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Abstract: The transformation of railway infrastructure and traction equipment is an ideal way
to realize energy savings of urban rail transit trains. However, upgrading railway infrastructure
and traction equipment is a high investment and difficult process. To produce energy-savings in
the urban rail transit system without changing the existing infrastructure, we propose an energy-
saving optimization method by optimizing the traction curve of the train. Firstly, after analyzing
the relationship between the idle distance and running energy-savings, an optimization method of
traction energy-savings based on the combination of the inertia motion and energy optimization
is established by taking the maximum idle distance as the objective; and the maximum allowable
running speed, passenger comfort, train timetable, maximum allowable acceleration and kinematics
equation as constraints. Secondly, a solution method based on the combination of the adaptive
dynamic multimodal differential evolution algorithm and the Q learning algorithm is applied to solve
the optimization model of energy-savings. Finally, numeric experiments are conducted to verify the
proposed method. Extensive experiments demonstrate the effectiveness of the proposed method. The
results show that the method has significant energy-saving properties, saving energy by about 11.2%.

Keywords: urban rail transit; energy-saving optimization; adaptive dynamic multimodal differential
evolution algorithm

1. Introduction

To ensure the low-cost of urban rail transportation, energy-saving has become a key
issue of the urban rail transportation system [1]. Although improving equipment and
infrastructure reduces the operation cost of urban rail transit, these improvements require
much more time and a higher investment. For this reason, exploring an optimization strat-
egy to reduce the energy consumption of trains without changing the existing equipment
and infrastructure has become an important research topic in recent years [2,3]. Due to
the fact that the energy consumption of urban rail accounts for a large proportion of the
public transport system, it is of great significance to realize energy savings in the urban
rail [4,5], which will improve its own economic and social benefits. Based on the analysis of
the existing research, a new traction energy-saving optimization based on the combination
of train inertia motion and energy optimization is proposed in this study. The research
purpose is to find a new energy-saving solution that reduces the energy conversion link
as much as possible and replaces the braking motion with the inertia motion as much
as possible.

At present, the research on energy-saving optimization of the traction is mainly
focused on two aspects: traction energy-saving optimization based on regenerative braking
energy utilization and traction energy-saving optimization based on the timetable. Some
achievements have been obtained from these two research directions. They have their
own advantages and disadvantages. The energy-saving optimization method of feeding
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regenerative braking energy into the recovery of the energy consumption optimization
objective function still has a lot of energy loss in practical applications due to the influence
of energy conversion efficiency and harmonic components. The practical application of
the energy-saving optimization method by optimizing the timetable is not ideal due to the
problem of condition simplification.

The energy-saving optimization based on the utilization of regenerative braking
energy has been a hot research area in recent years. Typical research mainly includes the
following aspects. Arikan and Yamur et al. adopted a combined strategy that includes
reducing electrification loss, using regenerative braking, and improving comfort and
driving technology to solve the problem of the high energy consumption of the train [6].
An optimization method for improving the energy efficiency of regenerative braking based
on the master-slave mode is proposed [7]. On the basis of describing the switching model
of urban rail train dynamics, an online optimization method of a train for energy-saving
based on model predictive control is proposed [8]. To solve the problem that the energy
consumption of a train is affected by speed control and the scheduled time, an energy-saving
optimization method based on the flow conservation theory is proposed [9]. To reduce
the energy consumption of the train, a multi-mode energy-saving rail transit simulator is
established by matching the target speed, the average deceleration level and the adjustment
coefficient of the braking force to match the precompiled time schedule of the train [10].
To achieve the goal of minimizing energy consumption, a train ecological driving strategy
combined with a detailed train simulator is proposed by Cunillera and Alejandro, et al. [11].
A collaborative energy-saving optimization control strategy based on multi-agent deep
reinforcement learning is proposed [12]. From the analysis of comprehensive energy-
saving effects, these studies have achieved some results. However, the train energy-saving
optimization method based on the comprehensive utilization of regenerative braking
energy is restricted by energy storage equipment and harmonics; therefore, the effective
utilization of regenerative braking energy is not high.

The representative research of the energy-saving optimization based on the train
timetable includes the following topics. Comprehensively considering energy-saving and
voltage-stabilization, an intelligent optimization strategy of energy-saving based on deep
reinforcement learning is proposed [13]. An integrated model of the optimal train schedule
and vehicle transfer plan is proposed by maximizing the overlapping the time of station
braking and traction [14]. Shuo Zhao et al. construct the two-way ladder maximum interval
function based on time-varying road demand and the predetermined service level [15]. A
comprehensive optimization model of urban rail transit is proposed based on three sub-
problems: line planning, timetable and vehicle allocation [16]. The essence of solving the
train energy-saving optimization problem based on train operation schedule optimization
is to transform the traction curve energy-saving optimization problem into the operation
schedule optimization problem. Although the research in this field has achieved many
results, there are still some problems to be solved. These problems to be solved mainly
include that the constraints of the optimization objective function in the modeling process
are too idealized, constraint conditions of the traction curve energy-saving model are too
simplified and stay time of the station is not taking into account the economic benefits,
and so on.

Although the previous research has achieved many results, there is still a lot of
research space in the field of train energy-saving optimization. Without changing the
existing infrastructure, the energy-saving method based on traction curve optimization is
the key to achieving energy-savings. However, the optimization method of the traction
curve for energy-saving is a multi-objective optimization problem that comprehensively
considers the mutual restriction of operation safety, line infrastructure, traction conditions
and operation energy-savings [17–19]. The interaction of multiple factors leads to the
difference in train energy consumption in different environments and different operations,
among which traction force, braking force, traction condition and braking condition have an
obvious influence on the energy consumption of the train [18,20,21]. The idling based on the
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inertial motion of the train is an important operation mode to reduce energy consumption
and provides the optimal conditions for energy-saving [21,22]. The time schedule of
the train is given in advance and the given time is always greater than the minimum
running time [22]. There are many train speed curves that meet the constraints such as
time schedules. As far as the comprehensive benefit of urban rail transit is concerned,
properly increasing the distance of the inertial motion within the allowable running time
will effectively reduce the energy consumption of the train in the process of traction [23,24].
The traction energy-saving optimization of the train is a complex multimodal optimization
problem. In practical application, due to the uncertainty of the problem environment or
dynamic characteristics of the problem itself, the problem to be optimized will dynamically
change with time or the environment [25–27]. The introduction of dynamic characteristics
aggravates the complexity and difficulty of solving multimodal optimization problems,
which poses a great challenge to the existing multimodal optimization algorithms [28,29].

