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Abstract: Driver monitoring systems play an important role in lower to mid-level autonomous vehi-
cles. Our work focuses on the detection of cognitive load as a component of driver-state estimation
to improve traffic safety. By inducing single and dual-task workloads of increasing intensity on
51 subjects, while continuously measuring signals from multiple modalities, based on physiological
measurements such as ECG, EDA, EMG, PPG, respiration rate, skin temperature and eye tracker data,
as well as behavioral measurements such as action units extracted from facial videos, performance met-
rics like reaction time and subjective feedback using questionnaires, we create ADABase (Autonomous
Driving Cognitive Load Assessment Database) As a reference method to induce cognitive load
onto subjects, we use the well-established n-back test, in addition to our novel simulator-based
k-drive test, motivated by real-world semi-autonomously vehicles. We extract expert features of all
measurements and find significant changes in multiple modalities. Ultimately we train and evaluate
machine learning algorithms using single and multimodal inputs to distinguish cognitive load levels.
We carefully evaluate model behavior and study feature importance. In summary, we introduce a
novel cognitive load test, create a cognitive load database, validate changes using statistical tests,
introduce novel classification and regression tasks for machine learning and train and evaluate
machine learning models.

Keywords: cognitive load; affective computing; autonomous driving; machine learning; multimodal
dataset

1. Introduction

The rapid development of novel sensor technology, powerful computing capabilities
and methods using artificial intelligence has moved the prospect of autonomously driving
vehicles into a potential candidate to transform the way people experience mobility. This
development is a promising direction for traffic safety. Surveys [1–3] reporting the causes
of traffic crashes in manual driving, have identified cognitive and emotional load among
others as a major factor. However, until fully autonomous driving is available, the operator
still needs to observe and, in critical situations, take control of the vehicle. To measure
the required degree of manual interaction with the vehicle, the Society of Automotive
Engineers (SAE) defines 6 levels of automation ranging from 0 (fully manual) to 5 (fully
autonomous) [4]. While even lower level autonomous driving can reduce the complexity of
traffic situations and therefore lead to task execution at levels with lower cognitive load [5],
recent studies suggest, that inattention or distraction through additional tasks performed
by the driver can lead to accidents for vehicles of level 1 (assisted driving), level 2 (partial
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driving automation) and level 3 (conditional driving automation) [6,7]. When performing
a secondary task, for example, talking to a car passenger while driving, inattention to the
primary task, in this example, driving a car, can manifest itself on different levels: visual
(not monitoring the road or the vehicle), manual (hands not on the steering wheel) or
cognitive components [6], while visual and manual inattentions are important components
for driver monitoring, we study the detection of phases with high cognitive states.

These states are of special interest, since engaging in dual- or multitask settings,
a driver’s attention is a finite resource and cognitive limitations are soon met [8]. The
research community describes a subject’s, cognitive state, with different terms like cognitive
workload, mental workload, cognitive load or task load. We use Working Memory (WM),
which is based on Baddeley’s model [9], as storage of conscious information that is limited
by the amount of information one can hold and process. Following this definition, we
use Cognitive Load (CL) as a measurement to define the amount a subject puts on the
WM during a task [10]. The definition of CL by [11] as a “... multidimensional construct
representing the load that performing a particular task imposes ...” indicates that the
prediction of when a person can attend to information (or process additional workload)
is challenging.

One can study the concept of CL empirically, through meaningful measurements from
four categories [12,13]. Subjective measurements can capture Perceived Mental Workload
(PMWL) as shown in early studies, that used a mental-effort rating scale with 9-grades as
symmetrical categories from very, very low mental effort (1) to very, very high mental effort
(9) [14], while recent studies often use a multidimensional measure to evaluate perceived
CL such as NASA-Task Load Index (TLX) [15–17]. Even though researchers have put a lot of
work into developing these Likert-scale-styled subjective rating systems for different tasks,
major issues remain: (a) subjective ratings rely on the participants’ ability to introspect
their current cognitive load [18], (b) the current task needs to be interrupted to answer the
questionnaire and (c) subjective feedback can not be measured in real-time and continuously.
Performance measurements are strongly related to the task imposed on the subject. Several
metrics have been used in the past, such as the number of mistakes made during a complex
learning task [19] or more general accuracy metrics such as hit-rate or reaction time, when
solving standardized tasks such as n-back [20]. Others have used a dual-task load paradigm
and evaluated the performance on the secondary task as an indicator of the cognitive load
induced by the primary task [20]. In the area of driver monitoring, Engström et al. [6]
reviewed the literature and identified inconsistent and counterintuitive findings, with an
increasing, as well as a decreasing number of accidents, as a performance metric under
increased cognitive load imposed by secondary tasks such as speaking while driving or
listing to the radio. The measurement of CL using performance metrics is therefore limited
by being strongly selective and task-dependent. A major advantage of performance metrics,
such as response time of braking on brake light onset of leading cars, is, that these can be
continuously measured during real-world driving situations [6]. Behavioral Measurements
such as linguistic [21], speech [22–24], device inputs like pen [25,26] or computer-mouse
movements [27] are commonly used in various applications, while metrics computed
from behaviors such as lane keeping, steering wheel activity, mean vehicle speed or the
number of initiated speed changes are more specific to driving [6]. A very prominent
approach in the affective computing community is the extraction of action units from facial
videos to detect emotions. These action units can also be useful to detect cognitive load
while driving [28,29]. Another extensively researched modality is based on eye-tracking
technology [30,31], that in addition to the behavioral dimension accounts to physiological
measurements’ with parameters such as pupil diameter. Physiological Measurements, include
other properties of the eye, such as pupil diameter or pupil change responses [32]. Other
physiological processes of the heart, muscles, lung, skin (temperature or conductance)
and brain can be measured using biosignal acquisitions [33]. Both physiological and
behavioral measurements have therefore the major advantage of being able to be recorded
continuously. In addition to these biosignal recordings, biomarkers such as amylase or
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cortisol, commonly measured in stress studies, may help to detect phases of high cognitive
load [34].

Our attempt to measure cognitive load using multimodal data is influenced by other
areas of research, that try to detect psychological states, especially contributions in the
area of affective computing. Lisetti et al. have summarized early work in a review article,
highlighting several contributions that show statistically significant changes in different
elicited emotions [35]. Wang et al. attempted to recognize five emotional states of various
drivers in an automotive simulator application setting [36]. With recent advances in
machine learning over the last years, not only novel algorithms have been developed, but
the requirement for high-quality data and therefore the collection and annotation process
gained attention. Datasets such as DEAP [37], DECAF [38], cStress [39], ASCERTAIN [40],
uulmMAC [41], AMIGOS [42] and WESAD [43] have been published in the affective
sensing community.

In addition to the study of emotions and stress, other researchers already studied
the concept of cognitive load while driving using multidimensional measurements. Haa-
palainen et al. studied the effect of various elementary cognitive tasks while recording
the psycho-physiological activity using wearables [44]. Hussain et al. compared differ-
ent modalities (videos of the face and electro-physiological measurements) for different
cognitive load tasks and proposed a fusion technique of inputs [45]. Closely related to
our contribution is the distracted driver dataset published by Taamneh et al., that records
various driving conditions in a simulated environment [46]. CLAS [47] and MAUS [48]
published datasets enabling the study of multidimensional data during different simulated
cognitive load tasks. A noteworthy contribution, that shares a close relationship with our
work on inducing cognitive load to drivers, is the eDREAM dataset [49,50]. A more practi-
cal approach for avoiding crashes through automatic measures is presented by Healey and
Picard [51], that analyze cognitive load during real-world driving tasks using physiological
signals. Another real-world driving study, conducted by Friedman et al. [52], tried to
estimate cognitive load using only non-contact sensors during two experiments, a driving
experiment and a version of an n-back task based on datasets, that have been introduced
in [53,54].

Aside from the research gaps, described below and answered throughout this study,
the analysis of related datasets makes it apparent, that issues with current data acquisitions
setups and datasets remain:

• Some datasets are not publicly available to the research community. We release
recordings of 30 subjects.

• Related work collected combinations of input modalities from subsets of relevant
measures, while our work combines a diverse set of modalities form physiological and
behavioral measurements, subjective questionnaires and performance metrics.

• In recent years, researchers introduced and studied various tasks, however, we as a
research community failed to provide a database where the same subject participated
in different tasks with different intensities of cognitive load in one recording session.
Our setup fills this gap and therefore enables the analysis of distribution shifts and the
evaluation of the robustness of predictors with representations that generalize across
tasks and test the effects of subject-wise shifts during analysis.

• Missing information about metadata of the sample population like age, sex and
personality traits, as well as the potential inclusion of subjects with undetected medical
conditions or medication treatments, that might interfere with some measurements.

In this work, we focus on the estimation of cognitive load, collecting measurements
of all four groups: physiological measurements, performance measurements, subjective
measures and behavioral measures. For our subjective measurements, we employ the
multidimensional NASA-TLX test. For performance measurements, we measure based
on correct and incorrect hits recall and precision for our tests, as well as the reaction
time. Our physiological measurements include Electrocardiography (ECG), Electrodermal
Activity (EDA), Electromyography (EMG) Photoplethysmogram (PPG), respiration and
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eye tracker data. For behavioral measurements, we use action units extracted from video
recordings. We enrich these data records through a detailed analysis of our study cohort
design. To explore the potential use of cortisol as a biomarker for CL, prominently used in
stress studies, we collect salivary samples. Furthermore, our statistical analysis of various
extracted statistical and medical-motivated expert features provides explainable measures
of cognitive load. We train various machine learning models to predict CL of subjects while
participating and observing a close-to real-world driving simulation of an autonomously
driving car. This leads to our key major contributions:

• We implemented a simulation environment for autonomous driving software to induce
different levels of cognitive load and a fully synchronous network of recording devices
for multimodal measurements.

• We create a dataset that provides a wide range of physiological modalities, subjective
ratings, performance metrics, behavioral data and biomarkers with precisely annotated
phases of multiple levels of cognitive load.

• We conduct a robust statistical evaluation, and present various statistical and expert
features with significant changes for multiple modalities.

• We identify several meaningful combinations of modalities to measure cognitive load
using multimodal fusion techniques.

• We propose a novel continuous cognitive load value, combining subjective and perfor-
mance measurements as a target for training.

• We release Autonomous Driving Cognitive Load Assessment Database (ADABase),
containing 30 subjects to the public to enable the development of novel algorithms for
multimodal machine learning.

In addition, research gaps in related works are clarified by providing a detailed analysis
of 51 subjects with multimodal data recordings including modalities that are only briefly
studied, such as action units and cortisol measurements at different levels of cognitive
load. Furthermore, we combine multiple modalities that are until now, studied in subsets
in related work, to a superset of modalities for cognitive load estimations, including
remote measures such as eye tracking data and facial videos. We have created a new
simulation with a close-to-real-world autonomous driving scenario, while also recording
the extensively studied n-back test for easier alignment with related work.

2. Materials and Methods

To study the concept of cognitive load and develop machine learning algorithms, that
utilize multimodal data for the detection of different cognitive load levels, this study focuses
on the implementation of a fully integrated driving simulator. Our simulator includes
the ability to record a wide range of physiological signals, face videos and eye tracker
data, performance data, task-specific subjective feedback self-evaluations, personality traits
and stress-related questionnaires while ensuring that all data points are synchronized
across multiple acquisition platforms and modalities. In this study, we induce CL in
two different ways. The first test is motivated by recent advances in the development of
autonomously driving vehicles. We developed a test with subject/test-system interactions,
that are similar to driver/vehicle interactions in lower-to-mid-level-autonomous vehicles.
This test is introduced in Section 2.3 and contains different levels of cognitive load and
the addition of a secondary task in the form of controlling an entertainment system while
observing the vehicle. The second test is well-established in the research community:
The n-back test introduced in Section 2.4 is conducted at three levels of difficulty and
with single (visual) and dual-task workloads. However, due to the basic concept of our
scenario and the conducted psychological assessment (n-back), commonly used in cognitive
neuroscience to measure the working memory and its capacity, the results may generalize
well to similar scenarios.
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One of the many development contributions in this dataset is the usage of high-
precision multimodal recordings and coordinated cognitive load simulation. The simulator
for both tests is introduced in Section 2.2. In Section 2.1, we introduce statistics about
our cohort design and relevant parameters such as driver experience. Our approach to
measure the response of the hypothalamic-pituitary-adrenal (HPA) axis using salivary
cortisol values is introduced in Section 2.5. Methods to evaluate subjective feedback
are introduced in Section 2.6 and performance measures and metrics are described in
Section 2.7. Section 2.8 describes our physiological measurements equipment and recording
setup, including relevant references to current literature and a list of extracted expert and
statistical features. The same information is provided for eye tracking data in Section 2.9
and behavioral data extracted from videos in Section 2.10. The handling of artifacts is
described in Section 2.11. Before using the extracted expert features, motivated by medical
practitioners and affective sensing literature, for the detection of phases with different
levels of cognitive load we introduce our statistical evaluation protocol in Section 2.12. In
Section 2.13, we introduce machine learning tasks using different sets of modalities for
simple binary classification between low and high levels of cognitive load. Additionally, to
this simple binary classification, we propose a three-class under-to-overload classification
task and use subjective feedback and performance metrics to develop machine learning
algorithms with a continuous cognitive load level as output. Our machine learning pipeline
and algorithms are introduced in Section 2.14.

2.1. Participants and Cohort Description

The demographic data of all participants was acquired through self-reporting. Re-
ported parameters were age, sex, weight, height, the highest obtained educational degree,
state of employment, first language, state of driving license, as well as the duration of
driving experience and handedness. Subjects with medical conditions or subjects under
medications, that are known to have an impact on behavior, cognition, physiology or the
HPA axis analyzed in this experiment, have been excluded upfront.

