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Abstract: Numerical research into the QCL tunability aspects in respect to being applied in chemical
substance detection systems is covered in this paper. The QCL tuning opportunities by varying
power supply conditions and geometric dimensions of the active area have been considered. Two
models for superlattice finite (FSML) and infinite (RSM) size were assumed for simulations. The
results obtained have been correlated with the absorption map for selected chemical substances in
order to identify the potential detection possibilities.
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1. Introduction

Quantum cascade lasers (QCLs) are currently one of the most commonly used sources
of IR radiation. They can be found in spectrometers [1–4], electronic countermeasures [5,6],
telecommunication systems [7–9], or detectors of chemical substances [10–14]. The latter
application seems to be greatly beneficial, as the combination of the detection method’s
effectiveness and easily tunable QCL emitters provides detection systems that are both
highly sensitive and selective. A typical example of such a system is shown in Figure 1,
where the QCL module emitting a beam of light of a wavelength of λ ≈ 9.5 µm and
a spectral width ∆ν̂ ≈ 10 [cm−1] plays the main role (see Figure 1b). The range of this
radiation covers absorption spectra of several chemical compounds such as NH3 or O3, as
shown in the graph in Figure 1c.

The applied spectral analysis method determines the operation of the QCL module
shown in Figure 1a. It can operate under an interpulse or an intrapulse tuning regime.
Interpulse spectroscopy uses room-temperature lasers that generate ultra-short pulses of
quasi-monochromatic radiation. Between the successive pulses of radiation, a change in
the wavelength of the generated radiation in the selected spectral range occurs. Impulse
operation, however, causes the radiation wavelength to undergo undesirable changes
within the pulse duration, which results in the broadened spectral line of the device; hence,
its spectral resolution is reduced. In order to minimise such phenomena, it is necessary to
limit the width of the pulses to a maximum of tens of nm and to maintain their amplitude
close to the laser excitation threshold. Thus, the QCL can be tuned in the range of 1–2 cm−1

with the pulse repetition period ranging from several dozen to several thousand hertz [15].
Intrapulse spectroscopy, similar to interpulse spectroscopy, is based on the analysis of

the signal emitted by a pulsed laser at room temperature. Unlike the method described
previously, changes in the frequency of the emitted wave during the pulse duration are not
prevented, but upon determining their range, the tuning process is controlled by powering
the laser at a level of several amperes above the excitation threshold. In such a case,
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the pulse width reaches several µm and the tuning range reaches 4–6 cm−1 at the pulse
repetition frequency of up to 100 kHz [16].
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Figure 1. Illustration of the chemical detection method: (a) block diagram of a typical detection
system with QCL module as emitter; (b) energy spectrum of the emitted laser beam for typical power
supply conditions; (c) absorption spectrum of selected chemical compounds plotted on the basis
of HITRAN.

Regardless of the spectral analysis method applied, it is the QCL tunability that deter-
mines how many and what types of substances are detected. Apart from the advantages
of cascade lasers in terms of the emitted waves’ bandwidth (widely recognised by sci-
entists [17–19] and emphasized by commercial producers as well), minor changes in the
structure may significantly improve QCL parameters in this area. In particular, changes in
the laser active area, whose spatial configuration has the most significant impact on the
excitation conditions of the photon emission and its optical gain, may prove greatly bene-
ficial. Computer simulations are the simplest and cheapest research tools that effectively
help to test various QCL design variants and their impact on the most important optical
parameters. Tunability of selected QCL structures has been tested under the study; the
research has been aimed at assessing their potential application into gas detection systems.

By varying laser power supply conditions and the geometric dimensions of the laser
active area, the laser tuning capabilities have been studied. The obtained results have been
correlated with the absorption map for the selected chemical substances in order to assess
whether their detection by the tested QCL module is feasible.

2. Numerical Models of QCL

Two models assuming finite (FSML) and infinite (RSM) sizes of semiconductor su-
perlattices were used to perform numerical studies. FSML, due to highly efficient simu-
lations [20–22], was applied to carry out approximate calculations related to the device
tuning capacity within a wide range of control voltage. The RSM [23,24] model was used to
verify the research at the most important points, and all the vital electron scatterings were
taken into account. The results were subjected to analysis, including transport and optical
parameters calculated for the implemented laser [25] capable of operating at temperatures
of about 300 K. Exemplary results are shown in Figure 2. Part (a) depicts a fragment of
a voltage-polarized semiconductor superlattice represented by the energy distribution of
the bottom conduction band Ec, for which the energy states calculated with the FMSL
model, significant for the quantum effects analysed in this paper, are plotted.
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Figure 2. QCL operation presented: (a) basic electron transitions within the polarised laser struc-
ture calculated with FMSL model; (b) electron concentration distribution for a single QCL period
determined with RSM model.