From the previous research results, because of the excessive differences between
modeling conditions and practical application conditions, the traction energy-saving op-
timization of the train based on the timetable does not solve the actual energy-saving
optimization problem. There is energy conversion in the process of regenerative braking
energy recovery. The optimization method based on the recovery and utilization of the
regenerative braking energy depends on the conversion efficiency of the equipment and
harmonic component of the regenerative braking energy. The energy conversion process is
bound to reduce the actual effective utilization of energy due to the influence of equipment
performance and energy conversion efficiency. From the view of energy conservation, the
traction curve optimization method based on the optimization principle of regenerative
braking energy utilization still has a lot of energy loss. The main reason for this problem is
that the energy conversion efficiency is not completely converted into the actual effective
use of energy. Therefore, reducing the unnecessary conversion and recovery of regenerative
braking energy as much as possible is the key to realizing deep energy-saving optimization
of the traction curve. The combination of the energy optimization and train inertia motion
is an important research direction to realize the energy-saving optimization in the urban
rail transit.

Traction energy-consumption is the major energy-consumption of the urban rail transit.
The energy-saving optimization studies described herein are all aimed at traction energy-
saving optimization research. Establishing a good traction curve to improve the train
operation is an important way to produce energy-savings in the urban rail transit. To
establish a good traction curve to realize energy savings by improving the train operation
in the urban rail transit without changing the existing infrastructure, this study will research
the traction energy-saving optimization method of the train based on the combination
of inertia motion and energy optimization. We use inertia motion to replace the braking
motion as much as possible by reasonably optimizing the operation curve of the train,
so as to avoid various energy conversion links and effectively improve the actual energy
efficiency. An optimization method of traction energy-saving based on the combination
of inertia motion and energy optimization is proposed to solve the traction energy-saving
optimization problem. The method studied is different from that of predecessors. The
method proposed in this study is neither directly based on the regenerative braking energy
feedback to the optimization objective function nor simply using the running schedule as
the optimization objective function, but comprehensively considers the combination of
the train inertia motion and energy optimization. The proposed method provides a new
reference solution for the optimization problem of energy-saving in train operation. The
main contributions of this study are summarized as follows:

(1) An optimization model based on the combination of the inertia motion and energy
optimization is established by taking the maximum idle distance as the objective and
the maximum allowable running speed, passenger comfort, train timetable, maximum
allowable acceleration and kinematics equation as constraints.
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(2) An improved differential evolution algorithm based on the adaptive dynamic multi-
modal model is proposed and a comprehensive method for solving multi-objective
optimization problems based on the combination of the improved differential evo-
lution algorithm and Q learning algorithm is applied to solve the energy-saving
optimization model.

2. Methods

The harmonic component of regenerative braking energy, performance of the energy
recovery equipment and energy conversion efficiency are the key factors of the traction
energy-saving optimization method based on the regenerative braking energy utilization.
These key factors result in the regenerative braking energy not fully converting into the
actual effective energy and there is much waste energy. The research method in this study
is different from most of the previous research methods and does not rely solely on the
utilization of regenerative braking energy and the train operation schedule. To find a new
traction energy-saving method based on the combination of energy optimization and the
inertial motion of the train is the main purpose of the study. The kinematic analysis and
calculation of the energy-consumption is the key to establishing the traction energy-saving
model of the train. The modeling principle and construction method of the optimization
objective function are the core of the traction energy-saving optimization problem. In this
section, we will describe the energy-saving optimization method proposed in this study in
detail. Section 2.1 is the modeling basis including the calculation of the running resistance
and kinematic analysis of the train. Section 2.2 is the modeling principle and the specific
modeling implementation of the traction energy-saving optimization problem. Section 2.3 is
the solution method and specific implementation of the energy-saving optimization model.

2.1. Basis
2.1.1. Calculation of the Running Resistance

Because the operation of the train is affected by many factors and there are many com-
plex relationships between the factors, it is very difficult to use an accurate mathematical
model and calculation formula to obtain the running resistance of the train. The calculation
formula based on the empirical formula is the main means to obtain the actual running
resistance of the train. According to the empirical formula, the basic unit motion resistance
of the train is expressed by Formula (1).

wb = c1 · v2 + c2 · v + c3 (1)

The additional resistance of the train is the external resistance exerted by the line
when the train runs on it. The additional resistance of the train is mainly related to the line
conditions. The additional resistances of the train mainly include the tunnel additional
resistance, curve additional resistance, ramp additional resistance and so on. The generation
of the tunnel additional resistance is due to the fact that the fast-running train reduces the
cross-sectional area of airflow and produces resistance that hinders the movement of the
train under the aerodynamic effect. The unit additional resistance of the tunnel can be
calculated from the empirical formula shown in Formula (2).

wc =

{
L · v2 · 10−7 , arc tunnel
0.00013L , line tunnel

(2)

When the train is running on the curved track, the curved track will drag the train
and cause additional resistance in the curved track. Due to the complexity of influencing
factors, it is very difficult to calculate the additional resistance by theoretical calculation.
The additional resistance of the curved track is usually calculated by train weight and
unit additional resistance, and it can be calculated by the empirical formula shown in
Formula (3). In Equation (3), wr denotes the unit additional resistance of the curved track,
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and its unit is N/kN; c4 is an empirical constant; R denotes the radius of the curved track,
and its unit is m.

wr =
c4

R
(3)

Due to the action of gravity, the train is hindered by the resistance along the inclined
track on the ramp. The unit additional resistance of the ramp is usually calculated by
the slope thousands of points, which is equal to the thousand fractions of the ramp. The
symbol wp is used to represent the unit additional resistance of the ramp. In the case
of considering the basic resistance, the additional resistance of the tunnel, additional
resistance of the curved track and additional resistance of the ramp, the instantaneous
motion resistance of the train can be calculated by Formula (4).

W = (wb + wc + wr + wp) · (P + G) · g · 10−3 (4)

To analyze the train kinematics, the distance between the two stations is divided into
many small segments. Assuming that the distance between the two stations is S, the length
of each segment is calculated by Formula (5). When the segment is small enough, the unit
resistance of the train in the segment is approximately calculated by the average speed
of the train and empirical formula. The instantaneous motion resistance of the train can
be approximated by the average motion resistance of the train when the segment is small
enough. The average unit motion resistance and average motion resistance of the train in
the small segment can be calculated by Formulas (6) and (7), respectively.

