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Abstract: Access to healthcare, including physiotherapy, is increasingly occurring through virtual
formats. At-home adherence to physical therapy programs is often poor and few tools exist to
objectively measure participation. The aim of this study was to develop and evaluate the potential
for performing automatic, unsupervised video-based monitoring of at-home low-back and shoulder
physiotherapy exercises using a mobile phone camera. Joint locations were extracted from the videos
of healthy subjects performing low-back and shoulder physiotherapy exercises using an open source
pose detection framework. A convolutional neural network was trained to classify physiotherapy
exercises based on the segments of keypoint time series data. The model’s performance as a function
of input keypoint combinations was studied in addition to its robustness to variation in the camera
angle. The CNN model achieved optimal performance using a total of 12 pose estimation landmarks
from the upper and lower body (low-back exercise classification: 0.995 ± 0.009; shoulder exercise
classification: 0.963 ± 0.020). Training the CNN on a variety of angles was found to be effective in
making the model robust to variations in video filming angle. This study demonstrates the feasibility
of using a smartphone camera and a supervised machine learning model to effectively classify
at-home physiotherapy participation and could provide a low-cost, scalable method for tracking
adherence to physical therapy exercise programs in a variety of settings.

Keywords: human activity recognition; pose detection; machine learning

1. Introduction

Shoulder pain caused by symptomatic degenerative rotator cuff tears and low back
pain (LBP) are highly prevalent conditions associated with decreased mobility and quality
of life [1–6]. Conservative management with physical therapy has been established as an
effective treatment leading to improved patient-reported outcomes for both of these condi-
tions [7–10]. Essential to this effective management are high rates of patient participation in
a physical therapy program [11,12]. Unfortunately, at-home participation in physiotherapy
is often poor and decreases over time [11–13]. Current tools to measure adherence often rely
on patient-reported diaries which are subject to low rates of completion and can suffer from
a range of other biases [14,15]. Establishing objective measures of adherence is therefore a
clinically useful component of physiotherapy and remains a challenging problem [15,16].

In recent years, wearable inertial measurement units (IMUs), such as those contained
in widely available smartwatches and smartphones, have been used for a variety of human
activity recognition tasks [17–19]. In the context of physical therapy, ref. [20] developed a
smartwatch-based sensor system which was able to detect shoulder physiotherapy exercises
using hand-crafted IMU time series features or a three-layer convolutional neural network
(CNN) [12,21]. This sensor system was subsequently expanded by [22] to eight IMUs worn
around the body, and it was shown that a system of three IMUs worn on the low back,
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thigh, and ankle could be used to classify low-back exercises. Although these systems
have been shown to be effective in measuring physiotherapy performance, they require
hardware configurations that are highly-specific to the exercise type (watch vs. pants) and
required substantial development to expand the approach from the shoulder exercises to
those performed for other anatomical sites (i.e., the lower back) [20,22].

Video data offer the potential ability to measure the movement of the entire body.
Existing platforms often rely on specialized hardware (e.g., Microsoft Kinect [23]) or costly
motion capture systems [24]. In particular, support vector machines (SVM) have been
trained on keypoints obtained from Microsoft Kinect systems for emotion and gesture
recognition [25]. Pre-trained image classification models have also been used to extract
features from video frames, with an SVM used to classify postural control metrics [26].
Ref. [27] used a custom configuration of off-the shelf IMUs coupled with a depth camera and
hand-crafted algorithms to compute gait and posture metrics. However, these methods lack
the ability to run directly on a smartphone without any additional customized hardware.
Recently, the emergence of open source pose detection frameworks such as OpenPose [28],
MoveNet [29], and BlazePose [30] has made direct biomechanical analysis possible with
single-camera videos. Machine learning models have been trained with 2D pose keypoints
for predicting gait metrics such as walking speed and cadence [31,32] and fall detection [33].
The increased availability of open source pose detection models capable of running in
real-time on most smart phones (or other consumer electronics containing cameras such
as smart-home devices) offer the potential to provide a scalable platform for the detection
of a wide variety of physical therapy exercises with a single camera. However, to our
knowledge, pose detection and time series models have not been used to directly classify
physiotherapy activity.