In the active region of the structure model, three quantum states were distinguished,
namely, high—c, medium—b and low—a states. When the laser is under operation, the
electrons injected from the previous period of the structure into the state c tend to transfer
to the intermediate state b by emitting photons with energy equal to the energy difference
between the subbands c and b. However, such transitions occur only for the population
inversion, where the concentration of electrons in the level c exceeds their concentration in
the miniband b. This can be confirmed by analysing the energy map of the electron charge
concentration shown in Figure 2b, obtained with the RSM model.

The presented map shows a significant concentration of electrons at the c level in
the laser active region, and a nearly invisible charge near the b state in the same region.
This opens electronic photon transition opportunities that, after compensation for the
waveguide losses, lead to the laser beam emission. This emission occurs above the JTH
threshold, which may be the beginning of the QCL tuning process within the chemical
detection system using one of the detection methods described in the previous section.

The value of the threshold current density (JTH =11.95 kA/cm2) together with the
current–voltage characteristics of the tested QCL structure presented in Figure 3a were
determined with the RSM model for the parameters given in Table 1. The calculations
were carried out with electron scattering due to crystal lattice disorder (AD), interface
roughness (IR), scattering on impurity ions (ID), acoustic and optical phonons (AP and
OP, respectively), as well as electron–photon (E–P) and electron–electron (E–E) interactions
taken into account. Methods for incorporating electron scattering into calculations are
described elsewhere [26–29].
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Figure 3. Simulation results of the QCL optical parameters calculated with RSM for the data in
Table 1: Current–voltage characteristics and laser threshold current (a); the optical gain energy map
(b) dependence of optical gain on the energy hν (c) for voltage U = 220 mV/period.

Table 1. The basic parameters of the QCL simulation for the results presented in Figures 2–4.

GaAs/Al045Ga0,55As QCL Well Barrier

m* 0.067 0.10435
Eg [eV] 0.84 1.84

εr 12.85 13.8
Structure layers [nm]

(barriers in bold)
4.6, 1.9, 1.1, 5.4, 1.1, 4.8, 2.8, 3.4,
1.7, 3.0, 1.8, 2.8, 2.0, 3.0, 2.6, 3.0

∆EC [eV] 0.39
ndop [cm−3] 2.29 × 1018

LO-phonon energy 0.036
deformation potential [eV] 5.89

Screening length λDebye [nm] 32
Number of periods QCL 30

Temperature [K] 300

Electron transitions between states c and b can be quantified by determining the
optical gain of the laser under specific power conditions. An exemplary simulation for this
parameter at the voltage of U = 210 mV/period is shown in Figure 3b. The energy map of
the optical gain (α [cm−2]) plotted against the background of the potential representing the
superlattice structure shows that the positive values of this parameter, characteristic for
photon transitions, are essentially limited to the laser active region. In addition, the graph
in Figure 3c shows the hν values for positive optical gain to be in the range of 126–139 meV,
which corresponds to the calculations presented in Figure 1a. The described simulations,
however, require a relatively large amount of time and computer power. Therefore, in order
to quickly and effectively assess the range of emitted energy at c→ b transitions, the FMSL
model was applied to track the positions of the concerned states into the energy domain
for changing supply voltage. The results are described in the next chapter.

Influenced by the electric field, the electrons in the laser active region are transmitted
from the medium state b to the low state a, and their energy is transferred to the crystal
lattice as phonons (see Figure 2a). The injection area of the next period of QCL is designed
to transfer electrons from the active region low state a and ensure their further transport
to the high state c’ of the next QCL module, where the whole sequence of transitions
between states is repeated (see Figure 2a c’→ b’). Such a QCL operation scheme turns each
electron participating in the Ecb transition into a multi-photons source, which results in
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relatively high output powers and is, along with a significant tunability, one of the greatest
advantages of such devices.