∆si =
S
n
(i = 1, 2, . . . , n) (5)

wb = c1 · vi
2 + c2 · vi + c3 (6)

W = (wb + wc + wr + wp) · (P + G) · g · 10−3 (7)

2.1.2. Kinematic Analysis

The kinetic energy of the train is generally composed of translational kinetic energy
and rotational kinetic energy. After introducing the rotary mass coefficient, the kinetic
energy of the train is calculated by Formula (8). According to the derivation of the train
kinetic energy calculation and principle that the change in energy consumption can be
represented by the increment of the kinetic energy, the kinetic energy increment of the train
can be expressed by Formula (9).

Ek =
Mv2

2 · 3.62 (1 + p) (8)

dEk = Mv(1 + p)dv (9)

To obtain the relationship between the increment of the kinetic energy and work done
by the external resultant force, the running time of the train is represented by t in s, running
distance of the train is represented by s in m, and external resultant force on the train is
represented by C in kN. According to the principle that the work done by the external
force acting on the object is equal to the change in the kinetic energy of the object, that is
∆Ek = Cs, the equation of motion for the train can be described by Equation (10). After
Formula (10) is rearranged, the train running time equation and running distance equation
can be expressed by Formulas (11) and (12).

Mv(1 + p)dv = 3.6Cvdt (10)

dt =
∫ M(1 + p)

3.6C
dv (11)
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ds =
∫ Mv(1 + p)

3.62C
dv (12)

When the distance between the two stations is discretized into sufficient small seg-
ments, the kinematic equations of the train on the small segments can be described by
Equations (13) and (14).

∆ti =
M(1 + p)(vie − vis)

3.6Ci
(13)

∆si =
M(1 + p)(vis + vie)(vie − vis)

2 · 3.62Ci
(14)

2.2. Modeling
2.2.1. Modeling Principle

The external forces closely related to the energy consumption of train operation mainly
include traction force, basic resistance, additional resistance and braking force. In the urban
rail transit system, the external resultant force on the train determines the running state
of the whole train. The operation of the train generally includes the traction condition,
cruising condition, inert condition and braking condition. When the train is running in the
traction condition, the external force on the train mainly includes locomotive traction and
motion resistance, and the external resultant force acting on the train is equal to the traction
force, subtracting the motion resistance. When the train is running in the idling condition,
the train is only affected by the motion resistance, and the external resultant force is equal to
the opposite number of the motion resistance, and it does not consume electric energy but
depends on inertia to slow down. When the train is running in the cruising condition, the
resistance of the train is equal to the traction force, the external resultant force acting on the
train is equal to 0, and the train consumes energy and moves forward at a uniform speed.
When the train is running in the braking condition, the train is affected by the braking
force and motion resistance, the traction motor enters the power generation mode, and the
train produces regenerative braking energy and slows down. The interaction of multiple
factors leads to the difference in train energy consumption in different working conditions,
among which traction force, braking force, traction condition and braking condition have
obvious influence on the energy consumption of the train. From the view of traction energy
consumption the idling mode, which only depends on the inertia to glide forward, is an
important energy-saving operation.

At present, the research on the optimization of traction energy-saving based on the
utilization of the regenerative braking energy and optimization of traction energy-saving
based on the train timetable are the focus research directions of the traction energy-saving
optimization. However, the utilization of regenerative braking energy is easily affected
by harmonic components and energy conversion efficiency, and the overall energy still
produces a lot of waste. The research on the optimization of traction energy-saving based
on the train timetable mainly improves the energy consumption of the train by optimizing
the train timetable. However, it mainly focuses on energy savings from the aspect of
dispatching management. It does not study the solution curve for the energy-saving
optimization problem from the aspects of velocity curve and acceleration curve. Based on
the combination of energy optimization and train inertia motion, traction energy-saving
optimization is studied, which provides a new research scheme for the traction energy-
saving optimization of the train.

The process of train operation is a process that contains a variety of complex forms of
motion. The energy conversion mechanism of the train operation process is so complex that
it is difficult to reveal the full energy conversion mechanism through a mathematical ex-
pression. The energy-saving optimization problem of the traction is a complex optimization
problem with optimization constraints but no clear mathematical analytical optimization
law. At present, a clear mathematical description of the optimization problem has not
been found. Most of the optimization objective functions are established according to
the actual optimization conditions. When establishing the energy-saving optimization



Sensors 2023, 23, 378 7 of 22

objective function, this study still adopts the previous research method, that is, to construct
the optimization objective function through the optimization conditions.

The basic principle of optimization of traction energy-saving is that the total energy
consumption of traction is as small as possible, running distance of the train is as long
as possible, and train arrives on time as far as possible. Under the condition that the
arrival time allows a small range of fluctuations, the replacement of the distance of the
regenerative braking by the idling distance not only effectively saves the energy of the
train over the whole distance between the two stations, but also shortens the distance of
regenerative braking. The time schedule of the train to finish the whole distance between
the two stations is always given in advance, and the given time is always greater than the
minimum running time, so there are many speed curves that meet such a running time.
The increase in idling distance appropriately reduces the braking distance, and solves the
problem of low recovery and utilization of the regenerative braking energy. The schematic
diagram of the maximum idling distance for the energy-saving of the train is shown in
Figure 1.
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2.2.2. Modeling Implementation

The energy-saving optimization studied in this study is to find a solution on the basis
of meeting the requirements of basic operation regulations, which makes the train run
the furthest distance depending on inertia motion. Punctual departure, punctual arrival,
accurate parking and improving passenger comfort as much as possible are the basic
operation requirements of the urban rail train. Punctual departure and punctual arrival
require that the train must be completed within the specified time when it runs from
one station to another. The actual running time between the two stations allows a slight
deviation from the specified time. Urban rail transit is always equipped with safety screen
doors to ensure the safety of passengers. The train must accurately park at the safety screen
door; otherwise, because of the dislocation between the train door and safety screen door,
passengers will be unable to get on and off the train. Accurate parking requires that the final
speed of the train must be 0 when it reaches the target position of the safety screen door. To
improve passenger comfort as much as possible requires that the acceleration be considered
in the process of train operation, acceleration must be within the prescribed range, and
gradient between the two adjacent accelerations must meet the passenger comfort factor.
Additionally, the train traction is not inexhaustible, but there is an upper limit. Because
in the process of optimization, it is necessary to calculate the actual traction force and
judge whether it is within a reasonable range. If the optimization process finds that the
tractive force is not within a reasonable range, the corresponding solution sequence must
be punished. Therefore, the train energy-saving optimization problem studied is actually a
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multi-objective optimization problem composed of the objective of running time, inertial
motion, change of adjacent accelerations and final speed at the destination station.