The acquired dataset consists of 51 (24 female, 26 male subject and 1 subject that did
not want to state gender and age) subjects with an average age of 26.53± 5.93 years, where
the youngest subject is 18 years and the oldest subject is 42 years old. The distribution
of male and female participants is visualized in Figure 1. We measured body weights
between 50.0 and 108.0 kilogram, with a mean weight of 71.2± 13.5 kg and a body height
between 1.58 and 1.93 meters with a mean of 1.75 ± 0.09 m. We computed the Body-
Mass-Index (BMI) yielding 22.9± 2.8 kg/m2 in average, with a minimal value of 18.4
and a maximal value of 30.9 kg/m2. Following the World Health Organization (WHO)
expert consultation classification recommendations for adults, described in [55], we identify
1 subject as underweight (BMI < 18.5), 37 are in normal range (18.5 ≤ BMI < 25), 12 subjects
are pre-obese (25 ≤ BMI < 30) and one participant was obese (BMI ≥ 30). We publish
this meta information with our dataset to enable future work to develop algorithms that
take the subject meta information into account. Eight of 24 female subjects were on
contraceptive medications. Two subjects were using Levothyroxin to treat hypothyroidism.
As our study involves various driving scenarios, we asked the number of years, since
the driving license was acquired. Subjects without driving licenses were set to zero years
of experience, yielding an average driving experience of 8 years of all participants. The
detailed distribution is shown in Figure 1. Of 51 participants, 49 were right-handed and
two left-handed. The experimentation setting was adjusted to match the handedness. The
subjects were recruited from a diverse population of employees at the Fraunhofer Institute
for Integrated Circuits and psychology students at Friedrich Alexander University Erlangen-
Nuremberg. One complete session in our simulator, including preparation, measurements
and debriefing took, depending on the subject’s compliance, around three hours, with
an average signal recording time of 155± 13 min per subject. The data was acquired on
workdays from Monday to Friday at different times of the day. All subjects gave their
informed consent for inclusion before they participated in the experiment. The study
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was approved by the Ethics Committee of the Friedrich-Alexander-University Erlangen
Nuremberg. (Ethics-Code: 129_21 B) The complete experimentation recording was 135 h
for 51 subjects. We acquire psychological profiles as suggested by Gjoreski et al. when
evaluating mental workload through self-reported questionnaires [56]. To analyze the
impact of personality, we utilize the Big Five Inventory (BFI) as a model for the description
of personality. To reduce testing time we use a short version, called Big Five Inventory-Kurz
(BFI-K) introduced in [57] as an assessment questionnaire. We report the results for all five
traits: extraversion vs. introversion, agreeableness vs. antagonism, conscientiousness vs.
lack of direction, neuroticism vs. emotional stability and openness vs. closeness.
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Figure 1. Demographic data was answered by subjects before participation. (Upper-Left): Pyramid
with age groups over several subjects within that group (One subject did not answer the age and
sex questionnaire). (Upper-Right): Histogram of BMI with highlighted classes according to WHO
healthy lifestyle classification guidelines [55]. (Lower-Left): Histogram of driver experience in years.
Subjects with no driver’s license have been set to zero years. (Lower-Right): Pie-Chart with current
occupation (student, employee) within different formal education (high-school, undergraduate,
graduate, Ph.D.). Inner-Circle: Occupation, Outer-Circle: Highest Obtained Degree

2.2. Experiment Structure and Simulator Environment

The experimentation schedule consists of two main test phases, separated by a ques-
tionnaire phase to acquire self-reported subjective measures, targeting mental-well being,
chronic stress and all demographic information reported in Section 2.1. The study setup
was conducted in a controlled environment, to ensure, that no interruptions occur. An
approximately constant room temperature was held during the completion of the experi-
ments. To mitigate the effects of different body positions on parameters like Heart Rate
Variability (HRV), the subject was in a sitting position in a car seat. The light conditions
were the same for all subjects and no windows were present in the room (no sunlight).
Issues with the circadian rhythm of the test subjects are taken into account, as all tests were
conducted in fixed time slots, starting either at approximately 9 a.m. or 1 p.m. During this
study we conducted two main tasks, in a randomized order:

• n-back Test: A established and commonly used continuous assessment of the Working
Memory (WM), described in Section 2.4 [58].

• k-drive Test: An application task with multiple levels of cognitive load with a primary
and secondary task,while observing an autonomously driving vehicle, described in
Section 2.3.

During the complete experiment, the subjects were located in the center, sitting in an
upright position in a simulator car seat (Playseat ®Evolution Pro Gran Turismo, Playseat
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B.V. Innovatieweg 18-19, 7007 CD Doetinchem, The Netherlands). The user inputs were
entered using the button controls of a steering wheel (Logitech G29 Driving Force, 7700
Gateway Blvd. Newark, CA 94560, USA). The different tasks were visualized using a
multi-monitor setup (four 4K 55inch monitors) to enable an immersive experience and
a simulation environment that is motivated by real-world car cockpits. All commands,
instructions and custom tests were shown on the top monitor, while the three monitors
below were used to show the driving simulation. The tablet was located on the side of
the dominant hand. The test system was running depending on the active study phase,
several custom applications, which were written in PsychoPy [59], exectued on a separate
test system that is synchronized to the Biopac (BIOPAC Systems Inc., 42 Aero Camino,
Goleta, CA 93117, USA) system, described in Section 2.8 using a Universal Serial Bus
(USB) to TTL connection. A camera system, described in Section 2.10 and an eye tracking
device, described in Section 2.9 were located above the steering wheel. The camera system
is synchronized using analog triggers from the Biopac system and the eye tracker was
connected to and synchronized with the PsychoPy test system. Images documenting the
test environment are shown in Figure 2. An overview of the technical setup is shown in
Figure 3.

Figure 2. (Left)-to-(Right): Overview of the test environment with a depicted multi-monitor setup,
subject in driving seat and acquisition setup; View from the subject’s right shoulder perspective; View
over the shoulder, with the steering wheel, camera, eye tracker and tablet cockpit; Frontal view of the
subject fully connected to all bio-signals.

Test
System

Camera
System

BIOPAC
System

Subject

Cam
er

a

Eye Tracker

IO Steering
Wheel

Multi-Monitor-Setup

Trigger

Video Signal

Bio-SignalsTrigger

Subject-Input
n-Back / Drive - Task

Tablet

Figure 3. System components used during both experiments. Synchronization over multiple com-
ponents mitigates effects such as clock drifts between different computer systems. The main test
computer runs the experimentation software written in PsychoPy. The subject uses the buttons on a
steering wheel as an input device during various experiments. The eye-tracker is synchronized with
the main test computer. The camera system is triggered (on rising edge) with a constant low/high
analog trigger signal having a frequency of 25 frames sent by the Biopac system. The camera is set to
idle and automatically starts when the Biopac system is started at the beginning of the experiment
and automatically stops as soon as the Biopac software stops. The Biopac system and the main test
system are connected through a TTL line, sending the current state of the experiment at times of
experiment phase transition as 255 bit-encoded signal, all interactions with buttons, as well as a
continuous signal for synchronization.

The experimentation software is developed using PsychoPy version 2021.1.0. All
experiments and user instructions are described in German language within the software.
To mitigate any effects that can arise from personal interactions between the examiner
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and the subject only a few interactions are required during the experimentation phase.
At the beginning/end of the experiment, the subject is connected/disconnected to the
Biopac system. During the questionnaire phase or before the driving test starts, the tablet
is positioned by the examiner to ensure ergonomic accessibility. In addition to these
interactions, the salivary samples are collected given the described schedule in Section 2.5.
Deviations from the schedule are documented by the examiner on a predefined template.

2.3. Autonomous Driving Simulation

We are simulating a semi-autonomous driving experiment, where only little interaction
of the subject with the vehicle is required and increasing levels of single- and dual-task
load is put onto the subject. The steering, gas and brake control as well as gear shifting
is autonomously controlled by the simulator. The subject’s interaction is limited to three
buttons, located on the steering wheel to detect three different maneuvers as a primary
task. During level 1, the subject can use the button to indicate that the autonomously
driving car is passing another car (overtaking). In level 2, the subject is additionally asked
to indicate that the car is being overtaken, which can be detected by pushing the button.
For the last level (3), events of high acceleration and deceleration need to be detected by
pushing the button. All driving sessions were simulated using the playback of a pre-
recorded Assetto Corsa (Assetto Corso v.1.16, https://www.assettocorsa.it/en/, (accessed
on 25 November 2022) KUNOS Simulazioni s.r.l., Via Degli Olmetti 39/B, 00060 Formello
(RM), Italy) screen capture and were presented on the three lower monitors shown on the
left side of Figure 4. During every session, the participant’s car was driving on a racetrack
(Assetto Corso Tracks: https://www.assettocorsa.it/tracks/ (accessed on 25 November
2022)), with twelve other cars that followed the road. The selected racetracks contained
curvy and straight street segments without two-way traffic to simulate one-way highways.
For easier reference, we are using the notation: k-drive, where k indicates the number of
actions the user needs to react to and set k ∈ {1, 2, 3} (Levels/Actions for reference: k = 1:

k = 2: / k = 3: / / ).

Figure 4. Screenshot of experimentation setup during driving. The left image shows the split-screen
visualized on the three monitors with driving instruments, such as position, back mirror, current gear
and velocity. The right image shows the remaining time during the experiment, as well as a list of
songs the subject is instructed to add to the playlist on the virtual tablet cockpit.

Similar to our dual-task n-back test (see Section 2.4), the subject is asked to solve a
secondary task during level two and level three while observing the vehicle’s actions. For
our secondary driving task, we ask the subject to search and add songs to a playlist using
a mobile music application (Spotify App v8.6.12, 03/2021, Spotify AB, Regeringsgatan
19, SE-111 53 Stockholm, Sweden), that is presented on an iPad (iPad version 2021 Apple
Inc., 1 Infinite Loop, Cupertino, CA 95014) next to the steering wheel. The songs that need
to be added are shown on the top screen in our multi-monitor setup shown on the right
side of Figure 4. To ensure a correct understanding we provide a detailed description
of every task to the subject upfront and propose solution strategies, such as using the
current race position, the presence of rearview mirrors or a tachometer. In addition to these
instructions presented in advance, the subject will have at least one training session of
50 s before the test level starts, which can be repeated if that is requested by the subject.
Similar to the n-back training sessions the positive and negative hits are reported after
every training session. Before starting the driving experiments, the subject will run through

https://www.assettocorsa.it/en/
https://www.assettocorsa.it/tracks/
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three different baselines. During the first baseline, the subject will rest for five minutes and
does not interact with the driving simulator, followed by a second baseline of two minutes,
where the subject is observing the autonomously driving car in the test simulator without
interaction or any imposed tasks. The third and last baseline phase (two minutes) is used
to familiarize the subject with the music application, presented on the IPad. We run these
baselines to ensure an ergonomic and familiar setting and record baselines for task-specific
shifts, such as moving your eyes from the on-road screen to the iPad music application. We
record positive (action was detected correctly) and negative hits (the wrong button was
pressed, or no event occurred) as well as reaction time for our primary task. Additionally,
we count the number of added songs that were added to the playlist for levels 2 and 3 for
our dual-task experiment.

2.4. n-Back Test

In addition to our driving simulation, we conducted an n-back test [58] that is exten-
sively used in the literature as a working memory paradigm. The experimentation scenario
is inspired by [20]. In our single task schedule, we presented visuospatial stimuli as a
blue square appearing at one of eight possible locations equally spaced and symmetrically
around a white cross in the center on a black background. For dual-task tests, we addition-
ally played recorded German consonants from the set {c, g, h, k, p, q, t, w} spoken by a
male native speaker. Both versions are visualized in Figure 5. We repeated the test 6 times:
1-back to 3-back for visual-only stimuli and 1-back to 3-back for visual and audio-verbal
stimuli, which were presented simultaneously for our dual-task workload paradigm. Prior
to the complete n-back test run, the subject had different baseline phases. The schedule
for the complete test run and the baseline phases is visualized in Figure 6. Each test was
preceded by a short period of training that could be repeated on request by the subject,
shown in Figure 7. Similar to Jaeggi et al. the stimuli were presented for 500 ms followed
by an inter-stimulus-interval of 2500 ms [20]. The subjects were asked to react to repetitions
using the buttons on the steering wheel. For a positive visual event, the subject was asked
to press the and for an auditive event the , respectively.

visuospatial event visuospatial event

auditory-verbal event auditory-verbal event

Visual

Auditive

+ + + + + + + +

T G P W P K H K
500ms

2500ms

Figure 5. Example of visuospatial and auditory-verbal stimuli, presented during dual n-back test
with level 2 (dual-task 2-back test) [20]. Stimuli are presented for 500 ms followed by an inter-
stimulus-interval of 2500 ms. Example with two visuospatial and two auditory-verbal repetitions.
The expected reactions are presented by arrows below and above the figure.

+ +Baseline Single n-back Dual n-back T

1-back 2-back 3-back 1-back 2-back 3-backResting Tutorial

Figure 6. Visualization of the n-back test protocol. Baseline measurement consists of a resting phase
of 5 min, followed by a 2 min tutorial, that shows stimuli and explains input controls to the subject.
Two distinct phases of single and dual task n-back tests for n ∈ {1, 2, 3} are presented to the subject.
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We recorded both, positive hits (when the reaction to a stimulus was correct) and
negative hits (no stimulus was played, or the wrong button was pressed). For positive
hits, we recorded the reaction time from the beginning of the stimuli until the button was
pressed. The evaluation protocol for positive/negative hits and reaction time is described
in Section 2.7. The subject received performance feedback (number of correct and incorrect
hits) automatically after each training session, visualized on the monitor, to ensure that the
task was understood correctly, before starting the actual test. The system feedback was
formulated neutrally, while the supervisor did not give any feedback during the complete
study, to reduce the effects of perceived social stress.