The purpose of this study was to evaluate the suitability of using a single camera
to detect and classify physiotherapy exercises in a variety of anatomic locations. To test
this, we developed and optimized a proof-of-concept system for classifying the videos
of exercises from both a shoulder and an LBP physical therapy program with machine
learning. In addition, we performed an analysis of the model’s robustness to variation in
the camera angle and assessed the minimum number of subjects required to train such a
model. It is hypothesized that videos of shoulder and low back physiotherapy exercises
could be classified based on the temporal changes in the keypoint locations estimated by
a pose detection model. Furthermore, we hypothesize that model architectures used to
classify the temporal signals of the inertial data of physiotherapy exercises could be used
to classify keypoint time series derived from video data. Although we apply these models
to physiotherapy exercise classification, they could provide a platform for scalable activity
recognition in a wide range of applications such as physical rehabilitation, remote care, gait
analysis, and sports and fitness.

2. Materials and Methods
2.1. Dataset

Exercises from two evidence-based rehabilitation protocols were used in this study.
Seven exercises used to treat full-thickness atraumatic rotator cuff tears [7] were chosen
for the shoulder activity task. Seven exercises used by [22] from the McKenzie low-back
physiotherapy framework [34] were selected for the low-back exercise task. Both sets of
exercises were chosen to incorporate movement in a variety of planes which are typical of
exercises prescribed for rotator cuff tears and LBP, respectively. The full list of exercises
performed for each task can be found in Appendix A. Exercises are referred to as “symmet-
rical” if the movement was bilateral, with both sides of the body moving in unison (e.g.,
push-ups). “Asymmetrical” exercises refer to unilateral movements which are performed
to one side (e.g., internal rotation with the left arm).

Twenty-one healthy adult subjects with no prior history of low-back pain or shoulder
rotator cuff pathology were recruited for this study. Subjects provided informed consent to
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participate in a study approved by the Sunnybrook Health Sciences Centre Research Ethics
Board (REB # 3505).

Participants performed 10 repetitions of each exercise from both the shoulder and
low-back tasks while being filmed with two smartphone cameras. Asymmetrical exercises
were performed for five repetitions on each side. Because each exercise is performed with
a slightly different body position and orientation, the camera positioning relative to the
participant was specific to each exercise. The two cameras were positioned at an angle of
45◦–90◦ apart relative to the participant, with as much of the participant’s body in view
as possible. One camera angle per activity class was used for model optimization and
experimentation. The recordings from the second camera angle for each exercise were held
out in order to assess the model’s robustness to camera angle. Participants were filmed
in a variety of settings which incorporated various types of lighting, backgrounds and
occlusion. The exercise type, participant number, camera angle, and body side (e.g., left,
right, or symmetrical) were labelled by researchers for all videos.

The data processing and modeling methodology is summarized in Figure 1. Thirty-
three-keypoint skeletons were extracted for all frames of all single-camera videos using
BlazePose [30]. BlazePose was implemented using the MediaPipe Python package [35]
and was found to run with an average frame rate of 32 frames per second on an Intel i5
CPU. Each keypoint was represented by a four-axis vector containing the x, y, z, image
coordinates of the keypoint in addition to the “visibility” v of the keypoint. The resulting
datasets for low back DLB = {(Xi, yi)|Ni=0} and shoulder DSH = {(Xi, yi)|Mi=0} containing
time series (derived from N and M videos, respectively) and ground truth exercise labels
yi were used for classification model training. Each time series Xi was represented by a
matrix of keypoints ki containing the four-axis keypoint coordinates for n frames:

Xi = {K1, K2, . . . , K33} (1)

Ki = {x, y, z, v}. (2)

The matrices Xi were subsequently flattened to shape (132, n) for model training so
that for the jth frame in the ith video, we have:

Xi,j = (k1x, k1y, k1z, . . . , k33v). (3)