Because the environment of operation in the urban rail transit is often different and
the deviation of allowable running time of the train between stations is always different,
the traction scheme of the train is different. The reasonable conversion scheme of idling
working condition is an important guarantee for the energy-saving of the train. Therefore,
an objective function of the maximum idling distance of the train is constructed in the study
based on the natural exponential function, as shown in Formula (15). The monotonicity
of the natural exponential function and its range from 0 to 1 are used to express the
optimization objective of the idling distance. When the idling distance of the train becomes
larger, the value of the objective function becomes smaller, and vice versa.

minF1 = e
−

n
∑

k=1
∆sk

(15)

The requirements of the operation schedule for the train are mainly reflected in the
punctual arrival. The punctual arrival of the train is generally characterized by the punctual
rate of the train. The punctual rate of the train not only affects the safety of the urban
rail transit in the process of operation, but also directly restricts the optimization scheme
of the energy consumption for the train. According to the time schedule of the train, the
arrival time of the train allows a small range of fluctuations under the basic requirements
of the given operation schedule, which provides a running time optimization condition
for the energy-saving traction of the train. Therefore, the total running time of the train
approaching the time schedule is a sub-goal of the energy-saving optimization problem
under the constraint of the operation schedule for the train. When the time schedule of the
train between the two stations is represented by T, an objective function of the optimization
for the punctual arrival of the train is constructed, which is shown as in Formula (16).

minF2 = (
N

∑
i=1

∆ti − T)
2

(16)

The change in train acceleration is an important factor affecting the comfort of train
passengers. If the train acceleration changes slowly, passengers get high comfort; the faster
the change in the train acceleration, the more passengers will feel uncomfortable. In the
energy-saving optimization problem of the train, it is bound to control the speed and
acceleration of the train traction curve, which will inevitably lead to the change in train
acceleration and ultimately affect the comfort of passengers. Therefore, an optimization
objective function of passenger comfort is constructed based on the change rate of the
acceleration. It is shown as in Formula (17).

minF3 = (ai+1 − ai − ϑ)2 (17)

In the whole optimization problem of energy-saving, the final speed of the train is also
a part of the energy-saving problem when the train arrives at the destination station. It
means that the speed of the train must be close to zero when the train arrives at the target
station after the speed of the train changes in the series of operation conditions. For this
reason, the final speed optimization objective function is constructed, which is shown as in
Formula (18). The symbol vNe in Formula (18) represents the final speed of the train when
it arrives at the target station.

minF4 = (vNe − 0)2 (18)

After the sub-optimization problems to form the overall optimization objective func-
tion is organically combined, the whole energy-saving optimization model of the train is
shown in Formula (19).
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For multi-objective optimization problems such as train energy-saving optimization,
the more complete the conditions considered, the better the optimization effect obtained,
but the more complex the solution process becomes. This study explores the optimization
method of train energy savings based on inertia motion under the requirements of the basic
operating regulations of the urban rail train. Therefore, to meet the requirements of the
basic operation regulations and obtain the solution of the energy-saving optimization is
the main goal of the multi-objective optimization in this study. In the energy-saving multi-
objective optimization function, several sub-optimization objectives are the key objectives,
none of which are indispensable. If there is a lack of the optimization objective of the final
speed of the train, the optimization results may result in a running distance to the position
of the safety screen door but the train speed is not zero, resulting in the dislocation of
the train door and the safety screen door. If there is a lack of the optimization objective
for the change in the adjacent accelerations, then the optimization results may result in a
sudden jump in the acceleration, which seriously affects the comfort of passengers. If the
optimization objective of running time is lacking, then the optimization results may have a
conflict with the running timetable, resulting in the safety problem of the train scheduling.

minΦ = α(
n
∑

i=1
∆ti − T)

2
+ β(vne − 0)2 + γe

−
n
∑

k=1
∆sk

+ λ(ai+1 − ai − ξ)2

s.t.



∆si =
S
n

∆sk =

{
∆si, vie < vis
0, vie ≥ vis

ai =
Ci

(P+FciG)

∆ti =


(P+FciG)(1+p)(vie−vis)

3.6Ci
, vie 6= vis
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vie

, vie = vis and vie 6= 0
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(P+FciG)(1+p)(vis+vie)(vie−vis)

2·3.62∆si

Wi =
[c1(

vie+vis
2 )

2
+c2

vie+vis
2 +c3+wc+wr+wp ]

1000 (P + FciG)g

FTi =

{
Ci −Wi, vie ≥ vis
0, vie < vis

0 ≤ vis ≤ vmax

0 ≤ vie ≤ vmax

0 ≤ FTi ≤ FTmax

|ai| ≤ |amax|

v1s = 0

(19)

2.3. Solution

The energy-saving optimization problem of urban rail transit is not only a complex
optimization problem with a high density of switching points and high computational
complexity, but also a multimodal optimization problem closely related to the evolution of
the operating environment. Due to the uncertainty and dynamic characteristics brought by
the evolution of the urban rail transit operation environment, the solution of the urban rail
transit energy-saving optimization problem presents the characteristics of multi-mode and
dynamic coexistence. The superposition of dynamic and multi-mode on the optimization
problem aggravates the complexity and difficulty of solving the optimization problem.
The classical numerical solution of multi-objective optimization problems and ordinary
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swarm intelligence algorithms are difficult to adapt to this kind of problem, which makes it
difficult to obtain satisfactory solutions or even fail under limited computational conditions.
To solve the optimization model of the traction energy-saving, the adaptive dynamic
multimodal differential evolution algorithm is introduced into the urban rail transit energy-
saving optimization problem and a solution method based on the improved differential
evolution algorithm is used to solve the optimization model.

2.3.1. Improved Differential Evolution Algorithm Based on the Adaptive Dynamic
Multimodal Model

The basic principle of the standard differential evolution algorithm is referred to in [25,28].
In this study, we mainly improve the standard differential evolution algorithm based on
the adaptive perception mechanism of the best fitness gradient and dynamic multimodal
mechanism of the unsolved optimization problem, obtain an adaptive dynamic multimodal
differential evolution algorithm, and apply it to the solving process of the urban rail transit
energy-saving optimization problem. The individual adaptive hierarchical mutation and
adaptive knowledge learning in the adaptive dynamic multimodal differential evolution
algorithm are realized by the comprehensive learning of population global knowledge and
individual neighborhood knowledge. Finally, a satisfactory solution to the energy-saving
optimization problem of urban rail transit is obtained by the dynamic adaptive response
mechanism, global exploration balance mechanism and local neighborhood knowledge
comprehensive learning mechanism.

