Visibility: Rain

Aircraft

Make Model Name: Stratotanker 135
Crew Size. Number Of Crew: 2
Flight Plan: IFR
Mission: Refueling
Flight Phase: Cruise
Route In Use: Direct

Component None

Person

Location In Aircraft: Flight Deck
Reporter Organization: Military
Function. Flight Crew: Pilot Flying
Function. Flight Crew: Captain
Qualification. Flight Crew: Multiengine
Qualification. Flight Crew: Instrument
ASRS Report Number. Accession Number: 1745628
Human Factors: Workload

Events

Anomaly. Deviation-Altitude: Excursion From Assigned Altitude
Anomaly. Deviation/Discrepancy-Procedural: Clearance
Anomaly. Inflight Event/Encounter: Weather/Turbulence
Anomaly. Inflight Event/Encounter: Loss Of Aircraft Control
Detector. Person: Flight Crew
When Detected: In-flight
Result. Flight Crew: Took Evasive Action
Result. Flight Crew: Requested ATC Assistance/Clarification
Result. Flight Crew: Regained Aircraft Control
Result. Flight Crew: Overcame Equipment Problem
Result. Air Traffic Control: Provided Assistance

Assessments Contributing Factors/Situations: Weather
Primary Problem: Weather

Synopsis KC-135 Captain reported experiencing temporary loss of control due to
severe turbulence.

According to the description of Assessments and Synopsis in the reports, the variables
of the accident dataset can be classified into 12 input variables: aircraft (A), company policy
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(CP), procedure (P), weather (W), communication breakdown (CB), confusion (C), distrac-
tion (D), human-machine interface (HMC), situational awareness (SA), time pressure (TP),
training/qualification (TQ), workload (WL), and 1 output variable: minor accident (MA).
Based on this, the monthly statistics of accidents from June 2010 to Nov 2020 were collected.

To eliminate the interference from dimensional differences [28], the dataset was nor-
malized by min-max normalization. The normalized index values were scaled linearly
between 0 and 1. The min-max normalization can be implemented as.

x∗ =
x− xmin

xmax − xmin
(33)

where xmax and xmin represent the maximum and minimum values of the sample, x is the
original value, x* is the normalized value. Normalized results are shown in Table 2.

Table 2. Normalized results.

Date A CP P W CB C D HMC SA TP TQ WL MA

2010/06 0.452 0.523 0.232 0.256 0.483 0.694 0.545 1.000 0.497 0.651 1.000 0.327 0.429
2010/07 0.741 0.886 0.179 0.442 0.638 0.871 0.610 0.978 0.528 0.860 0.813 0.653 0.971
2010/08 0.645 0.591 0.242 0.093 0.345 0.339 0.260 0.533 0.365 0.349 0.479 0.265 0.771

. . .
2020/10 0.066 0.432 0.242 0.209 0.552 0.613 0.844 0.178 0.541 0.558 0.542 0.469 0.514
2020/11 0.102 0.455 0.126 0.233 0.448 0.371 0.455 0.333 0.333 0.372 0.646 0.449 0.429

The differences in value distributions were eliminated in the normalized sample, and
the numerical features are retained by equal scale.

3.2. Selection of Key Variables Based on the ADSGL
3.2.1. Setting of the Key Parameters of the Variable Selection Algorithm

The aircraft incident in Table 3 was selected as the dependent variable and denoted
by {yt}, t ∈ (0, 138]; The remaining 12 types of insecure events were selected as the
independent variable and denoted by {x(i)t }, i ∈ (0, 12],t ∈ (0, 138]. To improve the usage
of the sample while avoiding overfitting [29], 10-fold cross-validation was used to divide
the dataset. Given the actual sample size, the epoch was set at 100, and the number of
groups was set at 2. To ensure the credibility of the experimental results, the variable
selection was performed in the different relaxed variables (α). Parameters settings are
shown in Table 3.

Table 3. Parameter settings of the ADSGL algorithm.

Parameter Value

feature dimension 12
output dimension 1

test method 10-fold cross validation
epoch 100

number of groups 2
α {0.1, 0.3, 0.5, 0.8}

3.2.2. Analysis of Experimental Results

Minimum MSE (mean square error) is selected as the final selection results. MSE can
be implemented as.