Tutorial

Possible Repitition

Training Feedback Test NASA-TLX

Figure 7. Protocol of a single n-back test sequence. The subject is able to repeat the tutorial and
training phases. After training completion, the achieved score is reported to the participant (number
of hits and false alarms are shown). Each test run is completed with a NASA-TLX assessment. The
test phase takes 2 min to complete.

The appendix of this publication provides an overview of the experimentation se-
quence in Figure A2 of both conducted experiments.

2.5. Salivary Cortisol Responses

The measurement of glucocorticoids has proven to be a significant auxiliary value
to detecting acute social stress responses using salivary samples [60,61]. Early studies
identified an increase of cortisol, as a response to acute stress, transmitted by the HPA axis
as a pathway to send signals to the organism. Cortisol is therefore a promising non-invasive
biomarker for stress [62,63]. As our study does not impose any social evaluative thread but
various levels of cognitive load, we are analyzing cortisol as a biomarker for our k-drive and
n-back levels. Woody et al. have bisected the cognitive component and social evaluative
component of stress and found that social evaluative thread in absence of cognitive load led
to greater cortisol values while increased cognitive load had no main or additive effect [34]
on cortisol. Contrary, Veltman and Gailard [64] have identified a high impact of different
mental workload tasks and cortisol levels, while low task performance leads to higher
cortisol levels. To capture the complete cortisol response [60,65], we measure four points
in time for both tasks: Right before the test start (Pre-00), After finishing the test (Post-00),
10 min (Post-10) and 20 min (Post-20) after the test finishes.

2.6. Subjective Feedback

After every phase of the aforementioned n-back tests and drive scenarios, we ask
the subject to self-evaluate and report the effort required to complete the given task.
These subjective measures often vary. However, to a certain degree the self-reported
ratings can reliably determine the CL put on a certain task [14,17,66]. In this work, we use
the NASA-TLX, a well-established tool to analyze CL on a multidimensional, weighted
scale [16]. We kept the dimensions as described by Hart [17]: mental, physical and temporal
demand, performance, effort and frustration. The dimensions and associated questions
were translated into German. Each dimension is also accompanied by a weighting factor
through pairwise comparisons regarding their perceived importance. The final score is
computed by a summation of the scores on each dimension times the corresponding weights
(the number of times it was rated more important). The NASA-TLX score is then scaled
to be between 0 and 100. In addition to the weighted version, we report the NASA-Raw
Task Load Index (RTLX) without applying the weights. The overall score is computed
using the average of all scores [15]. We collect three ratings for our single n-back test, three
ratings for our dual workload n-back test and three ratings for our driving experiments. In
addition, we evaluate perceived stress over the last month and therefore set a baseline for
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our evaluations. We utilized the Perceived Stress Scale (PSS) by Cohen et al. [67] to enable
respondents to indicate how stressful their life is. Analog to the work by Cohen et al. [67]
the 5-scale ratings (from “Never” to “Very Often”) are computed by summing scores of all
items (including inversion for some questions). The respondents were able to express their
positive and negative affect after the driving phase and the n-back test. Utilizing a 5-scale
Positive and Negative Affect Schedule (PANAS) introduced in work by Watson et al. [68]
with 10 positive feelings and 10 negative feelings, we report the affective state of the
corresponding subject. The evaluation of affective states was conducted after both phases
of this study. As PSS and PANAS questionnaires are used to measure a baseline stress level
and affective states, but are not directly relate to specific phases of our experiment, we
report the result in Appendix E.

2.7. Performance

Performance is commonly used to measure cognitive load as introduced in Section 1.
Metrics to measure performance are highly task-dependent: We collect true positives
(correct button pressed, TP), false positives (no event occurred, but the button is pressed,
FP) and false negatives (the event occurred, but no input was recorded, FN) as well as
reaction time for true positives. Both, for our n-back test, and our k-drive test, the maximal
time between the beginning of an event and the time when the user could react to this
event was set to 3 s. Similar to the nomenclature used in classification tasks we compute
and report recall, precision and F1-score. For this experiment we use:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 = 2 · precision · recall
precision + recall

(3)

The same metrics are also computed for the secondary auditive n-back task. For
the secondary tasks during levels 2 and 3 of k-drive we only collect the correctly added
songs to the playlist (false positives are not recorded) and report only our recall-motivated
performance metric.

2.8. Physiological Features

For data acquisition, we used a Biopac MP160 system and specialized Biopac modules
ECG100C, EGG100C, EMG100C, EDA100C, PPG100C, RSP100C and SKT100C for the
corresponding modalities. We used a sampling frequency of 2000 Hz for all modalities,
as storage was not an issue in this simulator setting and the analog synchronization
across multiple devices, modalities and time stamps is ensured to be consistent. For ECG
recordings, we use the Einthoven, Lead I and Lead II with a limp sensor placed below the
shoulder and lower torso using Ag-AgCl electrodes (torso limp positions: right arm, left
arm, left leg and right leg as neutral). The skin was prepared with an isopropyl solution.
The surface EMG was recorded to capture the activation of the trapezius muscle using
three electrodes. The reference electrode is placed on the seventh cervical vertebra (C7),
and the other two electrodes for measuring the activation are placed at the right lateral
trapezius muscle. The EDA electrodes were placed on the palmar side of the index and
middle fingers (digitus manus 2 and 3) at the medial phalanges. To compensate for changes
in conductance at the beginning of the recording, the placement of the electrodes was done
at least 10 min before the recording started. For skin preparation, only warm water was
used. The PPG signal was measured on the tip of the middle finger (digitus manus 3).
Skin Temperature (SKT) was measured using a sensor placed on the tip of the index finger
(digitus manus 2). All, EDA, PPG and SKT were measured on the non-dominant hand,
which was placed on the leg and could rest without movement as no interaction was
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required. Respiration cycles were recorded using the BIOPAC MP3X respiratory effort
transducer, measuring the change in thoracic circumference. During the early stages of our
experimentation development, we recorded electroencephalographic recordings using a
Mobita ConfiCab with 32 channels. We stopped the acquisition of these recordings during
this experiment, as some subjects, reported headaches after the long duration of wearing
the electrode cap.

We opted to extract features based on statistical signal properties and medical expert
features for all biosignal modalities. Features extracted from electrocardiography record-
ings, reflecting the electrical activity of the human heart, are, except the heart rate itself,
based on the concept of Heart Rate Variability (HRV). The HRV is impacted by modula-
tions of biochemical processes, that correspond to the activation of the parasympathetic
and sympathetic nervous systems. In addition to recordings of the electrical activity of
the heart, we measure the mechanical activity using PPG sensors. Studies have extracted
features based on the variability of the pulse waves, so call Pulse Rate Variability (PRV)
features. In this publication, we are not interested in the estimation and computation of
PRV features, because they have a strong correlation with HRV features, but are more
sensitive to movement artifacts in our acquisition setup [69]. Recording PPG features as
part of this database is still a valuable addition, as this modality enables the study of early
fusion techniques reflecting measures like Pulse-Transit Time (PTT) [70] or detecting
cognitive load using only wearable devices, sensing the activity of the heart using pulse
waves in the extremities in the future. Based on Pham et al. [71], we solely use features
reflecting the activity of the human heart on rhythmic scales and use the R-peaks for
stable detection [72]. Our features are based on state-of-the-art techniques from the
literature analyzing affective states, cognitive load, stress [33] and other biopsychosocial
states. Our features are described in Table 1 and are among other techniques computed
using time-based (RMSSD, SDNN, etc.) or frequency-based (HF, LF, etc.) methods.
Another physiological response triggered by the Sympathetic Nervous System (SNS) is
the activation of sweat glands. This electrodermal activity can be measured on the skin
surface through conductance changes, that are caused by sweat and ionic permeability
changes in and on the skin surface [73]. Current literature decomposes EDA signals into
phasic and tonic components for the analysis of psycho-physiological responses [74]. We
capture the tonic activation by computing the change in Skin Conductance Level (SCL)
within a given interval and extract features of the faster-changing phasic component also
interval-related by measuring Skin Conductance Response (SCR) and do not conduct any
direct-stimuli related analysis of SCR events for our level-based experimentation setup.
Both SCL and SCR based features are shown in Table 1. Past studies have also found a
correlation between the activation of trapezius muscle activity using EMG recordings
and cognitive load [75,76]. We have computed features based on the overall activity
within a timeframe, e.g., by computing the root-mean-square of the preprocessed signal
within a given interval, as well as features based on task-specific changes, such as the
number of activations within that interval. To extract information from varying skin
temperatures, that are associated with the cognitive load, we extract standard statistical
features such as an increase or a decrease in temperature within a time window or mean
and standard deviation and follow the methodology used in past studies, that found a
correlation for both stress [33] and cognitive load [56]. We extract respiration features
from our effort transducer values, by detecting lows (exhalation) and highs (inhalations)
and use the amplitude difference between inhalation and exhalation, as well as the mean
and standard deviation of respiration rates within a fixed window, as a measure for
cognitive load [77]. All features used in this publication, are provided in Table 1. We
compute all features with a rolling window with a predefined window size W.
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Table 1. List of extracted expert and statistical features from the recorded biosignal modalities.

Modality Features Reference Description

ECG HR 1 [33] Mean heart rate
SDSD [33,71] Standard deviation of successive NN intervals
SDNN [33,71] Standard deviation of NN intervals

RMSDD [33,71] Root mean square of successive differences

LF, HF [33,71]
Low and high-frequency component in the

range of 0.05–0.15 Hz and 0.15–0.4 Hz of the
Welch spectrum

LFn, HFn [33,71] Normalized HF and LF spectrum
LF/HF [33,71] Ratio of the LF and HF component

SD1/SD2 [33,71] Ratio of SD1 and SD2 as standard deviation
along the identity lines of a Poincaré plot

PSS [78] Percentage of short segments.
PIP [78] Percentage of inflection points in NN intervals

PPG PR1 [33] Pulse rate, closely related to ECG HR (electrical
vs. mechanical)

EDA ∑W
t SCL′(t) [33,79,80] Change of the Skin conductance level within

a window

#Peaks
SCR /W [33,73,80,81] Number of peaks as measure of the

phasic component
µ

Amplitude
SCR [33,73] Mean amplitude values of SCR peaks
µRise

SCR [33] Mean rise time of SCR peaks

µ
Recovery
SCR [33] Mean recovery time to 50 percent of the

maximal peak amplitude

EMG fRMS(EMG) [82] Root mean square of the EMG signal
#Onsets(EMG)/W [83,84] Number of onsets per minute

#Active(EMG)/W [83,84] Fraction of high activity (above threshold)
per minute

max(EMG) [83] Maximal amplitude of the EMG signal

SKT µT , σT - Mean and standard deviation of the
skin temperature

minT , maxT - Minimal and maximal of the temperature
∑ T′(t)/Time - Increasing/Decreasing temperature per minute.

RSP µBR, σBR [77] Mean and standard deviation of BR

µ[E−I] [77] Mean of the ratio of inhalation and exhalation
amplitude values

1 We denote the mean µ and standard deviation σ for all modalities, except for ECG features, we use HR, SDNN
and PPG we use PR since these notations are more common in the affective computing domain.

2.9. Eye Tracking Features

Many studies have shown the relevance of eye-related characteristics for the prediction
of a person’s cognitive state [85]. For eye tracking, we utilize the Tobii Pro Fusion (Tobii
Pro Fusion I5S, Tobii AB, Karlsrovägen 2D, S-182 53 Danderyd, Sweden) eye tracker, a
stereoscopic system with two eye-tracking cameras for the left and right eye, respectively,
that records the subject’s eye movements and pupil size at a sampling rate of 250 Hz.
We use the PyGaze library [86] to extract fixations (the activity of an eye looking at the
same region for a certain duration), saccades (rapid eye movements between fixations),
and blinks (defined by the absence of the signal for a certain time) from the acquired
eye-tracking data. The fixation detection is based on a dispersion-duration method: if the
dispersion of gaze data on the screen is below a certain threshold and has a duration of at
least 100 ms, the data is considered a fixation. We select the dispersion threshold within
an exploratory analysis as suggested by Salvucci et al. [87]. The duration threshold of
100 ms is a common choice [87–89]. Following Negi et al., we calculate fixations of three
non-overlapping temporal ranges: 66–150 ms (short ambient), 300–500 ms (longer focal),
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and above 1000 ms (very long). This distinction allows us to gain additional insights into an
individual’s conscious perception of objects [90]. Despite the strong dependence between
pupil dilation and light reflexes, pupil size can provide information about the commitment
of greater effort and the expectation of a difficult task [91,92]. High-frequency oscillations,
also called hippus, can also indicate increased cognitive load [93].

In accordance with the literature, we extract multiple features based on fixations,
saccades, blinks, and pupil dilation. An overview can be found in Table 2. For a window
length W we extract the number and duration of fixations, saccades, and blinks as well
as the mean saccade amplitude, thus the mean distance for a saccadic movement. As
pupil-related features, we select the mean pupil size and two other features that take pupil
change into account. To calculate the index of pupillary activity (IPA) we follow [93,94].

Table 2. List of extracted expert and statistical eye tracking features.