Affected by the dynamic characteristics, quickly determining the possible position of
the optimal value is an important way to improve the convergence speed and diversity
of solving the multi-objective optimization problems with dynamic and multimodal co-
existence. Therefore, how to make full use of the knowledge of the population evolution
process to guide the population to achieve fast and accurate convergence within a limited
number of evaluations is the key to solving the dynamic multimodal optimization prob-
lems with high quality. However, the traditional differential evolution algorithm, which
generates offspring only through a simple mutation crossover operator, does not meet
the dual requirements of convergence speed and diversity in the solving process of dy-
namic multimodal optimization problems. Therefore, this study introduces the knowledge
guidance mechanism into the differential evolution algorithm to construct an adaptive
difference algorithm based on the knowledge guidance mechanism. The main principle
is to extract the information of the current evolutionary state of the population and guide
individuals to adaptively select the variation that best matches the current evolutionary
state according to the evolutionary needs of different individuals. The main steps of the
method are described below.

(1) Acquire the knowledge of the population evolution process and judge the individual
evolution needs of the population.

(2) Construct the population diversity enhancement strategy to help the population jump
out of the stagnant region.

(3) According to the evolution state of the population and individual, the hierarchical
mutation method is used to adaptively select the most suitable variation mode of
the current individual, and guide the individual to learn knowledge from the global
evolution information and neighborhood information of the population.

In this study, the degree of change of the optimal fitness value of each generation
in the process of evolution is taken as a reference to extract the evolutionary state of the
current population. The formula for calculating the degree of change of the optimal fitness
value of the population is shown in Formula (20).

θ =
|Fbest(k)− Fbest(k− 1)|

2
(20)

The diversity enhancement strategy mechanism adopted in this study is to guide other
individuals of the population to jump out of the current local region and move to other
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unexplored areas on the basis of retaining multiple peak optimal solutions currently found,
so as to improve group diversity and exploration ability. The specific enhancement process
is shown in the following Formula (21). Where xir1, xir2, xir3, xir4 and xir5 represents three
different random values of the i individual, respectively.

xij =

{
xij, when rand(0, 1) <CM
xir1 + SC(xir2 − xir3) + θ(xir4 − xir5), xir1 6= xir2 6= xir3 6= xir4 6= xir5, others

(21)

In this study, based on the elite individual strategy, the convergence mechanism of
the search is constructed, and the global convergence of the solution of the optimization
problem is realized by randomly exchanging a certain dimension value of the most individ-
uals to the optimal solution. The update formula of the convergence mechanism is shown
in Formula (22). Where xij represents the j dimension of the i individual and rand (0,1)
represents a random number from 0 to 1.

xij =

{
xbestj, when rand(0, 1) <CR
xij, others

(22)

To improve the adaptive ability of the differential evolution algorithm and ensure
that the algorithm can quickly obtain a satisfactory solution to the energy-saving opti-
mization problem of urban rail transit within limited computing resources, an adaptive
hierarchical mutation strategy of erasing the evolutionary algorithm is constructed based
on the knowledge guidance mechanism through the comprehensive learning of population
evolution process knowledge. The individuals of different evolutionary states are guided
to adaptively choose the best way of variation to meet the evolutionary needs of different
individuals. The main implementation steps are as follows.

(1) Set the threshold δ of the change degree of the optimal adaptation value of
the population.

(2) If the degree of change of the optimal fitness value of each generation θ is δ, it means
that the population may still be rapidly approaching the optimal solution, and the
convergence of the population is improved at this time.

(3) If the degree of change of the optimal fitness value of each generation θ < δ, it means
that the degree of evolution of the current population search is small, and the diversity
of the population is enhanced at this time.

2.3.2. Solution Implementation of the Optimization Model

According to the characteristics of the energy-saving optimization model and adaptive
dynamic multimodal differential evolution algorithm, a method based on the penalty
strategy of violating the constraint conditions is proposed to solve the optimization model
in the study. A cost function to calculate the fitness of the individual in the adaptive
dynamic multimodal differential evolution algorithm is constructed, which is shown as in
Formula (23).

In the process of evaluating the solution of the optimization problem, the penalty
strategies based on violation of constraints mainly include the traction acceleration process,
and violation of the maximum speed constraint and passenger comfort constraint. The spe-
cific implementation process of increasing the penalty in violation of the maximum speed
constraint is to give a large coefficient to the total energy consumption of the train when
the small segment acceleration is greater than the maximum acceleration allowed to run.
The specific implementation process of increasing the penalty in violation of the maximum
speed constraint is to give a large coefficient to the total energy consumption of the train
when the end speed of the small segment is greater than the maximum speed allowed. The
specific implementation process of increasing the penalty against the passenger comfort
constraint is that when the acceleration variation of the two adjacent segments is greater
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than the passenger comfort control factor, it produces a large coefficient to the total energy
consumption of the train operation.

F =
1

(∏N
i=1 Zi) · (∏N

i=1 Ai) · (∏N
i=1 Vi)(∏N

i=1 Ti) · fb + ε
(23)

fb = α · (∑N
i=1 ∆ti

T
− 1)

2

+ β · ( vNe
vmax

− 0)
2
+ γ · e

N
∑

k=1
∆sk−s

+ τ · (ai+1 − ai − ξ)2

2ξ
(24)

Zi =

{
υ , |ai| > |amax|
1 , others

(25)

Vi =

{
δ , |vis| > |vmax|or|vie| > |vmax|
1 , others

(26)

Ai =

{
ξ

|ai+1−ai |
, |ai+1 − ai| > ξ

1 , others
(27)

Ti =

{
1

FTmax−FTi
, FTi > FTmax

1 , FTi ≤ FTmax
(28)

In the multi-objective optimization problem, the solution that satisfies all the con-
straints at the same time is called a feasible solution, and the space composed of all feasible
solutions is called the feasible region. When solving a multi-objective optimization prob-
lem, the ideal solution is that the optimal solution of the multi-objective problem satisfies
the optimal solution of each objective at the same time. However, it is often difficult to
achieve this goal because of the existing multi-objective functions. The optimal solution
of the objective function is usually a set of solutions obtained by balancing each objective,
which includes a feasible solution, Pareto domination solution and Pareto optimal solution.
Because of the diversity of solutions of multi-objective optimization problems and most of
the solutions that meet the constraints appear in the form of a combination, constructing
a decision-making scheme of a satisfactory solution based on the actual meaning of the
problem is a main method of eclectic solution for the multi-objective optimization problem.