MSE =

N
∑

i=1
(yi − y′

i
)2

N
(34)

The experimental results are shown in Figure 5.
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Figure 5 shows the changes in the validation MSE with λ increasing. As α are set to
0.1, 0.3, 0.5, 0.8, the minimum MSE values in these 4 groups of experiments all are around
0.05, and the convergence speeds up as alpha increases, which reflects the good robustness
of ADSGL in terms of error convergence, and a strong positive correlation is implicated
between alpha and convergence speed. Lasso fitting coefficient tracer diagram as α takes
0.1 is shown in Figure 6.
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Figure 6. Lasso fitting coefficient tracer diagram as α takes 0.1.

From Figure 6, it can be seen that: One group of variables’ coefficients (W, CB, C, D,
HMC, SA, TP, TQ, WL) converged at a higher rate compared with the other group (A, CP,
P), which indicates that the variables in the latter group are still highly interpretable to the
output variables at optimal penalty weight. The absolute values of coefficients, which in
the first group converged, are depicted in Figure 6.

From Figure 7, it can be found that the values of compressed regression coefficients are
relatively consistent when the α is adjusted, which demonstrates that the ADSGL method is
robust in the contraction of regression coefficients. Furthermore, the common intersection
set of the results of the four experimental are {A, CP, P}, the regression coefficients of which
are non-zero in the largest penalty, having a greater impact on the MA. Therefore, those
three variables are selected as the input variables of the aviation safety predictor.
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3.3. Multistep Aviation Safety Prediction Based on the MSSLSTM Model
3.3.1. Dataset Refactoring

After passing the white noise and stationarity test, the dataset was refracted and fit into
the supervised learning form of the LSTM network: xt was merged with yt−1 (t = 2, . . . , n)
into the feature set, which can be implemented as X′ = {(x2, y1), (x3, y2), . . . , (x138, y137)},
and the output set was Y′ = {y2, y3, . . . , y138}.

The training step was generally fixed in the learning process and set based on actual
demand, given the significant temporal dependence of aviation accidents, the lengths of
the input and output samples were set to 4: the historical data of the last 4 months were
used to predict the safety level in the next 4 months. The training and test sets were divided
accordingly:

{(X′t−4, . . . , X′t−1), (Y
′
t , . . . , Y′t+3), t = 5, . . . , 131}, {(X′131, . . . , X′134), (Y

′
135, . . . , Y′138)}

3.3.2. Stability Test and White Noise

To visually present the trend features of the sample over time, each variable was
analyzed. The sequence diagram for the insecure events is presented in Figure 8.

Figure 8a shows that the sample variance of the minor accident is stable overall. The
sequence has little volatility, and no obvious trend and cyclicity, so it can be regarded as a
stationary sequence. Additionally, the expectation for the sample is much larger than 0,
which does not satisfy the autocorrelation property of a white-noise sequence. Thus, the
sample passed the white noise test.

In turn, the other variables were observed in turn according to the sequence diagram, the
results show that all input and output variables were stationary and non-white-noise sequences.

3.3.3. Hyperparameter Optimization

To observe the predicted effect of the model at different batches, the number of nodes
and number of layers were successively adjusted. To alleviate the overfitting, neurons were
randomly discarded at 65% for each training session (dropout_rate = 0.65).

Furthermore, we adjusted the number of layers, constructed the MSSLSTM aviation
safety predictor, and traversed the training error (MAE). Figure 9 shows that the MAE
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decreases as the layer number increases to 4 and the minimum MAE is about 0.1962, which
demonstrates that the stacked structure enhances the deep learning ability. While MAE
increases as the layer number is over 4, the possible cause is overfitting due to model
complexity. Thus, the number of hidden layers in this case was set as 4.
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Figure 9. Changes of training accuracy under different number of layers.

Figure 10a shows the changes in training errors under the number of nodes combina-
tion of the first two layers. It shows that the global minimum MAE is about 0.1917, as the
number of nodes were set as 9 and 7.

Based on the optimization of the nodes’ number in the first two layers, we adjusted the
nodes’ number in the last two layers, training errors are accordingly shown in Figure 10b,
the global minimum MAE is about 0.1751, as the number of nodes were set as 5, 5.