Figure 1. The design of the proposed platform. Subjects are filmed with a single camera using
a smartphone while performing physiotherapy exercises. Joint keypoints are estimated for each
video frame using BlazePose, resulting in a timeseries of keypoint coordinates for each video. A
coordinate transform is applied to the keypoint timeseries in addition to sliding window segmentation.
The keypoint time series segments are then used to train and evaluate a convolutional neural
network (CNN). As a baseline comparison, engineered features are computed for each time series
segment and used to train a support vector machine (SVM). Both models are trained to predict
the physiotherapy exercise being performed in the given segment (seven-class classification). This
process was performed for shoulder activities (Table A1) and again for low-back activities (Table A2).
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2.2. Preprocessing

All sequences were resampled to a sampling rate of 25 Hz using cubic interpolation.
Resampled values are computed by fitting a third-order spline to the data and interpolating
new values at the specified sampling rate. Each resampled skeleton time series was
segmented using a sliding window segmentation with a window width of 400 samples
(16 s). This sampling rate and window width were chosen via a grid search, with a limit of
20 s (roughly two repetitions) placed on the possible window width. A window stride of
50 samples (2 s) was used as a data augmentation strategy. Using a smaller stride value
effectively creates increasingly overlapping windows, thus increasing the size of the dataset.
All interpolation and segmentation steps were performed using Seglearn, an open source
Python package [36].

2.3. Exercise Classification Models

Two time series classification models were used in this study. First, a support vector
machine (SVM) classifier, trained on hand-crafted time series features, was used as a
baseline model. Eleven engineered features were computed for each segmented keypoint
time series using the Seglearn Python package [36]. The resulting features were normalized
to zero mean and unit variance and used to train a SVM model with a linear kernel
and a regularization parameter of 0.025. Feature normalization and model training was
performed using the Scikit-Learn Python package [37]. The SVM was chosen as the baseline
model due to its relative simplicity and interpretability as a classifier.

A convolutional neural network (CNN) was also trained directly on keypoint time
series segments. The CNN architecture proposed by [38] was adopted for this study. This
model architecture was chosen because it is considered a strong baseline for time series
classification [39] and has been found to be effective in activity classification tasks with
IMU data [22,38]. This relatively simple CNN architecture has been shown to outperform
models with more modern architectural features such as skip connections or LSTM layers
in time series classification tasks [39]. The implementation of this CNN in this study
consisted of three 1D convolutional layers, each with 128, 256 and 128 feature maps,
respectively. Each convolutional layer was followed by batch normalization and a rectified
linear unit (ReLU). Global average pooling was used after the last convolutional layer. This
improves the model’s robustness to temporal translations and has been shown to lead to
optimal performance in inertial classification tasks [39]. After global average pooling, L2

normalization was performed, followed by a fully connected layer with softmax activation.
The CNN was trained using the Adam optimizer with categorical cross entropy loss for
50 epochs and a learning rate of 0.005. Softmax activation and the Adam optimizer are
both widely used for optimizing CNNs for classification [40,41] and were chosen for their
success in previous classification tasks with IMU time series [20,22,38]. All CNN models
tested in this study had identical architectures with the exception of different numbers of
input channels due to the keypoint combinations as described in Section 2.6.1.

2.4. Baseline Model Optimization

A grid search was employed to optimize the keypoint combinations, input channels,
coordinate transforms and window width, in addition to model-specific hyperparameters
for both the SVM and CNN models in each classification task. The search included the
{x, y}, {x, y, z} and {x, y, z, v} input channel combinations along with the keypoint combi-
nations and coordinate transforms described in Sections 2.6.1 and 2.6.2. Window widths of
50, 100, 200, 400, and 500 samples were tested. The learning rate of the CNN was tuned,
with values of 0.01, 0.005, 0.001, and 0.0001 were tested. The optimized model settings for
each classification task are shown in Table 1. The CNN model for each classification task
was used for subsequent experiments. All optimized models used a window width of 16 s
and a sampling rate of 25 Hz.
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Table 1. The optimized models used for subsequent experiments. For each model (CNN and SVM)
and each classification task (low back and shoulder), a grid search was performed to select the optimal
input channels, keypoint set, and coordinate transforms. All models used a window width of 16 s
and a sampling rate of 25 Hz. Model accuracies in a 5-fold cross validation experiment, split by
subject, using videos from only one camera angle per exercise are shown below.