There are a large number of non-inferior solutions in the direct optimization results of
traction energy-saving optimization problems. The acquisition of a satisfactory solution to
the problem of train traction energy-saving optimization is a key link in the implementation
process of train traction energy-saving optimization. Because the train traction energy-
saving optimization problem attaches different importance to each sub-optimization goal,
it leads to the difference in the eclectic degree of the traction energy-saving parameter
sequence to each sub-optimization problem. The energy-saving benefit of the optimization
results, eclectic degree of sub-optimization problems and implementation of practical
problems have become an important reference for the selection strategy of eclectic solution.

The Q learning algorithm is a classical reinforcement learning algorithm. Its principle
is to take the agent as the core, state transition as the foundation, benefit as the goal, action
reward value as the guidance; and based on the principle of execution and return, construct
the action reward value matrix of the optimization problem by the form of iterating and
updating [30]. Finally, the action reward value can be selected to obtain the maximum
benefit. To obtain the best solution of the optimization problem, the Q learning algorithm
does not depend on any model, and its agent can obtain the best path and action sequence
from the initial state to the target state through learning in an unknown environment [31].

To obtain a satisfactory solution from the eclectic solution set, this study takes the
Q learning algorithm as the core and the non-inferior solution posterior evaluation and
optimization goal as the decision strategy to solve the problem of non-dominant solution
choice. The intelligent perceptual recursive decision maker of the non-dominant solution
set of the optimization problem is constructed based on the Q-learning algorithm; the
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identification process of the non-dominant solution set is transformed into a process of
parameter transfer in different positions; and the elimination method is used to recursively
iterate the non-dominant solution. Finally, a satisfactory solution of the traction energy-
saving optimization problem is obtained.

A method combined with the adaptive dynamic multimodal differential evolution
algorithm, the Q learning algorithm and hybrid coding algorithm is applied to solve the
optimization problem in the study. The pipeline for solving the optimization problem is
shown in Figure 2. The main process of solving the problem is as follows:

(1) Setting the population size and number of iterations;
(2) Initializing the population of the adaptive dynamic multimodal differential

evolution algorithm;
(3) Calculating fitness and evaluating individuals of the adaptive dynamic multimodal

differential evolution algorithm;
(4) Updating the individuals of the adaptive dynamic multimodal differential

evolution algorithm;
(5) Determining whether the stop condition of the iteration is satisfied; if so, then turns

to (6), and otherwise turns to (3);
(6) Decoding the optimal individual to obtain the optimization result;
(7) Obtaining the non-dominant solution of the optimization problem;
(8) Making a decision for the non-dominant solution by the Q learning algorithm;
(9) Whether the dominant solution meets the requirements of the problem; if so, then

turns to (10), and otherwise turns to (2);
(10) Obtaining the satisfactory solution of the optimization problem.
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Figure 2. Overview of energy-saving optimization model. 

3. Numeric Experiments 
3.1. Experiment Setup 

The historical operation data of the urban rail transits in Nanning, China is used as 
the basic comparative data. The simulation experiment and analysis of the proposed 
method are carried out based on MATLAB software and running parameters from the 
urban rail transits in Nanning, China. The main parameters of the simulation analysis are 
shown in Table 1. In the experiment, the distance between the two stations is 2200 m, 
upper limit speed is 80 km/h, maximum allowable running time is 180 s, average historical 
energy consumption of the train is 10,499 KJ, and actual average running time of the his-
torical operation is 168 s. 

The energy-saving method based on timetable optimization and energy-saving opti-
mization method based on regenerative braking energy utilization are important research 
directions of train energy-saving optimization at present. To verify the advantages of the 
proposed methods in the overall energy-saving effect, three representative methods of 
these methods are selected for numerical experimental comparison. Taking the chicken 
swarm optimization algorithm as the solution method, this study uses the method pro-
posed in reference [32] to compare the numerical experiments, and call it the method 
based on GA for short. The method is proposed to find the optimal operation curve and 
produce energy savings of the urban rail train based on a multi-objective improved ge-
netic algorithm. Taking the chicken swarm optimization algorithm as the solution 
method, this study uses the method proposed in reference [33] for numerical experiment 
comparison, which is referred to as the method based on CSO for short. The method is 
proposed to obtain an operation curve of a train with minimum energy-consumption and 
improve the utilization of regenerative braking energy without changing equipment and 
infrastructure based on the improved chicken swarm optimization. Taking the particle 
swarm optimization algorithm as the solution method, this study uses the numerical ex-
periment comparison of the method proposed in reference [34], which is referred to as the 
method based on PSO for short. The method is proposed to optimize the operation strat-
egy together with the integrated train timetable and obtain the energy-efficient operation 

Figure 2. Overview of energy-saving optimization model.

3. Numeric Experiments
3.1. Experiment Setup

The historical operation data of the urban rail transits in Nanning, China is used as the
basic comparative data. The simulation experiment and analysis of the proposed method
are carried out based on MATLAB software and running parameters from the urban rail
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transits in Nanning, China. The main parameters of the simulation analysis are shown in
Table 1. In the experiment, the distance between the two stations is 2200 m, upper limit
speed is 80 km/h, maximum allowable running time is 180 s, average historical energy
consumption of the train is 10,499 KJ, and actual average running time of the historical
operation is 168 s.

Table 1. Main parameters of the simulation analysis.