3. QCL Tuning

An earlier paper [14] has shown that the frequency range of the waves emitted by
the laser can be changed by adjusting the QCL power conditions. In our case, the voltage
applied to the superlattice structure was varied. Hence, the simulations of the laser in
a wide range of applied voltages were performed to examine the possibilities of tuning QCL
and possible matching of the emitted radiation to the absorption spectrum of the chemical
substances to be detected. Selected results of such simulations are shown in Figure 4. Part
(a) illustrates the following paths (in the energy domain) of three selected quantum states
representing the c mini-band (in red) and the b mini-band (in blue), depending on the
supply voltage of the structure. The calculations were performed under FMSL model for
the superlattice five periods within the supply voltage range from 0 to 300 mV/period.
The diagram shows the hν transitions, analysed in terms of determining the emitted
photons wavelength range. This range is represented by the values λmin= hc/∆Emax and
λmax= hc/∆Emin, determined for each value of the applied voltage. The obtained results
are plotted in part (b) of Figure 4, for the voltage ranging from 150 to 300 mV/period. In
the same graph, the supply voltage range responsible for tuning the laser above the JTH
threshold, marked as QCLTR0 (tuning range 0), is highlighted. The covered voltage range
was from 230 to 260 mV/period.
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Figure 4. The QCL tuning simulations: (a) self-energies for three selected quantum states representing
the c-miniband (in red) and the b-miniband (in blue) with marked electron transitions depending on
the supply voltage; (b) the minimum and maximum values of the transition energies hν, converted
to wavelengths λ, for the two observed minibands (c and b) with the effective tunable area QCLTR0;
(c) illustration of wavenumber changes for the calculations shown in part (b); (d) absorption spectrum
of chemical compounds plotted on the basis of HITRAN with marked QCLTR0 tuning area and QCL
tuning areas after modifications of the active region described in the next chapter.



Sensors 2023, 23, 389 6 of 10

As shown in the QCLTR0 range, a relatively constant width of the emitted radiation is
observed (represented by the parameter ∆ν̂), which for the supply voltage 220 mV/period
is comparable to the width of the radiation spectrum depicted in Figure 1b. The ∆ν̂ values,
however, tend to change with the supply voltage, which is most distinctly seen in Figure 4c.
The exact values of this parameter, as well as changes in the wavelength λ converted from
the energy hν for transitions between states c→ b, are recorded in Table 2. By analyzing
the results (FMSL), one can see that within QCLTR0 the laser is able to emit radiation in
the wavelength range λ = 8.72 ÷ 9.52 µm (∆λ = 0.8 µm), when calculated, wavenumber
ν̂ = 1041 ÷ 1146 cm−1 (∆ν̂ = 105 cm−1). This is illustrated in Figure 4d as a green rectangle
plotted against the background of the absorption spectrum of chemical substances, which
makes it possible to identify potentially detectable compounds, such as NH3, O3, N2O,
or SO2.

Table 2. QCL tuning range calculated for the simulation results presented in Figures 2–4.

Qw [nm] 1.9

U [mV/Period] 230 260 QCLTR0

Model FMSL RSM FMSL RSM FMSL RSM

hνmin [meV] 129 126 138 129 9 3

hνmax [meV] 133 132 142 141 9 9

hνmG [meV] 130 135 5

λmin [µm] 9.31 9.38 8.72 8.78 0.59 0.6

λmax [µm] 9.52 9.83 8.97 9.59 0.55 0.24

λmG [µm] 9.52 9.17 0.35
_
v max [cm−1] 1074 1066 1146 1139 72 73
_
v min [cm−1] 1041 1018 1116 1042 75 24
_
v mG [cm−1] 1050 1090 40

For the supply voltages corresponding to the ends of the QCLTR0, structure simulations
were performed. The calculations were made under the RSM model with the parameters
given in Table 2. With analyzation of the obtained results, differences in relation to the
FMSL results presented in the table have been found. They result from the approximate
(disregarding electron scattering) and exact (AD + IR + ID + AP + OP + E-P + E-E considered)
approach related to the FMSL and RSM models applied, respectively. Because these
differences do not significantly affect the subject of the study (i.e., the QCLTR tuning range),
and because FMSL enables very fast calculations, it was decided to use this model as the
leading one for further calculations. It is also worth noting that the QCLTR0 is close to the
values obtained for measurements of similar structures [10]. This confirms the validity of
further actions aimed at extending or changing the range of the emitted waves by modeling
the dimensions of the laser structure, and its active area, in particular.