Model Classification Task Channels Keypoints Transforms Accuracy

SVM Low back {x, y} Major joints Translation 0.992 ± 0.011

SVM Shoulder {x, y, z, v} BlazePose
without face None 0.972 ± 0.016

CNN Low back {x, y, z, v} COCO Translation 0.995 ± 0.009

CNN Shoulder {x, y, z, v} Major joints Translation
and rotation 0.963 ± 0.020

2.5. Performance Evaluation

All experiments were trained and evaluated using a 5-fold cross validation approach,
splitting folds by participant. This ensured that recordings from the same patient did not
appear in both the training and test sets. The same splitting strategy was used for each
experiment, ensuring that the records contained in each fold were consistent throughout
our study. The mean class-balanced accuracy and 95% confidence interval across folds are
reported for each experiment.

2.6. Experiments
2.6.1. Keypoint Combinations

The BlazePose pose detection model returns a skeleton of 33 body keypoints for
each frame. However, not all of these keypoints may be required for effective activity
classification. The performance of the model in classifying activity when trained on a variety
of BlazePose keypoint combinations was therefore assessed. Five keypoint combinations
were selected based on their relevance to the biomechanics of the physiotherapy activities
and in consideration of standard keypoint sets used in other pose detection frameworks.
Each set described here is a subset of the pose keypoints returned by BlazePose:

• All Keypoints: The full set of 33 BlazePose keypoints.
• All Without Face: Twenty-two keypoints containing the BlazePose set without key-

points on the face.
• COCO Keypoints: Set of 17 keypoints used in the COCO [42] dataset. These are a

subset of the BlazePose set which contain fewer keypoints on the face and hands.
• Major joints: Twelve keypoints made up of the shoulders, elbows, wrists, hips, knees

and ankles.
• Upper Body Joints: Eight keypoints made up of the shoulders, elbows, wrists, and hips.

The effect of each keypoint set on model performance was evaluated for the CNN
using 5-fold cross validation, splitting folds by participant. Only keypoint time series from
videos filmed from one camera angle per exercise were used in this experiment.

2.6.2. Coordinate Transforms

Two coordinate transforms were developed in order to account for the participant’s
position and orientation in the image field of view. A translation was applied to the
skeletons by computing the point midway between the hips (BlazePose keypoints 24 and
25) and setting this as the origin Ko, resulting in the translated set of keypoints Xt

i for the
ith record

Ko =
K24 + K25

2
(4)

Xt
i = Xi −Ko. (5)
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A rotation transformation was also developed order to account for the orientation of
the participant’s body relative to the camera. In each frame, a new set of orthonormal basis
vectors {x̂, ŷ, ẑ} were computed such that x̂ and ŷ are in the plane formed by the shoulders
and Ko. These basis vectors are then stacked to create the rotation matrix R which is applied
to all keypoints in the frame, resulting in the translated and rotated keypoints Xt

i,j for the
jth frame in the ith record :

R = {x̂, ŷ, ẑ} (6)

Xr
i,j = RXt

i,j. (7)

In order to assess the impact of transforms on model performance, three CNN models
were trained and validated using 5-fold cross validation, with each model using one of the
following transforms during preprocessing:

• None: No transform was applied. The raw keypoints in image pixel coordinates from
BlazePose were passed to the CNN.

• Translation: The translation transformation was applied to all keypoint timeseries.
• Translation and rotation: The translation followed by a rotation was applied to all

keypoint timeseries.

Only records from one camera angle per exercise were used in this experiment. The “vis-
ibility” of each keypoint was left unchanged during translation and rotation transformations.