Parameter Sequence Number Parameter Symbol Parameter Value

1 c1 0.0013
2 c2 0.014
3 c3 2.4
4 c4 600
5 n 55
6 α 0.15
7 β 0.1
8 γ 0.65
9 τ 0.1
10 G 228 t
11 P 90 t
12 S 2200 m
13 amax 1.2 m/s2

14 vmax 80 km/h
15 FTmax 330 kN
16 T 168 s
17 CM 0.5
18 CR 0.5

The energy-saving method based on timetable optimization and energy-saving opti-
mization method based on regenerative braking energy utilization are important research
directions of train energy-saving optimization at present. To verify the advantages of the
proposed methods in the overall energy-saving effect, three representative methods of these
methods are selected for numerical experimental comparison. Taking the chicken swarm
optimization algorithm as the solution method, this study uses the method proposed in
reference [32] to compare the numerical experiments, and call it the method based on GA
for short. The method is proposed to find the optimal operation curve and produce energy
savings of the urban rail train based on a multi-objective improved genetic algorithm.
Taking the chicken swarm optimization algorithm as the solution method, this study uses
the method proposed in reference [33] for numerical experiment comparison, which is
referred to as the method based on CSO for short. The method is proposed to obtain an
operation curve of a train with minimum energy-consumption and improve the utilization
of regenerative braking energy without changing equipment and infrastructure based
on the improved chicken swarm optimization. Taking the particle swarm optimization
algorithm as the solution method, this study uses the numerical experiment comparison of
the method proposed in reference [34], which is referred to as the method based on PSO
for short. The method is proposed to optimize the operation strategy together with the
integrated train timetable and obtain the energy-efficient operation base on the particle
swarm optimization. The methods used for the comparison of numerical experiments can
be described in detail in the corresponding reference.

In this study, the corresponding program is compiled according to the principle of
the method used for comparison, and numerical experiments are carried out based on the
urban rail transits in Nanning, China as the basic data of these methods. By taking the
historical manipulation data as the basic comparison data, numeric experiments based on
the different energy-saving optimization methods are carried out to compare and analyze
the running energy consumption, running time and change in tractive force etc.



Sensors 2023, 23, 378 15 of 22

3.2. Experiment Results

The results of the numeric experiments are shown in Figures 3–7, respectively. The
speed curve of each optimization method conducted in the numeric experiments is shown
in Figure 3. The Figure shows that the speed curve of each method is within the maximum
speed limit, and the value is reasonable. The acceleration curve for each optimization
method is shown in Figure 4. Figure 4 shows that the acceleration curve of each method is
within the maximum limit value. Figure 5 shows that the tractive force of each optimization
method is less than the maximum tractive force, which is 330 kN. The energy consumption
of each optimization method is shown in Figure 6. The results in Figure 6 show that the
energy consumption of the proposed method is the smallest. It shows that the traction
energy consumption is significantly reduced under the same running distance after the
operation is optimized by the proposed method. The running time of each optimization
method is shown in Figure 7. From the numerical experimental results shown in Figure 7,
the running time of the method proposed is the largest. However, from the numerical
experimental results, the running time of several optimization methods is not very different,
and it is acceptable in the actual operation.
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3.3. Experimental Evaluation

The results of the experiment show that the proposed method is effective. Although it
takes a little longer to run the whole distance, it saves much more energy than other methods
in the experiment. From the overall energy-saving point of view, compared with the
historical operation data, the proposed method saves energy by about 11.2%, while the other
optimization methods save energy by about 9.1%, 9.7%, and 7.7% respectively. Although
the purpose of these optimization methods is to achieve train energy savings, the specific
principles and methods are different. The solution of the energy-saving optimization
problem of the train is to find a series of parameters that meet the optimization objectives
and constraints in the floating-point space, and it is necessary to take into account both
the local search and global optimization at the same time to obtain the optimal solution.
Because of the differences in principles and solving methods among the methods in the
comparative experiment, the optimization results are different.

The method proposed in this study is to replace the braking motion with the inertial
motion of the train as far as possible to reduce the huge energy loss caused by the conversion
efficiency and harmonics during the recovery and conversion of regenerative braking
energy. The main principle of the method based on the utilization of regenerative braking
energy is to feed the regenerative braking energy into the optimization goal of energy
saving and recycle the regenerative braking energy to make up for the traction energy
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consumption. However, the recycling of regenerative braking energy is an extremely
complex link, and regenerative braking energy needs to go through many links before it
can enter the power grid. Energy storage equipment, energy conversion efficiency and
harmonic components all have an important impact on the recovery and utilization of
regenerative braking energy. In a word, there is still a lot of energy loss in the energy-saving
optimization method based on the recycling of regenerative braking energy. However,
it is a good choice to use regenerative braking instead of traditional braking to improve
the service life of track facilities. The main principle of the energy-saving optimization
method based on timetable optimization is to regard the whole train as a whole and
achieve the effect of energy-saving operation through running-time optimization. However,
the energy-saving optimization method based on timetable optimization does not fully
consider the influence of train running line and speed, so this kind of method can be
regarded as a macro energy-saving optimization method. If the energy-saving optimization
methods such as operating lines and running speed are combined with the energy-saving
optimization method based on timetable, it should be an ideal energy-saving optimization
method. Further research work will be undertaken on this aspect in the future, and the
comprehensive energy-saving optimization method of urban rail trains will be studied for
multi-vehicle collaborative energy-saving optimization.

In fact, the energy-saving optimization of the train is to find the operation parameter se-
ries or time series in the floating-point space to produce the minimum energy-consumption
of the train. The solving process needs to balance local search and global optimization. For
the solution based on the genetic algorithm, the local search ability is insufficient because
the binary coding chromosome is used, and the solution space of the model is a large
floating-point range. Although the chicken swarm optimization algorithm is a new solution
method of the optimization problem, the global approximation ability is relatively strong.
However, the chicken swarm optimization algorithm is difficult to implement because of
too many parameters, and the corresponding solution vector pattern needs to be designed
according to the characteristics of the optimization problem. Its local search ability depends
on the solution vector pattern, which leads to the difficulty of the practical application.
The solution method based on particle swarm optimization needs other auxiliary means
to avoid falling into the local extremum problem. The particle swarm optimization algo-
rithm is a good solution method of the optimization problem with floating-point space in
the solution, and it is easy to implement parallel computing. The differential evolution
algorithm is a relatively novel optimization problem-solving method, which can better
balance local search ability and global search ability. It is an optimization method based on
floating-point coding, which is very suitable for solving the energy-saving optimization
problem of the train. The differential evolution algorithm needs few parameters, is simple
and easy to implement, and can be well-combined with parallel computing systems to
solve complex problems.

There are many studies on the optimization methods of train energy-saving, but the
principles and solving methods are different. The main purpose of this study is to reduce
the energy conversion loss as much as possible to meet the requirements of train operation
regulations, and find an energy-saving optimization method that is easy to realize and
engineer by replacing regenerative braking as far as possible. From the results of numerical
experiments, the proposed method shows the ideal performance in the energy-saving
optimization of the train. It assumes that the operation time of the Nanning Metro Line 1
in China is from 6:30 to 23:00. If the optimization results are extended to the whole line
and the local electricity price is 0.7 RMB, it can save about 5 million RMB in one year after
being optimized by the proposed method.