Concept Features Reference Description

Fixations #F>100/W [85,94] Fixation count per window for range > 100 ms
#F66−150/W [90] Fixation count per window for range 66–150 ms
#F300−500/W [90] Fixation count per window for range 300–500 ms
#F>1000/W [90] Fixation count per window for range > 1000 ms

µFD [85,94] Mean fixation duration
medFD [90] Median fixation duration

Saccades #S/W [85] Saccade count per window
µSA [85] Mean saccade amplitude
µSD [85] Mean saccade duration

medSD - Median saccade duration

Blinks #B/W [85] Blink count per window
µBD [94] Mean blink duration

medBD - Median blink duration

Pupil µPS [94] Mean pupil size

IPA [93,94] Index of pupillary activity based on
wavelet transformation

2.10. Videos

One of many indices in this study is the analysis of facial cues. These facial cues are
sometimes closely related to messages, that express emotion, such as anger, fear, disgust,
happiness, sadness or surprise. As we are highly interested in such behavioral expressions
and their relationship to cognitive load, we record the subject’s face during the complete
experiment. A BASLER acA1920 155 µm (Basler AG, An der Strusbek 60–62, 22926 Ahrens-
burg, Germany) camera was used to record a video stream with a resolution of 1920 × 1080
at 25 frames per second, which was triggered using the BIOPAC analog output, to ensure
a fully synchronized recording. Depending on the position of the subject, we extracted
1024 × 1024 pixels as a region of interest and resampled it to a 512 × 512 frame. For
action unit extraction we used the SVM model developed by Cheong et al. [95], using
Deng et al. [96] as face detection model, Albiero et al. Img2Pose [97] as pose correction
model and Chen et al. MobileFaceNets [98] to extracted landmarks. To mitigate effects, such
as many-to-one correspondences of certain behaviors and emotions, or varying interpreta-
tions across subjects, we opted to use a sign-judgment-based action unit system instead.
The Facial Action Coding System (FACS) system, introduced by Ekman and Friesen [99]
and improved by Ekman and Rosenberg [100] specifies different action units. Martinez et al.
present the current state of research and its application [101], while predicting cognitive
load using visual facial cues has been studied in Li and Busso [102], Yuce et al. [29] and
Viegas et al. [28], on which we base our decision to extract the action units presented in
Table 3. For our statistical analysis and machine learning experiments, we count the frames
with active actions unit within the given window and denote the number of action units
similar to our physiological features with # as count.
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Table 3. List of extracted action units.

Action Unit Number Reference Literature Facial Action Coding System Name

AU1 [28,29,102,103] Inner Brow Raiser
AU2 [28,29,102,103] Outer Brow Raiser
AU4 [28,29,102,103] Brow Lowerer
AU5 [28,102,103] Upper Lid Raiser
AU6 [28,29,102,103] Cheek Raiser
AU7 [28,29,102,103] Lid Tightener
AU9 [28,102,103] Nose Wrinkler
AU10 [28,29,102,103] Upper Lip Raiser
AU12 [28,29,102,103] Lip Corner Puller
AU14 [28,29,102,103] Dimpler
AU15 [28,29,102,103] Lip Corner Depressor
AU17 [28,29,102,103] Chin Raiser
AU20 [28,102] Lip Stretcher
AU23 [28,29,102,103] Lip Tightener
AU24 [102] Lip Pressor
AU25 [28,29,102,103] Lip Part
AU26 [28,102,103] Jaw Drop
AU28 [29,102] Lip Suck
AU43 [28,29,102] 1 Eyes Closed

1 Used closely related AU45 - Eyes Open vs. Eyes Closed.

2.11. Preprocessing, Artifacts and Data Collection

The recording of biosignals is prone to various artifacts, while we designed our
recording environment with great care, in some situations it is not evitable that artifacts
degrade signal quality. Due to the complex nature of our environment, we were not able to
prevent 50 Hz power line noise and removed this frequency component, if applicable, and
all higher harmonics from the recorded signals using a notch filter. For our ECG feature
extraction pipeline it is crucial to detect the R-peaks with high sensitivity and specificity.
To ensure only sequences with sufficient quality are used during evaluation, we have
computed Signal Quality Index (SQI)’s based on work by Zaho and Zhang of both leads
and selected the lead with better SQI’s or if both leads are corrupted, we exclude those
intervals from the evaluation [104]. For video, we removed frames from evaluation if the
subject’s head moved outside the recording region. For eye tracker measurements we
removed samples with a Tobii Fusion Pro system code indicating the detection of both
eyes. For all other modalities, our artifact rejection was integrated by information from the
examiner that noted events to the protocol during acquisition. These time intervals were
manually removed. Otherwise, we computed features over a two-minute rolling window
with a step size of five seconds of our continuous signal. We employed subject-wise z-score
normalization (subtracted mean and scaled to standard deviation) using every feature
computed within the complete phase of our k-drive and n-back test, including baselines,
training and testing phases. For statistical evaluation and machine learning, we used the
window that was in the center of the respective phase described in Sections 2.3 and 2.4 and
removed outliers using the Median Absolute Deviation (MAD)-rule [105].

To summarize our feature-extraction and preprocessing protocol, for all records used
in our statistical evaluation and machine learning pipeline, we start by rejecting artifacts as
described above in this section and exclude corrupted parts of the signal. If the examiner
reported recording issues during acquisition (e.g., ECG lead fall-off), we removed the
corrupted parts from the sequence. Given the recorded, fully synchronized trigger signals,
we define the windows of the baselines and levels. Following that, we computed all features
for each modality using a rolling window over the complete experiments of n-back and
k-drive and normalize the extracted trials using subject-wise z-score normalization. We
used the MAD-rule to remove outliers of our features. When working with combinations
of multiple features, we drop the complete instance (feature vector) that contains a missing
value from our dataset and therefore out machine learning experiments. We do not employ
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any imputation technique, for missing data, but remove the entire sample that contains a
missing feature value. We report the percentages of available records after these steps in
Appendix H for reference.

2.12. Statistical Evaluation

To analyze the effect of different experimentation levels (factors), on our extracted
expert features (values) we conduct a one-way Analysis of Variance (ANOVA) for repeated
measurements, observing if there are significant changes. We determine if the data is
distributed normally, using a Shapiro–Wilk test. If the criterion of normality for ANOVA
is not met, we conduct a non-parametric Friedman test as omnibus test instead. The
assumption of sphericity was controlled by a Mauchly’s test. Whenever necessary, we
employ a Greenhouse-Geisser correction. As we conduct multiple comparisons we adjust
our p-values using Holm–Bonferroni correction for our experiments (k-drive and n-back)
separately. For features that changed significantly according to our repeated measures
ANOVA, we conducted post hoc-tests. If the post hoc-test results show a p-value below
our level of significance α = 0.05 we report if the mean value is increasing or decreasing
for that specific feature. If the conditions for normality are met, we use a two-sided paired
t-test, otherwise, we use the non-parametric Wilcoxon test as a post hoc-test. These tests
are executed for our features described in Sections 2.8–2.10.

2.13. Classification Tasks and Evaluation Protocol

Autonomous Driving Cognitive Load Assessment Database (ADABase) was recorded
to study subjects under different levels of cognitive load while observing an autonomously
driving vehicle, using multi-modal representations of physiological-, behavioral-, subjective-
and performance-based measurements. We create various downstream tasks for classi-
fication and regression. As a first task, we separate our recording into two levels of
cognitive load:

• A Low Load Class, without any task or undemanding tasks imposed on the subject.
• A High Load Class with tasks of high demand introducing high cognitive load.

Using this setup we evaluate three different experiments: For the visual-only n-back task
we select the observation-only-baseline and the 1-back level as low load class and the 2-back
and 3-back levels as high load class. The same phases are used for audiovisual classification.
For complete n-back classification we used both baselines (resting and no-task observation),
1-back visual-only, 1-back audiovisual testing phase as low load class and 2-back and 3-back
visual-only and audiovisual for high load. Using this classification scheme has several
advantages of having a balanced class distribution, being able to evaluate single-only and
dual-only vs. single-and-dual task loads, and capturing different levels of the load imposed
by the given tasks. We propose to use this labeling scheme for k-drive, too. For our low
load class, we use the baseline with an observation-only driving example as low load class
and 1-drive as high load class. For our dual-task-load classification of k-drive, we use the
baseline with observation-only driving and the baseline with secondary-task observation
only as low load and 2 and 3-drive dual task as high load. We also train a classifier on
the combination of n-back and k-drive schemes, leading to a single-task, dual-task and a
combination of both binary classifications. It is important to note that these classification
groups have been carefully selected to include similar tasks (e.g., only observation of n-back
tests in baseline instead of simple rest periods) to mitigate the effects of distribution shifts,
like not looking to the monitor or infotainment system and light patterns that influence the
pupil dilation.

In addition to this very coarse-grained experiment of low vs. high load [48], we create
an experiment with three classification levels, low-load, medium-load and high-load. We do
not differentiate between a single and a dual classification task but study the combination
of both tasks for n-back and k-drive. For k-drive, we use the observing-only-baseline and
1-drive for low load, 2-drive for medium load and 3-drive for high load. For n-back we
use the observation-only baseline and visual-only 1-back as low load, 2-back visual only
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and 1-back dual task for medium workload and 3-back visual-only and 2-back and 3-back
audiovisual for high load. It is noteworthy that the records collected during the specific
phases, using these splits are not equally distributed.

We propose several targets for our regression tasks. The first task is to use performance
metrics only, averaging a score based on the recall of the primary task (scaled between 0
and 1, where 0 is the best score (highest recall) and 1 is the worst of the complete study
population) and the reaction time of the primary task (scaled to be between 0 and 1, where
0 is an instant reaction and 1 is a reaction within 3 s as the maximal possible reaction time).
As a second target, we use the NASA-RTLX score, scaled between 0 and 1, where 1 is the
highest task load reported by the specific subject and 0 is the lowest reported task load of
that subject. We drop all baselines from this dataset. For our third task, we compute the
average of both targets and therefore use performance and subjective rating as a continuous
target between 0 and 1 for our regression algorithms.

For evaluation, we conduct several experiments. We group our features modality-wise
and train a classifier using the binary-task-classification to train and evaluate classifiers
for all sub-tasks: single-n-back, dual-n-back, single-k-drive, dual-k-drive the combinations
of both, single and dual-task load, and both experiments, n-back and k-drive. Using this
experimentation schedule we can as an extension to our statistical evaluation in Section 2.12
determine the predictive power of unimodal and multimodal models.

2.14. Machine Learning Algorithms and Training

Past studies in the affective sensing multimodal human sensing community have
shown promising results using eXtreme Gradient Boosting (XGBoost) as a machine learning
technique for classification [106]. We follow their finding of using XGBoost and verify
this approach, by training and evaluating a Support Vector Machine (SVM) with a linear
and a radial kernel, as well as a k-Nearest-Neighbors (kNN) classifier using data from
our experiment. To prevent data leakage in our machine learning pipeline, we use nested
k-fold cross-validation with 10 inner folds as the validation set and 10 outer folds as the
testing set [107], taking bias and variance of our models into account [108] and therefore
provide reliable results. The data is split subject-wise. For our binary-classification task, we
report Area Under the Receiver Operating Characteristic Curve (AUC) and F1-score. For
our three-level classification task, we provide a confusion matrix. The predictive power of
our regression task is expressed as R2 and Mean Squared Error (MSE). For hyperparameter
optimization, we run a tree-structured parzen estimator on the validation of every inner
fold [109] and optimize for maximal AUC for our classification tasks and maximize R2 for
our regression task. We optimize for the number of estimators, depth, lambda and learning
rate for XGBoost, gamma and C for radial basis SVM, C for linear SVM and neighbors and
weight function for kNN. As input for our classification, we use the same windows used
for our statistical tests, described in Sections 2.12 and 2.11. For training, validation and
testing we use feature windows only recorded within the phases described in Section 2.13.
In addition to our experiment, using different groups of unimodal and multimodal inputs,
we report the feature importance of our XGBoost classifier to explain our model behavior.
We use gain, weight and coverage for every feature and report the importance of the top-5
features for every modality.

3. Results

We structure our results similar to the sections in Section 2: After giving an overview
of the recorded data in Section 3.1, we present the results of the statistical evaluation for
subjective measurements in Section 3.2, for performance measurements in Section 3.3, for
all physiological signals for n-back and k-drive in Sections 3.4–3.6. Behavioral statistical
results are presented in Section 3.8. The personality traits of our cohort are presented in
Section 3.8. We visualize our features representations using t-SNE in Section 3.9. The results
of our machine learning experiments are presented in Section 3.10.
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3.1. ADABase and Timescales

Each subject participated in both experiments described in Sections 2.3 and 2.4 in
random order, resulting in 25 subjects with n-back as the first experiment and 26 subjects
with k-drive as the first experiment. Due to the malfunction of the eye-tracking hardware,
for six subjects the eye-tracker data is missing. A defect in the camera trigger line led to
synchronization issues of video data with the rest of the test system and some subjects
refused the recording of video signals with privacy concerns. We excluded the video data
for 17 subjects, leading to missing action units for these subjects. For two subjects the skin
temperature data saturated at maximum, caused by defective sensors connectors. For some
subjects Eindhoven lead II of the ECG was noisy or the electrode fell off. As an alternative,
we used the other lead for R-peak detection and feature computation. If temporary errors
occurred during the recording (e.g., the subjects moved their face during the questionnaire
phase outside the recording area), we drop only these specific intervals using our artifact
correction mechanisms described in Section 2.11.