4. Modeling of QCL Active Region

Modeling of the active region of the selected QCL structure was carried out by adjust-
ing the quantum well width for wells that contain the high quantum states (curve c) from
which photon transitions to medium levels b are possible. This is schematically illustrated
in Figure 5 where we graphically marked the Qw parameter defining the concerned width
of the well.
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Figure 5. A scheme for modeling QCL active region.

Changing the spatial configuration of the QCL active region has a significant impact
on its current–voltage characteristics. Thus, the maximum QCL tuning range calculated
with the use of simplified FMSL had to be verified by determining the accurate value of
its threshold current with an RSM for a given well width Qw. The simulation results are
shown in Figure 6, where the fragmentary current–voltage characteristics of the tested
structure for the selected well widths Qw (∆Qw = ±0.2 ÷ 0.6 nm) are shown with threshold
current values denoted. The values increase with the well width Qw widened, while the
related voltages for the structure supply tend to decrease to the value of 174 mV/period
for Qw = 2.5 nm, which corresponds to the threshold current JTH = 20.68 kA/cm−2.
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Figure 6. The fragments of current–voltage characteristics of the QCL with marked threshold currents
for different widths of wells Qw calculated using the RSM for the parameters listed in Table 1.
Part (a) presents the results for increasing and (b) for decreasing the width of the well Qw.

On the basis of the characteristics plotted in Figure 6a, the QCLTR simulation results
obtained under the FMSL approach were selected as presented in Table 3. The results show
that increasing the well width Qw reduced (as expected) the values of photon energy hν,
which corresponds to longer wavelengths of the emitted radiation. For example, a change
of ∆Qw= + 0.2 nm shifted the radiation spectrum to the range λ = 9.14 ÷ 10.1 µm, convert-
ible to a wave number within the range ν̂ = 985 ÷ 1094 cm−1. Additionally, the QCLT1
tuning range extended in relation to QCLTR0, which was equal here to ∆λT1 = 0.96 µm,
corresponded to a wavenumber change within ∆ν̂ = 109 cm−1. Such a tendency has been
observed for further widening of the well Qw, until the width of 2.5 nm for the range
of wavenumber changes has reached ∆ν̂ = 161 cm−1. The range of the emitted radiation
corresponded to λ = 10.42 ÷ 12.50 µm, and to a corresponding wave number within the
range of ν̂ = 799÷ 960 cm−1.
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Table 3. Modeling the QCL tuning range by extending the size of the Qw well.

∆Qw [nm] +0.2 (2.1) +0.4 (2.3) +0.6 (2.5)

U [mV] 210 250 QCLT1 200 250 QCLT2 180 250 QCLT3

hνmax [meV] 130 135 5 119 128 9 108 119 11

hνmin [meV] 122 131 9 111 122 11 99 114 15

hνmG [meV] 120 126 6 114 120 6 102 114 12

λmin [µm] 9.52 9.14 0.38 10.40 9.67 0.73 11.46 10.42 1.04

λmax [µm] 10.1 9.46 0.64 11.14 10.15 0.99 12.50 10.89 1.61

λmG [µm] 10.31 9.82 0.49 10.86 10.32 0.54 12.13 10.86 1.27
_
v max [cm−1] 1050 1094 44 902 1038 136 872 960 88
_
v min [cm−1] 985 1057 72 897 1007 110 799 918 119
_
v mG [cm−1] 969 1017 48 920 969 49 824 921 97

The increased QCL tuning range resulting from widening the Qw well width was also
confirmed by calculations within the RSM approach, the results of which are represented
by the values of the optical gain peaks shown in Table 3 as the parameter hνmG converted
also to the corresponding values of the radiation wavelength λmG and the wavenumber
ν̂mG. It can be seen here that the well widened to the width of 2.5 nm (which corresponds
to approximately two monolayers) resulted in the extended laser tuning range from the
initial QCLTR0 represented by the parameter ∆ν̂mG= 40 cm−1 to QCLT3, which corresponds
to the value ∆ν̂mG = 97 cm−1. This means that the emitted band had been extended nearly
four times per wavenumber, which may open opportunities for detecting new chemical
substances. The QCLT3 range, along with other parameters obtained by increasing the
well width Qw, are represented as red rectangles in the absorption spectrum plotted in
Figure 4. It has been shown that within the basic tuning range (QCLTR0) the QCL module
can be used to detect NH3 and SO2, whereas in the QCLT2 range the number of substances
increases to three, specifically NH3, O3, and C2H4.