2.6.3. Camera Angles

Robustness to different camera angles is essential for the effective deployment of
a video-based classification system. As such, the CNN’s classification performance on
recordings filmed from previously unseen camera angles in our dataset was evaluated.
Additionally, the effects of coordinate transforms (Section 2.6.2) on model performance for
those angles was investigated. This experiment was performed in two stages: First the
three CNN models were trained on records from only one camera angle per exercise, with
each model using one of the transforms from Section 2.6.2 (none, translation, translation
followed by rotation). The three models were then tested on records from the first and the
second camera angle for each exercise. In the second stage of this experiment, the three
CNN models were trained on both the first and second angle for each exercise, and tested
on both the first and second angle. Both stages of the experiment employed the same 5-fold
cross validation, splitting folds by subject to avoid data leakage. Results are reported as the
mean ± 95% CI across the five folds.

2.6.4. Training Saturation

The validation performance of the CNN with respect to the amount of data used to
train the model was also assessed. The same subject-split 5-fold cross validation used in
experiments Sections 2.6.1–2.6.3 was created. A random subset of subjects in the training
set of each fold was used to train the CNN and the validation set was used to test the model.
This was repeated for a variety of training set sizes, each time testing on the same held-out
validation set. This was performed using only records filmed from one camera angle for
each exercise for both the low-back and shoulder classification tasks. Results are reported
as the mean accuracy across the five folds, ± the 95% confidence interval.

3. Results
3.1. Baseline Models

The SVM and CNN models were optimized for each classification task. Models and
input settings were optimized with a grid search across model hyperparameters, keypoint
combinations, channels (x, y, z, v), and coordinate transforms using only one camera angle
for each exercise. The optimized keypoint parameters and the resulting performance in
5-fold cross validation are reported in Table 1. Although the highest classification accuracy
was achieved by the CNN model for low back exercise classification (0.995 ± 0.009) and
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the SVM provided the best performance for shoulder exercise classification (0.972 ± 0.016),
neither model significantly outperformed the other within each classification task. The
runtime of the preprocessing and classification pipeline was 0.28 ± 0.07 s (mean ± SD) for
each record on an Nvidia Titan RTX 24GB GPU, with the mean record length of 66 ± 20 s
(mean ± SD). The optimized CNN models for both classification tasks were used for
subsequent experiments.

3.2. Keypoint Combinations

The effect of keypoint selection on CNN exercise classification performance for the
both the low back and shoulder tasks is plotted in Figure 2. The model performance
degraded significantly for the “upper body joints” keypoint set in both classification tasks.
All other keypoint combinations that were tested resulted in at least 98% accuracy for low
back and at least 94% accuracy for shoulder exercise classification.

Figure 2. The effect of pose keypoint combinations on CNN classification performance for the low
back (left) and shoulder (right) exercise classification tasks. The mean ± 95% CI class-balanced
accuracy across 5-fold cross validation is shown. All models were trained and validated using only
one camera angle for each exercise.

3.3. Coordinate Transforms

The impact of applying a translation and/or rotation to BlazePose keypoints prior to
CNN training is assessed in Figure 3. Model performance on low-back classification was not
significantly affected by either transform, although a translation and rotation resulted in an
increased inter-fold variability. Each additional transform did offer a slight improvement in
performance in the shoulder exercise classification task, although both models which used
transforms were within the 95% confidence interval of the model trained on raw keypoints.

3.4. Camera Angles

The performance of the CNN in classifying exercises recorded for a previously unseen
camera angle is shown in Figure 4. The model performance is significantly degraded when
classifying records from the second angle (up to 50% decrease in accuracy). Coordinate
transforms did not have a significant effect on performance in the low back exercise
classification task and resulted in degraded performance in the second angle for shoulder
exercise classification. The performance of the CNN when trained with records collected
from both angles is shown in Figure 5. When trained on records filmed from both the
first and second angle, the CNN’s performance was not significantly different for the two
angles, although the inter-fold variation in accuracy was much higher than the baseline
models in Table 1. However, when training on both angles, the CNN performance on the
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two angles was lower than the baseline models by 2–5%. Additionally, the coordinate
transforms provided a 7–10% increase in accuracy for low-back exercise classification when
training and testing on both angles.