4. Discussion

The optimization problem of train traction energy-saving in urban rail transit is a
multi-objective energy-saving optimization problem with complex constraints, so it is diffi-
cult to establish the optimization model directly through the train operation mechanism.
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Traction energy-saving optimization based on the regenerative braking energy utilization
and traction energy-saving optimization based on the timetable are the two main research
directions in this field. Due to the influence of the performance of the energy recovery
equipment, the harmonic component of the regenerative braking energy and energy conver-
sion efficiency, the regenerative braking energy has not been fully converted into the actual
effective energy. The harmonic component of regenerative braking energy reduces the
effective utilization rate of regenerative braking energy. The research on the optimization of
the traction energy-saving based on the train timetable is mainly based on the optimization
of the train operation schedule, but there is often a great difference between the model
conditions and actual operation conditions, which results in optimization results that do
not well solve the actual energy-saving optimization problem.

The proposed method in this study is different from most of the previous research
methods. It does not rely solely on the utilization of regenerative braking energy and the
timetable. The purpose of this study is to realize the energy-saving optimization of the
traction curve based on the combination of energy management optimization and train
inertia motion, and to reduce unnecessary regenerative braking energy conversion and
recovery links, so as to improve the actual energy utilization. An optimization model based
on the combination of inertia motion and energy optimization is established by taking the
maximum idle distance as the objective and the maximum allowable running speed, passen-
ger comfort, train timetable, maximum allowable acceleration and kinematics equation as
constraints. An adaptive dynamic multimodal differential evolution algorithm is proposed
and a comprehensive method for solving multi-objective optimization problems based on
the combination of the improved differential evolution algorithm and Q learning algorithm
is applied to solve the energy-saving optimization model. Numerical experimental results
show that the method is effective. The improved differential evolution algorithm proposed
takes into account both the global convergence speed and local optimization accuracy; it
effectively solves the optimization model of traction energy-saving and improves the con-
vergence speed. This method is neither directly based on the regenerative braking energy
feedback to the optimization objective function nor simply using the running schedule as
the optimization objective function, but comprehensively considers the combination of
the train inertia motion and energy optimization. The proposed method provides a new
reference solution for the optimization problem of energy-saving in train operation.

From the numerical experimental results, although the train running time based on
the proposed method is the largest, the whole running time is within the reasonable range
allowed by the train schedule, and the proposed method can reduce the traction energy
consumption as much as possible. Therefore, from the point of view of the train operation
rules and actual energy-saving effect, the proposed method is an effective solution to the
traction energy-saving optimization problem of the urban rail transit train.

5. Conclusions

In this study, an optimization model based on the combination of inertia motion and
energy optimization is established by taking the maximum idle distance as the objective
and, an adaptive dynamic multimodal differential evolution algorithm is proposed to solve
the optimization model. The experimental results show that the proposed method presents
important energy-saving characteristics and produces energy savings of about 11.2% under
the same numerical experimental conditions. If the optimization results are extended to
the whole Nanning Metro Line 1 in China and the local electricity price is 0.7 RMB, it can
save about 6 million RMB in one year after being optimized by the proposed method. The
established multi-objective energy-saving optimization model of the urban rail transit can
fully consider many constraints in the process of train operation, which provides a new
modeling reference for solving the problem of energy-saving optimization of urban rail
transit. The proposed adaptive dynamic multimodal differential evolution algorithm has
the ability to balance global optimization and local optimization, which provides a new
reference solution for complex optimization problems.
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In the construction of the energy-saving optimization model, this study mainly con-
siders how to increase the idle distance to reduce the energy consumption under other
constraints. Although it does realize the energy-saving of the urban rail transit in this re-
search work, there are many factors that affect the energy consumption of urban rail transit
operation. There is still a need for schemes to optimize the factors or combination of factors
to improve the energy-savings of urban rail transit. Exploring the multi-factor combination
optimization method to realize the energy savings of urban rail transit will be the focus
of the research work in the future. Although the adaptive dynamic multimodal differen-
tial evolution algorithm is successfully applied to solve the energy-saving optimization
problem of urban rail transit with high computational complexity, the proposed adaptive
dynamic multimodal differential evolution algorithm still has room for improvement in
the hierarchical strategy. How to implement the adaptive threshold of the evolution degree
of the optimal fitness value is the main research focus of our next study.
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Notations
Symbol Unit Description
wb N/kN Unit basic resistance
c1 An empirical constant
c2 An empirical constant
c3 An empirical constant
v km/h Speed of the train
wc N/kN Unit tunnel-additional resistance
L m Length of a tunnel
wr N/kN Unit curve-additional resistance
Q Constant
R m Radius of a curve
wp N/kN Unit ramp-additional resistance
W kN Motion resistance of train
P t Mass of passengers, 1 t = 1000 kg
G t Empty mass of train, 1 t = 1000 kg
Fi Inertial factor
g N ·m Gravity acceleration
S m Distance between two stations
∆si m The length of the small segment
wb N/kN Average unit basic resistance
Wi kN Average motion resistance
vi km/h Average speed of train in ∆si
Ek kJ Kinetic energy of the train
M t Total mass of the train, 1 t = 1000 kg
p Coefficient of rotary mass
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vis km/h Starting speed of train in ∆si
vie km/h Terminal speed of train in ∆si
ai m/s2 Acceleration of train in ∆si
∆ti s Running time of train in ∆si
Ci kN External resultant force on the train in sub-segment i
FTi kN Tractive force of the train in sub-segment i
FTmax kN Maximum allowable tractive force of the train
amax m/s2 Maximum acceleration allowed
vmax km/h Maximum speed allowed
α, β, γ and λ Weight coefficients of the optimization objective
Φ The whole optimization objective function
Fbest(k) The most adaptive value of the k generation
θ The degree of change of the optimal fitness value
CM The enhancement probability
SC The enhancement factor
CR The probability of replacement
xij The j dimension of the i individual
fb Value of the basic fitness

Zi
The penalty factor of violating the maximum
acceleration limit

Vi The penalty factor of violating the maximum speed limit

Ai
The penalty factor of violating the passenger
comfort constraint

Ti The penalty factor of violating the tractive force limit

ϑ
The control factor of passenger comfort, generally with a
value less than 1.2

ε, v, ξ, δ and ρ Constant
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