Figure 8 visualizes features computed for one session of a sample subject during
both experiments. The color-coded background data highlights the phases on different
timescales. Every test phase is proceeded by at least one training phase, for all tests
of n ∈ {1, 2, 3}-back for visual-only and audiovisual task loads, 1-drive for single task
load settings and k ∈ {2, 3}-drive dual task loads. The n-back baseline 1, and k-drive
baseline 1 were resting phases of at least 5 min, where the subject was instructed to rest
without any interference or additional tasks. During the second n-back baseline phase
the subject observed an n-back sequence without any task imposed on the subject. In
the second k-drive baseline an autonomous driving simulation was presented without
any task imposed on the subject. The third k-drive baseline was introduced to the iPad
infotainment application, used for dual-task load scenarios of k-drive. As introduced in
Sections 2.3 and 2.4 these baselines enable the study of distribution shifts in future work.
Salivary Cortisol, NASA-TLX and recall for the primary and secondary tasks are recorded
after test phases or in the case of salivary biomarkers at time points when the test schedule
required it. In addition to the fine-grained phases used in this publication, we would like to
highlight the ability of our published ADABase to learn representations of cognitive load on
different timescales. Starting with a continuous prediction, only limited by physiological
processes in the test subject, followed by more medium-grained task-specific phases, that
combine training and testing, to coarse-grained phases that differentiate between single
and dual task loads tasks.

3.2. Subjective Evaluation

After every testing phase, we asked the subject to answer a NASA-TLX questionnaire.
We conducted t-tests of raw NASA-TLX values between 1-back and 2-back, 2-back and
3-back and 1-back and 3-back and the same for all levels of k-drive. All Holm-adjusted
p-values were with p < 0.001 below the level of significance α = 0.05 to reject the null
hypothesis (two-sided mean alternative) and show a significant change across the levels
conducted in this study. Figure 9 shows the means of all six TLX dimensions during differ-
ent phases of the experiments and Figure 10 shows boxplots of weighted and unweighted
(raw) TLX values and the raw ratings for every dimension and level.
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Figure 8. Visualization of the complete recording session for a single subject. Starting at the top-row:
Continuously computed action units sampled with 25 fps, that are summed over 1-minute intervals
and visualized as colors by occurrence (darker colors show higher activation). Followed by cortisol
measurements, performance ratings and subjective feedback as NASA-RTLX scores. The last four
rows visualize computed features with a rolling window of 2 min and step-size of 5 s, from eye-
tracker, ECG (blue: HR, red: RMSSD), respiration and skin temperature measurements. Aligned
with the overall time axis the different phases are presented as background colors. As described in
Sections 2.2–2.4 the experiments (n-back and k-drive) are in randomized order. In this example, the
n-back test was conducted first, followed by the questionnaire phase, and the driving phase. The
n-back protocol was conducted as described in Figures 6 and 7: Single task n-back first in three levels,
followed by dual-task n-back in three levels with training and testing phase. This subject did not
repeat any training. If obvious measurement artifacts occurred during acquisition, the corresponding
features were removed for downstream evaluations. This example shows corruption in the features
of the eye tracker, as the subject’s head moved outside the recording region of our eye tracker during
the phase between n-back and k-drive.
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Figure 9. The three plots summarize the NASA-TLX answers of all six dimensions as the mean over
all subjects. From left to right: Mean answers during single n-back, dual n-back and k-drive tasks.
Reported numbers are not weighted and reflect the raw task load index described in Section 2.6. This
radar visualization shows that mental, frustration, effort, performance and temporal dimensions
increase with cognitive load tasks of higher intensities (n ∈ {1, 2, 3}-back) and dual vs. single, while
the change in the subjectively perceived physical load is, compared to these dimensions, smaller. For
k-drive of dual and single tasks, every NASA-RTLX dimension increases with a higher CL.
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Figure 10. Results of subjective feedback for n-back and k-drive tests of increasing intensities of
cognitive load. The first row shows the weighted NASA-TLX ratings during visual-only stimuli
n-back, audiovisual n-back stimuli and single-task-only 1-drive and dual-task 2-drive and 3-drive
tests. The second row shows the unweighted raw-TLX scores. The last row visualized the raw rating
for every of the six NASA-TLX dimensions.

3.3. Performance

For every level in our single and dual task n-back tests and all our k-drive tests, we
conducted t-tests for both recall and precision of the visual performance between the first
level and the second level, the second level and the third level, as well the first and the
third level. All Holm-adjusted p-values are smaller than 0.001. We report primary and
secondary task performance and reaction time for all tests in Figure 11.
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Figure 11. Recorded performance metrics during all conducted tests. For single-task n-back per-
formance, we report F1-score, recall, precision and reaction time (first column). If a dual task was
executed, we report these results as an additional box for the corresponding level (second column).
For k-drive we report the same metrics for the single-task tests. As we only counted positive hits for
our second task during dual-task k-drive, we report recall as a performance metric. (last column)

3.4. Biomarkers

We report the relative median values and quantiles of the raw non-normalized cor-
tisol measurements in Figure 12. The null hypothesis of equal means before starting the
experiment (Pre-00) and right after each levels of n-back (single and dual) and k-drive
(Post-00) could not be rejected with a sufficient level of significance. This result is in line
with other studies analyzing cortisol after phases of high cognitive load [34]. In addition to
the reported relative values of n-back and k-drive tests, we report the cortisol values over
the absolute daytime, showing the circadian variation of cortisol of the sample population.
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Figure 12. The start of each experiment was executed with a given daytime schedule described in
Section 2.5. Some subjects required more time for task comprehension or were repeating the training
phase multiple times. This leads to different absolute day-times of cortisol measurements while
complying with the relative schedule described in Section 2.5. The first plot shows all measured
cortisol values, throughout the day (accumulated one hour intervals). The second plot visualizes the
cortisol values for the n-back experiment, while the last plot shows the results for k-drive.
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3.5. Physiological Features—n-Back

For statistical evaluation of features measured during n-back (n-back: Section 2.4,
features: Section 2.8) levels, we are using the evaluation protocol described in Section 2.12.
We analyze our features extracted from the biosignal modalities and the eye tracker data in
Table 4. The results of the omnibus test showed a significant change for features extracted
from ECG, EMG, PPG, skin temperature, respiration and eye tracking data during resting
baseline, observation only baseline and all n-back tests with single- and dual-task load.
Comparing the features during the observation only baseline and the medium level 2-back
and high level 3-back cognitive load task as post hoc experiment and evaluation of an
increasing or decreasing mean for significant changes shows an increased heart rate, a
decreased heart rate variability, a decreasing skin temperature, decreasing mean respiration
rate and an increasing IPA. For the EDA activity we could not reject the null hypothesis for
all repeated measures. We selected the baseline tutorial phase for our post hoc test because
no cognitive load was introduced during this phase, while the subject was still observing
an n-back sequence with similar lighting and pose conditions. All results are reported in
Table 4.

3.6. Physiological Features—k-Drive

We evaluate our measurements of features during all levels of k-drive following our
statistical evaluation protocol desribed in Section 2.12. Similar to our statistical evaluation
in Section 3.5 we see a change for features extracted from ECG, EMG, skin temperature,
respiration and eye tracker data using our ANOVA for repeated measure evaluation
protocol described in Section 2.12. In contrast, the PPG showed no significance, while
the EDA showed a significant change. For our omnibus tests, we used all three baselines
described in Section 2.3 and all levels k ∈ {1, 2, 3}-drive. The post hoc test using the second
baseline with driving simulation observations only and all three levels shows similar to
the statistical evaluation of the n-back experiment an increasing heart rate, a decreasing
heart rate variability, a decreasing skin temperature and an increasing IPA. All results are
reported in Table 5.

3.7. Behavioral Features—n-Back and k-Drive

For both experiments n-back and k-drive, we extract action units from facial videos as
described in Section 2.10. We evaluated the computed features using the same statistical
setup as described in Sections 3.5 and 3.8 and report the results for our n-back test in
Tables 6 and 7. The statistical evaluation of our behavioral features showed a significant
change in the number of activations of outer brow raiser (AU2), chin raiser (AU17), lip
tightener and pressor (AU23 and AU24) during n-back and k-drive for our omnibus test.
Our n-back tests change the number of activations of brow lowerer (AU4), cheek raiser
(AU6), lip corner depressor (AU15) and closed eyes (AU43). The k-drive tests showed a
significant change in inner brow raiser (AU1), upper lid raiser (AU5), lip corner puller
(AU12), dimpler (AU14), lip strecher (AU20) and jaw drops (AU26).

3.8. Personality Traits

When characterizing stress responses using multimodal physiological data, per-
sonality traits play an important role [61]. Figure 13 reports openness, conscientious-
ness, extraversion, agreeableness and neuroticism of our study population. As an addi-
tional test, we computed the spearman correlation between the mean overall NASA-TLX
score of all levels for one subject and the reported personality and found r = −0.401,
CI = [−0.61,−0.14] for openness, r = 0.053, CI = [−0.23, 0.32] for conscientiousness,
r = −0.082, CI = [−0.35, 0.2] for extraversion, r = 0.164, CI = [−0.12, 0.42] for agreeable-
ness and r = −0.019, CI = [−0.29, 0.26] for neuroticism, with r as correlation coefficient
and CI as 95% confidence intervals around r.
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Table 4. Statistical evaluation of biosignal and eye-tracker based features during n-back experiment.
The first column denotes the modalities, followed by the computed feature. The features are described
in Section 2.8 for all bio-psychological features and all eye-tracker features are described in Section 2.9.
The omnibus test and post hoc analysis are described in Section 2.12. All reported p-values are adjusted
to compensate for multiple comparison problem using Bonferroni-Holm correction. For features that
show a significant change (p-value below α = 0.05) in the omnibus test, we conducted a two-sided t-test
between a baseline phase and the 2/3-back for the visual-only and dual-task load. If the result of the
post hoc test is significant, we report if the mean feature value is increasing (↑) or decreasing (↓).

Modality Feature Post Hoc Adjusted p-Values
Omnibus

Test Baseline Tutorial

2-back
Single

3-back
Single

2-back
Dual

3-back
Dual

ECG HR <0.001 0.001 (↑) <0.001 (↑) 0.181 1.000
SDSD <0.001 1.000 0.008 (↓) 0.563 1.000
SDNN <0.001 0.010 (↓) 0.244 0.174 1.000

RMSSD <0.001 1.000 0.008 (↓) 0.563 1.000
LF <0.001 0.011 (↓) 0.003 (↓) 0.018 (↓) 1.000
HF 0.001 † 1.000 1.000 1.000 1.000
LFn <0.001 † <0.001 (↓) 0.161 1.000 1.000
HFn <0.001 † <0.001 (↑) 0.161 1.000 1.000

LF/HF 0.001 † <0.001 (↓) 0.210 0.670 1.000
SD1/SD2 <0.001 1.000 1.000 1.000 1.000

PSS <0.001 0.531 1.000 1.000 1.000
PIP <0.001 0.111 1.000 0.057 1.000

PPG PR 0.029 1.000 1.000 1.000 1.000

EDA µ
Amplitude
SCR 0.186 - - - -

∑W
t SCL′(t) 0.130 † - - - -
#Peaks

SCR /W 0.604 - - - -
µRise

SCR 0.132 - - - -

µ
Recovery
SCR 0.396 † - - - -

EMG #Onsets/W 0.271 - - - -
#Active/W 0.132 - - - -

max(EMG) 0.029 1.000 1.000 1.000 1.000
fRMS 0.189 - - - -

SKT µT 0.008 0.013 (↓) 0.125 0.144 1.000
σT 0.008 0.013 (↓) 0.125 0.144 1.000

minT 0.017 0.016 (↓) 0.080 0.059 1.000
maxT 0.192 - - - -

∑ T′(t)/T <0.001 0.987 0.563 0.031 (↑) 0.008 (↑)
RSP µBR <0.001 <0.001 (↑) 0.129 1.000 1.000

σBR 0.060 † - - - -
µ[E−I] 0.271 - - - -

EYE #F>100/W <0.001 1.000 1.000 1.000 1.000
#F66−150/W 0.153 † - - - -
#F300−500/W <0.001 1.000 1.000 1.000 1.000
#F>1000/W <0.001 1.000 1.000 0.016 (↓) 1.000

µFD>100 0.035 1.000 1.000 0.245 0.085
medFD>100 0.006 1.000 0.676 0.128 1.000

#S/W <0.001 1.000 1.000 1.000 1.000
µSA <0.001 1.000 0.032 (↓) 1.000 1.000
µSD 0.604 - - - -

medSD <0.001 † 1.000 1.000 1.000 1.000
#B/W 0.159 - - - -
µBD <0.001 1.000 1.000 1.000 1.000

medBD 0.076 - - - -
µPS 0.076 - - - -
IPA <0.001 <0.001 (↑) <0.001 (↑) <0.001 (↑) <0.001 (↑)

† Non-parametric Friedman test.
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Table 5. Tabular view of statistical results for features computed during k-drive, indicating significant
changes, for multiple modalities. All statistical tests are conducted according to Section 2.12. p-values
are adjusted using Bonferroni-Holm. Post Hoc tests are performed for k ∈ {1, 2, 3}-drive levels and
driving tutorial baseline.