Figure 3. Effect of coordinate transforms on classification model performance for low back (left) and
shoulder (right) exercises, using only videos from one camera angle for each exercise. Plots show the
mean ± 95% CI class-balanced accuracy in a 5-fold cross validation experiment, creating folds by
participant. The transform (either no transform, translation, or translation and rotation) was applied
to both training and validation records in each fold.

Figure 4. CNN robustness to new camera angles. The CNN was trained on records filmed from
one camera angle (“1st angle”, in blue) and tested on a held-out set of records filmed from the
second camera angle for each exercise (“2nd angle”, in orange). This was performed using a 5-fold
cross-validation approach, splitting the folds by subject to prevent data leakage. This experiment was
repeated for low-back exercise classification (left) and shoulder exercise classification (right), and
evaluated the impact of coordinate transforms (no transform, translation, or translation and rotation).
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Figure 5. CNN robustness to camera angles in the training set. The CNN was trained on records from
both camera angles for each exercise and tested on both camera angles in a 5-fold cross validation
approach, splitting folds by subject. This was repeated for both low back (left) and shoulder (right)
classification tasks, using each coordinate transform.

3.5. Training Saturation

The performance of the CNN with respect to the training set size is shown in Figure 6.
The CNN’s performance on low back exercise classification degraded significantly when
trained on fewer than seven subjects. When training on seven or more subjects, the CNN
achieves near optimal classification accuracy. The model does not reach this same plateau
in performance for shoulder classification. An increase in shoulder activity classification
performance is shown as the number of training subjects increases, with this increase
slowing above eleven subjects.

Figure 6. CNN performance as a function of training set size. The CNN was trained on a random
subset of subjects from the training set of a 5-fold cross validation split and tested on a constant held-
out validation set. The mean accuracy ± 95% CI is shown for various training set sizes (displayed as
the number of subjects). This is shown for both the low back (blue) and shoulder (orange) classification
tasks. Only records from one camera angle for each exercise were used in this experiment.
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4. Discussion

This work describes the development and evaluation of machine learning models
(SVM and CNN) for classifying videos of low-back and shoulder physiotherapy activities
based on time series data derived from pose detection keypoints over the course of the
video. The CNN achieved a performance on par with the SVM baseline when trained and
evaluated on time series derived from the videos of a single camera angle for each exercise.
All models achieved a classification accuracy above 95% in both low-back and shoulder
exercise classification tasks. Models performed better on the low back task, perhaps due
to the wider variety of full-body movements involved in those exercises. The low-back
protocol included two exercises which were performed while standing, and several of
which were performed while lying on the ground in various configurations.

Further investigation into the use of different possible keypoint combinations as inputs
to the model showed that any keypoint combination which includes at least the major joints
(shoulders, elbows, wrists, hips, knees and ankles) resulted in optimal performance. As a
result, a wide variety of pose detection models which offer various keypoint topologies such
as BlazePose (33 keypoints), MoveNet (17 keypoints), or OpenPose (15, 18, or 25 keypoints)
could offer viable inputs to a CNN. This improves the flexibility of our model and increases
the number of options available for cross-platform deployment in a home setting.

When deploying a video-based classification system into a home setting, it is cru-
cial that the system is invariant to variation in the camera setup. In particular, the lo-
cation of a subject in the camera frame and the orientation of the subject relative to the
camera must be accounted for. In order to do this, we leverage the relatively recent
emergence of 3-dimensional, single-camera pose detection models. BlazePose produces
a three-dimensional representation of joint locations for each video frame. The x and y
values of these 3D joint locations are represented as pixel coordinates within the frame and
the z values reflect an estimate of the “depth” of the joint in or out of the frame. These
keypoint locations are therefore highly dependent on the position of the participant in the
camera frame, as well as the orientation of the participant (e.g., facing the camera, back to
the camera, side-on to the camera, etc.). In order to study the effects of these parameters,
camera angles relative to each participant were labelled and the dataset was separated into
two subsets: one set of records which used the first camera angle for each exercise, and one
set which used the second camera angle for each exercise. We then used these two datasets
to study the robustness of our models to different camera angles.