From the parameters described above, the optimal setting for the number of nodes
was set as 9, 7, 5, 5.
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4. Model Comparison
4.1. Effect of Predictors on the Experimental Results

The model proposed in this paper based on the MSSLSTM will be compared with
prediction models such as LSTM′, LSTM, MSSRNN, TCN, DT, SVR, and ARMA. Those
compared models were all used to predict the value of aviation safety level in the same
experimental environment. The comparison experiment results of each model are shown
in Figure 11.
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Figure 11. Comparison of the predictive model results.

From Figure 11, it can be seen that: (1) the MSSLSTM predictor outperforms the
original LSTM in the fitting effect. (2) Recurrent neural networks (RNNs) are better than
the ARMA model, as it demonstrates a better ability to recognise and understand trends by
the memory units. (3) For DR and SVR, the prediction errors have a much wider range of
deviations, compared with RNNs, which indirectly proved that RNNs are relatively robust.
(4) TCN performs well to fit increasing and decreasing trends of predicted value but has a
large relative error.

The RMSE distribution of the 10 experiments is recorded. As shown in Figure 12:
(1) The error of MSSLSTM is the least, and RMSE is below 0.058, which is reduced by
41.977% and 28.37% compared with LSTM and TCN. This further proves that the robustness
of the MSSLSTM proposed in this paper has been strengthened. (2) The accuracy of the
MSSLSTM is slightly higher than that of the MSSRNN, which shows that gate structure
helps improve the accuracy of multi-layers predictor.
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4.2. Effect of Variable Selection Methods on the Experimental Results

To more intuitively verify the effectiveness and robustness of ADSGL for improving
safety prediction efficiency, LASSO, Group LASSO, ridge regression (RR), and random
forest (RF) are introduced into the proposed MSSLSTM predictor, respectively, and the
input variables determined by the variable selection methods are tested. The RMSE,
elapsed time (t), and the number of selected variables (Variable_number) are used as
evaluation indicators.

The comparison experiment results of each model are shown in Table 4.

Table 4. Comparison of test results with variable selection methods.

Method RMSE t/s Variable_Number

ADSGL 0.058 17.468 3
- 0.116 30.463 12

RR 0.071 24.941 5
LASSO 0.082 30.271 7

Group LASSO 0.072 24.137 6
RF 0.144 27.597 8

It can be seen from the comparison of Table 4 that: (1) The predicted RMSE of ADSGL
is 0.058, which is significantly lower than that of the original operator (LASSO, RR), and
the convergence error is the minimum. It shows that the accuracy of the proposed ADSGL
is greatly improved, compared with the original operator. (2) The accuracy of the ADSGL is
better than that of the RF, and the error decreased by more than 35.53%, which verifies the
effectiveness of the penalty term in improving the accuracy. (3) Compared with the original
LASSO, the elapsed time is shortened by nearly 13 s. It proves that the proposed ADSGL
greatly improves elapsed efficiency. (4) The number of variables selected by ADSGL is
3, under the premise of ensuring prediction accuracy, the sample dimensions get fully
reduced, by about 63.3%, with better interpretability.

5. Conclusions

This paper presents a new aviation safety prediction method based on ADSGL-
MSSLSTM. In this study, ADSGL is used to select key variables based on coefficients’
shrinking at both the group level and univariate level, and penalize the coefficients dif-
ferently depending on their adaptive weights. In this way, the evaluations are ensured to
be unbiased and consistent, which improves selection model accuracy and interpretabil-
ity. Subsequently, MSSLSTM is trained using a dataset after dimension reduction, and
it’s then used to predict the changing trend in minor accidents. The multi-step stacked
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structure enhances the predictor by generalizing and analyzing complex temporal depen-
dencies and nonlinear relationships, which helps further improve the prediction efficiency
and robustness.

The feasibility of ADSGL-MSSLSTM is demonstrated by case studies of data collected
in ASRS, from June 2010 to Nov 2020. Various existing methods are determined as control
models. Experimental results indicate that the proposed method can efficiently conduct
key variable selection and improve the prediction performance of aviation incidents.

As part of the future work, firstly, given the difference in safety among various models
of aircraft, we will apply the proposed method to predict the safety level in a specific model,
thus extracting more tailored safety information. Additionally, appropriately increasing
the appropriate coefficient penalty will be adopted to speed up the error convergence rate
while satisfying the accuracy demand.
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