Modality Feature Post Hoc Adjusted p-Values
Omnibus

Test Baseline Tutorial

1-drive 2-drive 3-drive
ECG HR <0.001 0.076 <0.001 (↑) <0.001 (↑)

SDSD 0.003 0.008 (↓) 0.001 (↓) <0.001 (↓)
SDNN <0.001 0.002 (↓) <0.001 (↓) <0.001 (↓)

RMSSD 0.003 0.008 (↓) 0.001 (↓) <0.001 (↓)
LF 0.074 - - -
HF 0.201 - - -
LFn 0.010 1.000 1.000 1.000
HFn 0.010 1.000 1.000 1.000

LF/HF 0.243 † - - -
SD1/SD2 <0.001 1.000 1.000 1.000

PSS <0.001 1.000 0.438 1.000
PIP <0.001 1.000 1.000 1.000

PPG PR 0.418 - - -

EDA µ
Amplitude
SCR

0.044 1.000 0.806 0.264

∑W
t SCL′(t) 1.000 - - -
#Peaks

SCR /W <0.001 1.000 0.012 (↑) 0.070
µRise

SCR 0.022 1.000 0.110 1.000

µ
Recovery
SCR

0.013 † 0.102 1.000 1.000

EMG #Onsets/W 0.001 † 1.000 1.000 0.176
#Active/W 0.074 - - -

max(EMG) 0.201 - - -
fRMS <0.001 † 1.000 <0.001 (↑) <0.001 (↑)

SKT µT <0.001 0.008 (↓) <0.001 (↓) 0.004 (↓)
σT <0.001 0.008 (↓) <0.001 (↓) 0.004 (↓)

minT <0.001 0.004 (↓) <0.001 (↓) 0.005 (↓)
maxT <0.001 <0.001 (↓) <0.001 (↓) <0.001 (↓)

∑ T′(t)/T 0.002 <0.001 (↑) 0.657 0.233
RSP µBR 0.001 1.000 1.000 1.000

σBR 0.031 † 1.000 1.000 1.000
µ[E−I] 1.000 - - -

EYE #F>100/W <0.001 1.000 <0.001 (↓) <0.001 (↓)
#F66−150/W <0.001 0.772 <0.001 (↓) <0.001 (↓)
#F300−500/W <0.001 † 0.672 1.000 1.000
#F>1000/W 0.002 † 1.000 1.000 1.000

µFD>100 <0.001 0.051 <0.001 (↑) <0.001 (↑)
medFD>100 <0.001 1.000 0.001 (↑) 0.001 (↑)

#S/W <0.001 † 1.000 0.712 0.244
µSA <0.001 <0.001 (↓) <0.001 (↑) <0.001 (↑)
µSD 0.418 † - - -

medSD 0.020 † 0.404 1.000 1.000
#B/W <0.001 0.184 0.089 0.048 (↓)
µBD 0.025 0.020 (↑) 1.000 1.000

medBD 0.006 0.003 (↑) 1.000 1.000
µPS <0.001 0.173 0.449 1.000
IPA <0.001 1.000 <0.001 (↑) <0.001 (↑)

† Non-parametric Friedman test.
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Table 6. Behavioral changes in FACS action unit for 2/3-back tests for a single and dual-task load.
Every action unit occurrence is counted over every frame within a given window.

Modality Feature Adjusted p-Values
Omnibus

Test Baseline Tutorial

2-back
Single

3-back
Single

2-back
Dual

3-back
Dual

AUS #AU1 0.107 - - - -
#AU2 <0.001 1.000 1.000 1.000 1.000
#AU4 <0.001 1.000 0.312 1.000 0.966
#AU5 <0.001 1.000 1.000 0.312 0.741
#AU6 0.509 - - - -
#AU7 0.722 - - - -
#AU9 0.509 - - - -

#AU10 0.509 - - - -
#AU11 0.509 - - - -
#AU12 0.987 - - - -
#AU14 0.987 - - - -
#AU15 0.004 1.000 0.015 (↓) 0.006 (↓) 0.002 (↓)
#AU17 0.009 0.587 0.001 (↓) 0.025 (↓) 0.001 (↓)
#AU20 0.294 - - - -
#AU23 0.001 1.000 1.000 1.000 1.000
#AU24 0.009 1.000 1.000 1.000 1.000
#AU25 0.509 - - - -
#AU26 0.091 - - - -
#AU28 0.722 - - - -
#AU43 0.002 1.000 1.000 0.011 (↑) 0.206

Table 7. Changes in action units during k ∈ {1, 2, 3}-drive test. Increase (↑) and decrease (↓) indicate
data distribution shift between single (1-drive) and dual-task (2/3-drive) load.

Modality Feature Adjusted p-Values
Omnibus

Test Baseline Tutorial

1-drive 2-drive 3-drive
AUS #AU1 <0.001 1.000 1.000 1.000

#AU2 <0.001 0.606 0.023 (↑) 0.073
#AU4 0.283 - - -
#AU5 <0.001 0.051 <0.001 (↑) <0.001 (↑)
#AU6 0.268 † - - -
#AU7 0.554 - - -
#AU9 0.164 - - -

#AU10 0.078 - - -
#AU11 0.867 - - -
#AU12 0.003 1.000 0.003 (↓) 0.027 (↓)
#AU14 0.043 † 1.000 0.049 (↓) 0.073
#AU15 0.148 - - -
#AU17 0.003 1.000 1.000 1.000
#AU20 0.001 0.002 (↓) 0.075 0.314
#AU23 0.011 0.888 0.350 0.252
#AU24 0.043 1.000 0.008 (↑) 0.728
#AU25 0.867 - - -
#AU26 0.006 1.000 0.706 1.000
#AU28 0.114 - - -
#AU43 0.268 - - -

† Non-parametric Friedman test.
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Figure 13. Big-Five personality traits: openness, conscientiousness, extraversion, agreeableness,
neuroticism visualized as histogram and radar plot of mean values.

3.9. Representations

Using our extracted biosignal features, we have computed t-SNE representations
with two components of different feature subsets. Representations are computed for all
participating subjects. The colors indicate the coarse-grained binary classes, where blue
contains the ground-truth labels n-back baselines, k-drive baselines, 1-back single task and
level 1 drive task and red indicate phases with high cognitive load: 2/3-back single task,
n ∈ {1, 2, 3}-back dual-task load and 2/3-drive tests. In other words: red indicates a high
cognitive load, while blue indicates a low or no cognitive load. The last plot shows as a
color map the regression target described in Section 2.13, with a darker blue for higher
scores and a lighter green for lower scores. The separation of clusters visualized in Figure 14
as 2d t-SNE components of our high dimensional feature vector, described in Section 2.8
are a promising indication of useful representations for classification tasks in Section 3.10.
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t-SNE Component #2

Physiological Features

t-SNE Component #2
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Figure 14. Visualization of 2-component t-SNE representations for computed biosignal- and eye-
tracker-based features. The first plot shows t-SNE representation with eye-tracker features only, the
second plot depicts only biosignal-based features and the third plot visualizes the combinations of
both feature sets. The last plot presents the same representations from the third plot, but color coded
as a linear combination of reaction time, recall and NASA-TLX score as color intensity.

3.10. Machine Learning

The automatic detection of cognitive load using computerized programs is a key ingre-
dient for deployment in semi-autonomously driving cars. We conduct several experiments
described in Section 2.13 using the machine learning pipeline described in Section 2.14
and XGBoost as model. Our first experiment determines the effect of using features from
different and multiple modalities as input for binary task classification. The results are
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reported in tabular form in Table 8. In addition, we train the models on various subsets of
our collected data, containing single- and/or dual-task load n-back tests, single- and/or
dual-task load k-drive tests and combinations of both. The AUC of models trained on the
combination of all biosignal features is 0.81± 0.05, for the combinations of all n-back and
k-drive tests. Models using only PPG as input achieve a AUC of 0.55± 0.06, using only
respiration 0.65± 0.06, using only the trapezius activity 0.67± 0.06, using the electrical
activity of the heart 0.75± 0.06 and models using the electrodermal activity achieve a
AUC 0.68± 0.04. Using exclusively features based on action units data lead to a AUC of
0.69± 0.07. Models using solely features based on eye tracker data achieved a AUC of
0.84± 0.05. Models trained and evaluated on the combination of features from biosignals,
action units and eye tracker data outperform unimodal features or other combinations
with a AUC of 0.90± 0.04. This finding holds for single-and-dual-task n-back and k-drive
tests. Another noteworthy finding is that eye tracker features perform equally well for all
conducted tasks with a AUC of 0.86± 0.04 for single-and-dual-task n-back test and a AUC
of 0.89± 0.06 for single-and-dual-task k-drive test, while other modalities such as EDA
perform well for k-drive with 0.88± 0.03 but have a dropping performance for models
trained and evaluated on single-and-dual task n-back tests with a AUC of 0.71± 0.08.

Table 8. Tabular data visualization of F1-Score and AUC scores for binary classification task. Rows
contain various sets of features used for classification: Using only one modality (ECG, EDA, etc.) or
combinations of various modalities: Bio containing all biosignal modalities, described in Section 2.8,
AU’s containing all action units extracted from video data and Eye containing all eye tracker features.
The columns are separated into experiments described in Sections 2.3 and 2.4 and the combination
of both experiments. The different groups for this two-level classification, detecting low and high
cognitive load are described in Section 2.13. The second-level hierarchical columns differentiate
between single and dual-task load (e.g., for the n-back task: visual vs. visual + auditive) and the
combinations of similar cognitive load levels by intensities in Comb., described in Section 2.13. All
results were acquired using the evaluation pipeline described in Section 2.14 with nested cross-
validation protocol and XGBoost as model for classification.

n-back k-drive Both
Single Dual Comb. Single Dual Comb. Single Dual Comb.

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

PPG 0.61

± 0.10

0.66

± 0.09

0.48

± 0.21

0.61

± 0.09

0.53

± 0.10

0.60

± 0.09

0.58

± 0.12

0.65

± 0.12

0.59

± 0.07

0.61

± 0.12

0.53

± 0.12

0.57

± 0.06

0.52

± 0.16

0.62

± 0.09

0.54

± 0.07

0.57

± 0.04

0.52

± 0.09

0.55

± 0.06

Respiration 0.61

± 0.14

0.71

± 0.13

0.64

± 0.12

0.69

± 0.10

0.62

± 0.11

0.65

± 0.12

0.61

± 0.11

0.68

± 0.11

0.65

± 0.11

0.72

± 0.08

0.70

± 0.10

0.76

± 0.10

0.64

± 0.05

0.65

± 0.04

0.62

± 0.09

0.67

± 0.07

0.63

± 0.05

0.65

± 0.06

EMG 0.62

± 0.09

0.66

± 0.08

0.61

± 0.09

0.60

± 0.10

0.62

± 0.08

0.62

± 0.05

0.65

± 0.11

0.69

± 0.11

0.69

± 0.09

0.75

± 0.09

0.69

± 0.08

0.73

± 0.05

0.60

± 0.18

0.66

± 0.05

0.62

± 0.10

0.66

± 0.05

0.61

± 0.10

0.67

± 0.06

ECG 0.67

± 0.11

0.73

± 0.11

0.67

± 0.08

0.73

± 0.06

0.64

± 0.14

0.71

± 0.10

0.71

± 0.15

0.87

± 0.14

0.73

± 0.07

0.88

± 0.10

0.79

± 0.09

0.87

± 0.07

0.67

± 0.11

0.74

± 0.09

0.70

± 0.08

0.78

± 0.07

0.70

± 0.07

0.75

± 0.06

EDA 0.63

± 0.07

0.69

± 0.10

0.69

± 0.06

0.76

± 0.08

0.67

± 0.10

0.71

± 0.08

0.93

± 0.11

0.96

± 0.06

0.87

± 0.12

0.97

± 0.04

0.79

± 0.04

0.88

± 0.03

0.72

± 0.07

0.75

± 0.06

0.73

± 0.08

0.81

± 0.05

0.63

± 0.05

0.68

± 0.04

Biosignals 0.70

± 0.13

0.79

± 0.11

0.70

± 0.09

0.78

± 0.08

0.69

± 0.07

0.77

± 0.06

0.88

± 0.08

0.97

± 0.07

0.92

± 0.04

1.00

± 0.01

0.86

± 0.06

0.96

± 0.03

0.73

± 0.07

0.81

± 0.07

0.76

± 0.08

0.87

± 0.06

0.74

± 0.05

0.81

± 0.05

Eye Tracker 0.79

± 0.08

0.92

± 0.05

0.74

± 0.08

0.82

± 0.10

0.76

± 0.06

0.86

± 0.04

0.68

± 0.12

0.82

± 0.13

0.88

± 0.07

0.96

± 0.04

0.79

± 0.05

0.89

± 0.06

0.73

± 0.11

0.86

± 0.07

0.78

± 0.06

0.90

± 0.04

0.73

± 0.07

0.84

± 0.05

Action Units 0.60

± 0.13

0.68

± 0.06

0.70

± 0.06

0.72

± 0.10

0.54

± 0.14

0.70

± 0.06

0.64

± 0.15

0.74

± 0.09

0.68

± 0.12

0.78

± 0.11

0.71

± 0.06

0.77

± 0.08

0.52

± 0.12

0.65

± 0.09

0.59

± 0.16

0.74

± 0.08

0.64

± 0.10

0.69

± 0.07

Bio, AU’s 0.70

± 0.14

0.80

± 0.11

0.71

± 0.11

0.85

± 0.06

0.70

± 0.08

0.80

± 0.06

0.89

± 0.07

0.97

± 0.05

0.91

± 0.05

0.99

± 0.03

0.85

± 0.07

0.96

± 0.03

0.73

± 0.05

0.81

± 0.05

0.80

± 0.08

0.90

± 0.06

0.73

± 0.08

0.84

± 0.06

Eye, AU’s 0.80

± 0.09

0.93

± 0.06

0.78

± 0.06

0.87

± 0.07

0.77

± 0.06

0.87

± 0.05

0.68

± 0.20

0.88

± 0.11

0.90

± 0.06

0.98

± 0.03

0.80

± 0.09

0.91

± 0.07

0.75

± 0.08

0.87

± 0.05

0.81

± 0.07

0.91

± 0.04

0.77

± 0.05

0.86

± 0.05

Bio, Eye 0.82

± 0.07

0.93

± 0.06

0.75

± 0.12

0.86

± 0.09

0.78

± 0.06

0.87

± 0.05

0.91

± 0.06

0.97

± 0.05

0.92

± 0.04

0.99

± 0.02

0.87

± 0.09

0.95

± 0.04

0.81

± 0.08

0.92

± 0.06

0.83

± 0.08

0.92

± 0.06

0.81

± 0.06

0.89

± 0.04

Bio, Eye, AU’s 0.82

± 0.09

0.93

± 0.06

0.78

± 0.09

0.88

± 0.09

0.77

± 0.07

0.88

± 0.05

0.88

± 0.09

0.96

± 0.06

0.94

± 0.05

0.99

± 0.01

0.89

± 0.06

0.96

± 0.03

0.84

± 0.06

0.92

± 0.06

0.83

± 0.05

0.92

± 0.04

0.82

± 0.06

0.90

± 0.04
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To further study the impact of all acquired features on classification performance
for our binary classification task, we analyze the models that used all tasks, levels and
features from all modalities for training. As described in Section 2.14 we use XGBoost for
classification and can therefore express the feature contribution to the final classification
as gain metric, that implies the relative contribution of the corresponding features to the
final prediction of the model. Figure 15 shows the gain importance of the top features for
each modality used in our classification task, showing contributions form IPA and µPS, as
high contributing features from the eye tracker modality, the change of skin conductance
within a time interval as a feature with high gain in our XGBoost model and both heart
rate and heart rate variability based features extracted from the electrical activity of the
heart. In Figure A4, we present a supplementary analysis of the feature importance of our
trained models.
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Figure 15. XGBoost provides among others gain as feature importance metric. We report the features
with the five highest gain importance values, if available. Gain captures the feature importance
by measuring the relative contribution of each feature in every tree to the final predictions, where
higher values compared to other features indicate higher importance. Gain values are reported
from models reported in Table 8 with bio-psychological features, action units and eye tracker-based
features on combined (dual and single task load) with data from both experiments (10-fold-nested-
cross-validation).