We also developed two coordinate transforms which attempted to account for the
location and orientation of the participant in the camera frame. Neither the translation
nor rotation resulted in significant improvement in CNN performance when training and
testing on the first angle from each exercise (Figure 3). We also evaluated the CNN’s
robustness to new camera angles by testing the model on held-out records from the second
camera angle (Figure 4). The model performed significantly worse on records from the
held-out angles when no transformation was applied to input keypoints. This was expected,
since in the absence of a coordinate transform, videos taken from different angles would
create different keypoint time series. However, applying a translation and/or rotation to
the training and held-out records did not significantly improve performance. For shoulder
exercise classification, the transforms resulted in a slight decrease in CNN performance
on held-out records. The ineffectiveness of these transforms to account for camera angles
may be due to the high variance of the z axis in 3D pose-detection models. The visual
inspection of the keypoint time series revealed that the z channel contains significantly more
high-frequency noise than the x and y channels. An example of this is shown in Figure A1.
It is likely that the rotation described in Equation (7) propagates this noise across all three
dimensions of the rotated signal. In order to test whether we could train the model itself to
be robust to multiple angles, we retrained the CNN on records collected from both angles,
shown in Figure 5. The resulting model had virtually equal classification performance on
records filmed from either angle. However, the translation and rotation transforms did
offer improved performance in low-back classification for both angles compared to using
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no coordinate transform. Additionally, the performance of the CNNs when trained on
records from multiple angles was lower than the models trained and tested on a single
angle by only 2–5%. Our results suggest that training the CNN on multiple angles coupled
with a translation transformation is an effective way of making a model robust to variations
in the camera angle which occur in a home environment.

Results across all our experiments showed that the model classification of low-back
physiotherapy exercises was consistently better than shoulder exercise classification. This
could be explained by the different characteristics of the exercises in the two datasets. In
particular, the shoulder dataset contained more asymmetrical exercises. This would result
in roughly half the amount of training data for these exercises, since only five repetitions
were performed for each side, compared to ten for symmetrical exercises. Furthermore,
only records from one camera angle-side combination were used for each exercise. This
theory is supported by the training saturation results in Figure 6 which show that, unlike
in low-back classification, the CNN does not reach a plateau in performance for shoulder
exercise classification as more training subjects are used. This suggests that it is likely
that adding more training data could improve the performance of the model on shoulder
exercise classification.

Although the effect of the camera angle on model performance was explored in
quantitative experiments, this study was limited by the availability of only two camera
angles for each exercise. Prior to deployment into a clinic or a home setting, models would
have to be retrained on a wide range of possible camera angles. Unfortunately, the lack
of publicly available datasets of videos of physiotherapy exercises with labelled camera
angles makes this difficult. Additionally, this study only included healthy participants.
An investigation of the CNN’s ability to generalize to patients with low back or shoulder
pathology performing these exercises is crucial to the successful deployment of this system.
A further limitation of our study was the use of only the SVM and CNN models. Testing
a wider selection of engineered feature models (k-nearest neighbours, random forest,
XGBoost, etc.) may have yielded a higher performance. Alfakir et al. [22] compared the
performance of nine engineered feature models in classifying IMU time series of low-
back physiotherapy and found that XGBoost and random forest models performed best.
However, rather than performing an exhaustive search of model candidates, the purpose of
our study was to test the ability of a CNN architecture optimised for IMU classification to
generalize to video keypoint time series classification. To provide a baseline for comparison,
we chose one engineered feature model (the SVM) due to its simplicity and interpretability.