Narrowing the Qw well width has led to increased hν energy, which in turn results in
radiation of shorter wavelengths emitted by the laser. This has also affected the current–
voltage characteristics of the QCL module and its threshold currents. The simulation
results presented in Figure 6b, where the current–voltage characteristics of the QCL module
for different (narrowed) Qw, together with the threshold currents and the corresponding
supply voltages, are plotted, helped to confirm it. The presented graphs showed the
QCL threshold current values to decrease slightly as Qw narrows, and the corresponding
structure supply voltages to be significantly increased in relation to the values presented
on the base characteristic (in green).

Based on the characteristics plotted in Figure 6b, the QCLTR simulation results obtained
for the FMSL approach were selected as presented in Table 4. The results allow us to
conclude that decreasing the well width Qw quite expectedly increased the photon energy
values hν, which corresponds to longer wavelengths of the emitted radiation. For example,
a change of ∆Qw = −0.2 nm shifts the radiation spectrum to the range λ = 8.54 ÷ 9.04 µm,
which corresponds to the converted wave number within the range ν̂ = 1106 ÷ 1171 cm−1.
The QCL tuning range here of the value of ∆λT4 = 0.5 µm (∆ν̂=109 cm−1) is smaller than
QCLTR0. Additionally, RSM simulations did not reveal any change within the emitted
radiation energy in the considered tuning range (hνmG = 138 meV). Similar results were
obtained for ∆Qw = −0.4 nm, where hνmG =144 for U = 260 mV/period and m alike.
A noticeable change, however, occurred for ∆Qw = −0.6 nm, where the resulted change
in hνmG corresponded to the value of 150 meV for the voltage of 290 mV/period. It
corresponds to QCLT6 of a width of ∆λT4 = 0.91 µm (∆ν̂ = 137 cm−1).
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Table 4. Modeling the QCL tuning range by narrowing the size of the Qw well width.

∆Qw [nm] −0.2 (1.7) −0.4 (1.5) −0.6 (1.3)

U [mV] 250 290 QCLT4 260 290 QCLT5 270 290 QCLT6

hνmax [meV] 142 145 3 145 150 5 154 161 7

hνmin [meV] 137 141 4 140 148 8 144 156 12

hνmG [meV] 138 138 0 144 144 0 144 150 6

λmin [µm] 8.71 8.54 0.17 8.54 8.25 0.29 8.04 7.69 0.35

λmax [µm] 9.04 8.78 0.26 8.84 8.37 0.47 8.60 7.94 0.66

λmG [µm] 8.97 8.97 0 8.60 8.60 0 8.60 8.25 0.35
_
v max [cm−1] 1147 1171 24 1171 1211 40 1243 1300 57
_
v min [cm−1] 1106 1139 33 1131 1195 64 1163 1260 97
_
v mG [cm−1] 1115 1115 0 1163 1163 0 1163 1211 48

All QCL tuning ranges obtained by narrowing the well width Qw are plotted in
Figure 4d as black rectangles. The results allowed us to assess the possibility of detecting
chemical substances by modifying the laser structure. As shown, reducing the width
of the well Qw by 0.2 nm has not increased the laser tuning parameters. Similarly, a
slight extension of the tuning range for QCLT5 has not introduced any new detection
opportunities. Nevertheless, setting the width to Qw= 1.3 nm significantly widened the
tuning range, and new chemicals, specifically N2O and CH4, are likely to be detected with
the QCL module modified accordingly.

5. Conclusions

The conducted research showed small changes introduced during building the QCL
structure active region to be able to improve the tuning range significantly. Hence, new
possibilities of detecting chemical substances by systems containing QCL modules are
welcome. Such changes may be introduced by reducing or increasing just one or two
monolayers in the quantum well, where photon transitions take place. Although the
simulation results have not yet been confirmed by measurements, we believe this to be the
right direction for changes in designing and producing modules to be applied in chemical
substance detection systems.
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