In addition to our low vs. high cognitive load task, we introduced a classification
task for multiple intensities of cognitive load in Section 2.13. Table 9 visualizes confusion
matrices across three different sets of features, using only biosignals, exclusively utilizing
eye tracker-based features and a combination of eye tracker-based features, biosignals and
action units. It becomes apparent that the detection performance drops significantly com-
pared to simple binary classification only differentiating between low and high cognitive
load, while low-load is still detected in 92 percent correctly for k-drive using all features,
high-load is often confused with medium-load and only detects 69 percent correctly. This
holds for different subsets of features and tasks. We can observe that the identification of
multiple levels, degrades performance, leading to an F1-score of 0.72± 0.09 for using all
features for the k-drive test.

Previous literature found that XGBoost models performed best for the detection of
drivers’ distraction from physiological and visual signals [106]. We confirm these results
by training a SVM with linear and radial basis functions and a kNN classifier. All results
are reported in Table 10.

In addition to our classification tasks, we train a regression model using a XGBoost
regressor. The regression targets are described in Section 2.13. Using only performance-
based targets, we were able to train a model with an R2 score of 0.51± 0.07, using subjective
ratings acquired using NASA-TLX scores, we get 0.48± 0.08, and for a linear combination
(average of both), we achieve a R2 score of 0.54± 0.14. All results are presented in Table 11.



Sensors 2023, 23, 340 29 of 43

Table 9. Results of three-level-intensity classification tasks, treating different levels as separate classes
(columns). For three different combinations of features, based on biosignals alone, only eye-tracker
data and the combination of features based on multiple modalities: biosignals, eye-tracker-based
action units (rows). We report the confusion matrix for the conducted experiments, using only n-back
levels, only Drive levels and a combination of both experiments. The grouping of different phases for
all experiments is described in Section 2.13. The rows correspond to the true class.

n-back k-drive Both
Low Med. High Low Med. High Low Med. High

Bi
os

ig
na

ls Low 0.57

± 0.23

0.17

± 0.12

0.26

± 0.14

0.82

± 0.07

0.08

± 0.07

0.09

± 0.06

0.55

± 0.10

0.21

± 0.05

0.25

± 0.08

Medium 0.29

± 0.15

0.49

± 0.12

0.22

± 0.18

0.09

± 0.16

0.51

± 0.19

0.40

± 0.20

0.24

± 0.13

0.42

± 0.08

0.34

± 0.07

High 0.21

± 0.10

0.24

± 0.05

0.55

± 0.09

0.07

± 0.11

0.51

± 0.26

0.42

± 0.23

0.22

± 0.08

0.27

± 0.06

0.51

± 0.07

Ey
e

Tr
ac

ke
r Low 0.86

± 0.12

0.07

± 0.11

0.06

± 0.08

0.84

± 0.11

0.07

± 0.06

0.09

± 0.06

0.77

± 0.16

0.09

± 0.08

0.13

± 0.09

Medium 0.17

± 0.22

0.49

± 0.12

0.33

± 0.19

0.00

± 0.00

0.70

± 0.19

0.30

± 0.19

0.15

± 0.16

0.55

± 0.17

0.31

± 0.14

High 0.09

± 0.07

0.32

± 0.05

0.58

± 0.05

0.02

± 0.06

0.27

± 0.22

0.71

± 0.22

0.07

± 0.07

0.33

± 0.04

0.60

± 0.08

Bi
o,

Ey
e,

A
U

’s Low 0.77

± 0.17

0.10

± 0.09

0.13

± 0.11

0.92

± 0.07

0.02

± 0.04

0.06

± 0.05

0.81

± 0.12

0.08

± 0.07

0.11

± 0.06

Medium 0.13

± 0.12

0.67

± 0.22

0.21

± 0.17

0.03

± 0.05

0.71

± 0.18

0.26

± 0.14

0.18

± 0.15

0.50

± 0.09

0.32

± 0.10

High 0.08

± 0.05

0.27

± 0.06

0.65

± 0.07

0.03

± 0.06

0.31

± 0.17

0.66

± 0.19

0.07

± 0.06

0.32

± 0.05

0.61

± 0.05

Table 10. Comparison of different classifiers for all binary tasks. All classifiers have been trained
using the complete set of features: bio-signals, eye-tracker data and action units from videos. The
results in this table correspond to the last row in Table 8 for XGBoost based classification. kNN is a
k-Nearest-Neighbor classifier, SVM (rbf) a support vector machine with a radial kernel and SVM (lin)
is a linear support vector machine. All results have been acquired using nested-cross-validation.

n-back k-drive Both
Single Dual Comb. Single Dual Comb. Single Dual Comb.

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

kNN 0.71

± 0.09

0.78

± 0.11

0.69

± 0.11

0.72

± 0.09

0.71

± 0.09

0.76

± 0.06

0.71

± 0.10

0.86

± 0.10

0.83

± 0.07

0.94

± 0.06

0.80

± 0.05

0.90

± 0.04

0.72

± 0.05

0.79

± 0.08

0.76

± 0.07

0.84

± 0.06

0.75

± 0.03

0.81

± 0.03

XGB 0.82

± 0.09

0.93

± 0.06

0.78

± 0.09

0.88

± 0.09

0.77

± 0.07

0.88

± 0.05

0.88

± 0.09

0.96

± 0.06

0.94

± 0.05

0.99

± 0.01

0.89

± 0.06

0.96

± 0.03

0.84

± 0.06

0.92

± 0.06

0.83

± 0.05

0.92

± 0.04

0.82

± 0.06

0.90

± 0.04

SVM (rbf) 0.79

± 0.11

0.85

± 0.10

0.69

± 0.13

0.79

± 0.06

0.73

± 0.07

0.83

± 0.07

0.80

± 0.14

0.89

± 0.09

0.88

± 0.10

0.96

± 0.06

0.86

± 0.08

0.92

± 0.07

0.72

± 0.10

0.81

± 0.10

0.80

± 0.06

0.88

± 0.04

0.77

± 0.05

0.84

± 0.05

SVM (lin) 0.75

± 0.13

0.76

± 0.25

0.69

± 0.16

0.75

± 0.22

0.73

± 0.08

0.82

± 0.09

0.63

± 0.35

0.72

± 0.34

0.89

± 0.06

0.97

± 0.05

0.84

± 0.04

0.92

± 0.05

0.73

± 0.09

0.81

± 0.09

0.80

± 0.06

0.87

± 0.06

0.76

± 0.05

0.84

± 0.07

Table 11. MSE and R2 score of regression tasks using performance measures, subjective feedback
and the linear combination of both as the target value for n-back, k-drive and the combination of
both experiments.

n-back k-drive Both
R2 MSE R2 MSE R2 MSE

Performance 0.50 ±0.11 0.038 ±0.008 0.53 ±0.12 0.030 ±0.009 0.51 ±0.07 0.037 ±0.005

Subjective 0.43 ±0.13 0.043 ±0.013 0.59 ±0.06 0.030 ±0.006 0.48 ±0.08 0.041 ±0.011

Combination 0.53 ±0.10 0.041 ±0.010 0.58 ±0.08 0.033 ±0.005 0.54 ±0.08 0.041 ±0.009

4. Discussion

The presented results compiled in the previous chapter of this study provide a valuable
addition to the research community assessing the effect of cognitive load using multimodal
measurements.
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With a carefully designed study population and a detailed cohort description, we
conducted two experiments with various levels of cognitive load. As a reference experi-
ment, that is comparable to experiments on cognitive load in related work, we asked the
subjects to participate in a single- and dual-task load n-back test with visual-only stimuli
and audiovisual stimuli inducing cognitive load. As an application-motivated test, we
developed the k-drive test, which is inspired by the observations of semi-autonomously
driving cars with only a few driver-car interactions required. This test imposes cognitive
load by an increasing number of events the subject needs to respond to. In addition, a
secondary task of interacting with a car infotainment system needs to be executed for
dual-task load tests.

Our study compiled a recording setup for multiple modalities. Our physiological
measurements include biosignals such as ECG, PPG, EDA, EMG, skin temperature and
respiration recordings as well as eye tracker data. We found significant changes in estab-
lished expert and statistical features during both, n-back and k-drive, which revealed an
increasing heart rate, decreasing heart rate variability, an increasing number of peaks in the
electrodermal activity, a decreasing mean skin temperature, a decreasing respiration rate
and an increasing eye tracker IPA during cognitive load compared to non-load baselines, to
name only a few. Our findings of a positive correlation between IPA and cognitive load
align with previous research that has reported promising results using IPA in cognitive
load measurement [93,110,111]. Additionally, our omnibus test has shown the statistical
significance of fixation features which also prove to be relevant in cognitive load prediction.
This finding complies with literature [30,85,112–114] In addition, we recorded behavioral
measurements based on facial videos. Using simple features based on the number of acti-
vated action units within a certain time frame, we found several action units that changed
significantly for increasing levels of task demand of n-back and k-drive levels. These
observations are supported by the findings of Yuce et al. who analyzed the link between
action units and cognitive load while driving [29]. We measured several performance metrics
for all conducted n-back and k-drive tests and levels for both secondary and primary task
loads, including precision and recall. In combination with the subjective feedback, acquired
through NASA-TLX questionnaires following every test, we found properties of human
responses, that are statistically significant across all analyzed dimensions: physiological,
behavioral, performance and subjective measurements. Comparing our collected dataset with
work analyzed by a recent review of related data collections by Seitz et al., confirms the
validity of our multimodal approach for the computerized detection of cognitive load,
differentiating our setup with a combination of multiple modalities, that all have been used
in subsets, but not as a combination during the same protocol [115]. The review of Seitz et
al. further helps to highlight our contributions, as we provide multiple potential targets for
model training and evaluation: subjective ratings, performance-based measurements and
task-specific level information, which all have been studied independently in related work
and are presented as alternatives in this work [115].

Starting with a unimodal input we train several machine learning models and present
the predictive power of each biosignal modality, eye tracker data and facial action units
separating low and high levels of cognitive load. By combining features of various modal-
ities, we present the predictive power of all biosignals, biosignals and eye tracker data
and the combination of eye tracker data, biosignal and action units, leading to an over-
all AUC, using the complete dataset consisting of collected single- and dual-task load
n ∈ {1, 2, 3}-back and k ∈ {1, 2, 3}-drive test of 0.91± 0.02. In general, we can observe that
combining modalities leads to an improvement in classification accuracy. This is especially
evident in the case of using data from both tasks and emphasizes the importance of a
multimodal approach, given that other publications report similar results [116–118]. In
addition, we report the gain feature importance values of our XGBoost classifier, showing
important contributions of features like heart rate, heart rate variability, change of skin
conductance within a given time interval, IPA, fixations and saccades of our eye tracker
data as features with strong predictive power in our binary low-vs-high cognitive load
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classification task. During n-back we were able to control the lighting conditions to be
more stable, compared to the application-motivated k-drive test. This could be a reason,
why IPA is the most important feature for the detection of cognitive load for one task
while losing importance for the other task. Nonetheless, we found eye-tracking-based
features to have a high contribution (see Appendix G) for the detection of cognitive load in
this publication. This finding is in line with work by Ahmed et al. [119], who observed,
that pupil-related features have the highest feature importance in comparison to ECG and
respiration for multimodal classification. We evaluate several machine learning techniques
using kNN, SVM with linear and radial kernel and find that XGBoost performs best using
our complete set of features. We introduced a new task separating three levels of cognitive
load: low, medium and high and found a high true positive rate for the detection of tasks
that imposed only low loads onto the subject. The separation of levels with medium and
high cognitive load leaves room for improvement in future work. It has also been observed
in other publications that separation with more than 2 classes is challenging [56,117]. One
possible reason for this could be a strong inter-subject variability, making fine-grained
classification difficult.

In addition to our classification tasks, that separate the different levels of CL imposed
onto the subject based on the task difficulty of each level, we introduced a regression task,
that used performance metrics, subjective ratings and the linear combination of both measures
as targets, resulting in a R2 score of 0.54± 0.14 for all levels and tasks. To summarize our
work, this work contributes:

• The introduction of k-drive, a novel and close-to-real-world autonomous driving task
to study cognitive load.