Recently, several studies have used video-based pose detection models to estimate
a range of biomechanical metrics. In particular, single-camera pose keypoints have been
used to directly compute various temporal gait parameters [43]. In an approach similar to
ours, several studies have trained time series machine learning models on single-camera
pose keypoint data to predict gait parameters such as walking speed [31,32]. Other studies
have used the transfer learning of pre-trained image classification models to classify videos
of upper-limb tension tests on a single-frame basis [44]. Ref. [45] used dynamic time
warping to compare the pose keypoint time series of a patient and a coach and derive
an exercise performance score of lower limb exercises. However, to our knowledge this
is the first study to directly classify the entire recordings of physical therapy exercises.
Classification provides a direct, actionable outcome which can be used to track adherence,
whereas predicting biomechanical movement metrics requires another layer of modeling
or interpretation in order to derive actionable outcomes. To our knowledge, this is also
the first study to directly study the dependence of the camera angle on the performance of
classification models. Ref. [46] avoided the issue of camera angle dependence by combining
the 2D pose estimates from two cameras into a single 3D keypoint representation. However,
this would face significant deployment barriers in a home setting (requiring two cameras
recording simultaneously and perhaps consistent positioning). Using two or more cameras
would require the user to position both at specific angles and ensure they are in the frame
of view of both cameras at all times. Our proposed solution of training models on records
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collected from multiple camera angles is designed to allow a home-based application to
operate effectively and robustly on data acquired from a single smartphone camera.

The CNN architecture chosen in this study was originally optimised to classify the
IMU time series of physiotherapy activities [38]. When trained on the signals of pose key-
points, this model proved to be an effective classifier of videos of physiotherapy activities.
Minimal effort was required to extend the model from shoulder activity classification to
low-back activity classification. In contrast, when expanding an IMU-based model to a
new anatomic location or activity type, significant optimization of the hardware setup
and sensor locations is required [22]. This suggests that a future video-based application
for at-home physiotherapy participation measurement could be scaled to a wide range of
activities with limited development effort required.

Future directions for this work should include testing these models on patients un-
dergoing low-back or shoulder physiotherapy in a home setting. Prior to this, it would be
crucial to retrain the CNN on keypoints collected from a wider variety of camera angles in
order to ensure that the system is robust to variation in the camera angle. Additionally, it
is anticipated that factors such as poor lighting and occlusion are more likely to occur in
an uncontrolled home setting and could hinder keypoint extraction. Thus, the robustness
of both the keypoint detection and the CNN classifier should be studied with respect to
environmental factors. Finally, further deployment of this system into a remote care setting
would require the development of a smartphone application to extract the pose keypoints
and run the classification CNN.

5. Conclusions

Classification models trained on the time series of keypoints from pre-trained pose
detection models can effectively classify the videos of physiotherapy exercises. Furthermore,
this technology can be easily extended to multiple anatomical sites and exercise types. These
models can learn to account for videos filmed from multiple camera angles with very little
loss in classification accuracy. Finally, datasets for model training can be created with
as few as seven to eleven participants. However, this study was performed on healthy
participants. This technology should be tested on patients undergoing shoulder or low-
back physiotherapy in a home setting prior to widespread deployment. The ability to use
single-camera videos to measure physiotherapy activity lowers the bar to entry for many
users and removes the requirement for specialized hardware. This proof-of-concept work is
an important step towards developing a scalable application for measuring physiotherapy
adherence in a home setting.
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Appendix A. List of Low-Back and Shoulder Physiotherapy Exercises

Table A1. Shoulder physiotherapy exercises used in the study.

Exercise Name Symmetrical

Abduction stretching Yes
Flexion No
Wall push-ups Yes
External rotation No
Internal rotation No
Row Yes
Pull downs Yes

Table A2. Low-back physiotherapy exercises used in the study.

Exercise Name Symmetrical

Sustained prone position Yes
Dynamic extension in standing Yes
Dynamic extension in lying Yes
Dynamic flexion in lying Yes
Flexion rotation with one leg No
Flexion rotation with both legs No
Dynamic side glide in standing No
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Appendix B. Sample Pose Detection Time Series

Figure A1. Sample keypoint time series from one video of a subject performing flexion in lying. The
top plot shows the x, y and z coordinates of the left knee over the course of the video, estimated by
BlazePose. The right knee is shown in the bottom plot.
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