• The collection of physiological, behavioral, subjective and performance measurement from
51 subjects while participating in levels of increasing task difficulty with single and
dual workload scenarios.

• The extraction and evaluation of features from ECG, PPG, EMG, EDA, respiration belt,
skin temperature, eye tracker data, facial video recordings using a detailed statistical
evaluation protocol.

• The validation of the collected data using statistical methods before training and
testing of machine learning models.

• The training and evaluation of machine learning models using unimodal and multi-
modal inputs for cognitive load estimation.

• The analysis of feature importance for models trained with multiple inputs.
• The introduction of novel machine learning tasks and training of baseline models as

reference for future contributions by the affective sensing and machine learning community.

Accompanying this publication we release a subset of 30 subjects, containing the recorded
and unprocessed sensor data, questionnaires, performance metrics and NASA-TLX scores,
enabling the research community to develop and evaluate novel algorithms for cognitive
load estimation. We encourage the research community to build novel algorithms and
machine-learning methods using the released data.

Our future work will include the analysis of distribution shifts of machine learning
models that are trained on one task and evaluated on another task. An important next step
before deploying these algorithms in the wild is the analysis of the robustness and stability
of fusion techniques for multimodal machine learning when one or more modalities are
corrupted or perturbed. In direct line with this work will be the study of models trained
in an end-to-end manner such as deep neural networks using the raw input signals for
CL prediction. Another important factor is the inclusion of the reported personality traits
as input to machine learning models to improve model performances using personalized
information. In this publication, we have selected a constant window length of two minutes
for all features and all inputs, based on results from literature introduced in Section 2.8.
However, physiological responses manifest themselves on different timescales and the
optimization of both latency and window length of all extracted features during or after
phases with high CL may further improve the detection rate using computerized machine
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learning models. Given the precise measurements of time with a resolution of only 0.5 ms
for events and phases of different levels of CL and the results of this study this is a promising
direction that will be explored and described in future work.
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ADABase Autonomous Driving Cognitive Load Assessment Database
ANOVA Analysis of Variance
AUC Area Under the Receiver Operating Characteristic Curve
BFI Big Five Inventory
BFI-K Big Five Inventory-Kurz
BMI Body-Mass-Index
BR Breathing Rate
CL Cognitive Load
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ECG Electrocardiography
EDA Electrodermal Activity
EMG Electromyography
EULA End User License Agreement
FACS Facial Action Coding System
HDF5 Hierarchical Data Format V5
HPA Hypothalamic-Pituitary-Adrenal
HRV Heart Rate Variability
IPA Index of Pupillary Activity
kNN k-Nearest-Neighbors
MAD Median Absolute Deviation
MSE Mean Squared Error
NAS Negative Affection Sub-Schedule
PANAS Positive and Negative Affect Schedule
PAS Positive Affection Sub-Schedule
PMWL Perceived Mental Workload
PPG Photoplethysmogram
PRV Pulse Rate Variability
PSS Perceived Stress Scale
PTT Pulse-Transit Time
RTLX Raw Task Load Index
SCL Skin Conductance Level
SCR Skin Conductance Response
SKT Skin Temperature
SNS Sympathetic Nervous System
SQI Signal Quality Index
SVM Support Vector Machine
TLX Task Load Index
USB Universal Serial Bus
WHO World Health Organization
WM Working Memory
XGBoost eXtreme Gradient Boosting

Appendix A

To ensure the highest interoperability between various research environments, we
release the data in Hierarchical Data Format V5 (HDF5) [120] file format. Each subject is
stored in a separate file and every file contains different hdf5-groups: The META group
contains information such as sex, age and weight, SUBJECTIVE contains the feedback of
that subject, like TLX answers of every dimension of the conducted tests, PERFORMANCE
contains the metrics presented in Section 2.7 and SIGNALS contains all continuously
collected data samples, like raw electrocardiograms or raw respiration measurements.
SIGNALS also contains the extracted action units, as we do not release video data to protect
the subjects’ privacy. To save disk space and reduce transfer times, we resampled the signals
to commonly used sampling frequencies. The data is stored in a table-like format and
each sample has an associated timestamp in milliseconds starting at the beginning of the
recording. As the files contain the continuously sampled signals, the user can identify the
current experiment, using the STUDY field (n-back, k-drive, n/a), while the PHASE field
(baseline, train, test, n/a) is more fine-grained containing information about the current
task. The different levels (e.g., dual vs. single task n-back test) are contained in LEVELS.
All three encoded states of the experiment: STUDY, PHASE, LEVELS have an associated
timestamp in milliseconds to ensure fully synchronous access. As a reference python-like
pseudocode interface one might implement code similar to this:
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import pandas as pd

# Continuously recorded ECG during the nback test
data = pd.read_hdf(subject_file, "SIGNALS", mode=’r’)
data.loc[data["STUDY"] == ’nback’, ["TS", "ECG_RAW"]].dropna()

# Reaction time of subject for level 1, n-back test.
data = pd.read_hdf(subject_file, "PERFORMANCE", mode=’r’)
data.loc[
(data["PHASE"] == ’nback’) &
(data["LEVELS"] == 1), "VISUAL REACTION TIME"]

# Accessing available values for each table
pd.read_hdf(subject_file, "SIGNALS").columns

Appendix B

Depending on the task, frequent successive fixations or rapid blinking may indicate
increased cognitive load [85]. Figure A1 shows the frequency of fixations over a two-minute
cognitive load stimulus.

Figure A1. Fixation heatmaps for k-drive (left) and n-back (right) scenarios over a two-minute time
interval. Darker (red) clusters show a high frequentness of fixations at this location.

Appendix C

Motivated by related work and our findings in Section 3.8, we have appended the
ocean personality traits acquired using the BFI-K questionnaire to the feature vector for
classification. The results are presented in Table A1. Using this simple method of simply
appending the ocean scores to the feature vectors does not improve the predictive power
outside the levels of confidence and therefore remains a task for future work.

Table A1. Results of the trained classifier using the same evaluation protocol described in Section 2.14
for a XGBoost classifier with and without attached ocean scores and all biosignal, eye tracker and
action unit features.

n-back k-drive Both
Single Dual Comb. Single Dual Comb. Single Dual Comb.

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

All, OCEAN 0.84
± 0.04

0.93
± 0.04

0.75
± 0.09

0.85
± 0.07

0.75
± 0.09

0.87
± 0.06

0.91
± 0.13

0.97
± 0.05

0.94
± 0.04

1.00
± 0.01

0.90
± 0.05

0.97
± 0.02

0.83
± 0.06

0.91
± 0.05

0.83
± 0.11

0.92
± 0.06

0.80
± 0.06

0.90
± 0.02

All 0.82
± 0.09

0.93
± 0.06

0.78
± 0.09

0.88
± 0.09

0.77
± 0.07

0.88
± 0.05

0.88
± 0.09

0.96
± 0.06

0.94
± 0.05

0.99
± 0.01

0.89
± 0.06

0.96
± 0.03

0.84
± 0.06

0.92
± 0.06

0.83
± 0.05

0.92
± 0.04

0.82
± 0.06

0.90
± 0.04

Appendix D

As an addition to our description in Sections 2.3 and 2.4, describing the detailed
sequence of tests, Figure A2 shows a schematic sequence of different tests and experiments
conducted in this publication. It is closely related to our visualization of extracted features
during the complete experiment in Section 3.1.
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Baseline Visual (Single) n-back

Resting Tutorial 1-back 2-back 3-back NASA 1-back 2-back 3-back NASA

Audio-Visual (Dual) n-back

NASA

Resting Single
k-drive

Dual
k-drive

1-drive 2-drive 3-drive

NASATestResultTrainIntro.

n-back and k-drive in randomized order

Figure A2. Visualization of a complete experimentation sequence with two experiments, n-back
during single and dual-task load with three levels each, followed by a NASA-TLX questionnaire for
each dimension. The n-back test is then concluded by a weighting of every NASA-TLX dimension and
followed by a resting phase, where the subject answered the questionnaires described in Section 2.1.
During k-drive the subject is conducting three levels k ∈ {1, 2, 3} with tasks described in Section 2.3.
1-drive is conducted during a single-task load and 2/3-drive during dual-task load. The detailed
sequence of one level for n-back and k-drive is depicted in the sequence diagram below the main
diagram and holds for all n-back and k-drive tests.

Appendix E

The relationship between stress and cognition or performance has been extensively
studied over the last few years [121–123]. Our line of work is not focused on the de-
velopment of new models capturing the relationship between stress and cognition or
performance. We are therefore not conducting any experiments in this direction. However,
we asked the subjects to answer a PSS questionnaire to ensure that our sampled study
population is not chronically stressed. The results are presented in the first column of
Figure A3.

0 2 4
0.0

2.5

5.0

7.5

C
ou

nt

Mean PSS

PAS NAS
1

2

3

4

PANAS n-back

PAS NAS
1

2

3

4

PANAS k-drive

Pre-Recording Post-Recording

Figure A3. Results of PSS and PANAS questionnaires. The first column shows the distribution of
mean values of Perceived Stress Scale (PSS) answered during the questionnaire phase, indicating the
long-term stress values of the study population. The second (n-back) and third (k-drive) columns
present the mean PANAS rating for positive affection sub-schedule (PAS) and negative affection
sub-schedule (NAS) before and after the experiment.

Similar to interaction patterns between chronic or social stress and working memory
performance, studies have found interactions between cognitive load and emotions [124].
The results are presented in Figure A3. After conducting a two-sided paired t-test using
the PANAS scores, we find p-values of PAS for n-back of p = 0.110, NAS for n-back of
p = 0.043 and PAS for k-drive of p = 0.005 and NAS for k-drive of p = 0.027, which
indicates that k-drive test was a significantly more pleasing experience than n-back while
eliciting similar levels of cognitive load, as shown in Section 3.

Appendix F

As an additional reference for researchers working with this database, we present
our proposal for binary-two-level cognitive load classification, described in text form in
Section 2.13 in Table A2.
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Table A2. Tabular visualization of groups of experiments and levels used in our binary classification task.
Described in greater detail in Section 2.4 we denote the n-back baseline 1 as resting phase and n-back
baseline 2 as the tutorial phase. The baselines for k-drive are described in Section 2.3, where k-drive
baseline 1 is resting, baseline 2 is tutorial-driving-observation and baseline 3 is tutorial-music-application.

Low Cognitive Load High Cognitive Load

n-back Single Task n-back baseline 2,
visual: n ∈ {1} visual: n ∈ {2, 3}

Dual Task n-back baseline 2,
audio-visual n ∈ {1}

audio-visual:
n ∈ {2, 3}

Both Task
n-back baseline 1, 2,

visual and
audio-visual: n ∈ {1}

visual and
audio-visual:

n ∈ {2, 3}
k-drive Single Task k-drive baseline 2 single: k ∈ {1}

Dual Task k-drive baseline 2, 3 dual: k ∈ {2, 3}
Both Task k-drive baseline 1, 2, 3 k ∈ {1, 2, 3}

n-back, k-drive Single Task
n-back baseline 2,

visual n ∈ {1},
k-drive baseline 2

visual:
n ∈ {2, 3}, k ∈ 1

Dual Task
n-back baseline 2,

audio-visual: n ∈ 1
k-drive baseline 2, 3

audio-visual: n ∈ 2, 3
and dual k ∈ 2, 3

Both Task

n-back baseline 1, 2,
visual, audio-visual:

n ∈ 1 k-drive baseline
1, 2, 3

visual audio-visual:
n ∈ 2, 3 and dual

k ∈ 1, 2, 3

Appendix G

In addition to our reported gain feature importance in Figure 15 for binary classifiers
trained on data from both experiments, we want to highlight the task-specific feature
importance for classifiers trained on either n-back or k-drive tests. The XGBoost classifiers
assigned features from eye-tracker and heart-rate-based measures a high contribution to
the final classification result for our k-drive experiment shown in Figure A4. For our n-back
test (see Figure A4) features based on the electrodermal activity and the eye-tracker had the
highest contribution. It is noteworthy that the change of skin conductance levels within a
window (∑t SCL′(t)) is the highest contributing feature (also with a very high variance) to
the final classification for k-drive only classifications. We hypothesize this might be caused
by movement artifacts (even though the left hand remained at rest, right arm movement
might interfere with the electrodermal activity). However, the analysis of this effect remains
for future work. The reported gain values in Section 3.10 reflect the relative contribution
of a single feature to the final prediction. In addition to this metric, coverage remains an
important tool to measure (count) the number of observations concerned by a single feature.

Comparing the feature importance of classifiers trained only on either k-drive or n-
back indicates potential spurious correlations: Subjects in k-drive moved the dominant arm
to the infotainment system for dual-task workloads (as described in Section 2.8 the EDA
electrode is placed on the opposite side), which might increase skin conductance events per
interval. During n-back the IPA feature extracted from eye tracker data showed increased
importance. The detailed analysis of this behavior and more generally the identification of
distribution shifts and spurious correlations is up to future work.
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Figure A4. XGBoost gain feature importance of single and dual task k-drive (first row) and n-back
(second row), using binary classification (high/low CL) and XGBoost coverage feature importance
for single and dual-task n-back and k-drive in the last row. The feature-modality-groups (colors) are
ordered by the importance of the complete group with the highest importance on the right and the
lowest importance of the complete group on the left. We drop features with very low importance for
visual clarity.

Appendix H

As described in Sections 2.3, 2.4 and 2.11, we designed our acquisition setup such
that we reduce the number of instances with signal corruptions and artifacts. However,
when recording human subjects some react to certain situations differently than others.
These cases might lead to missing data, e.g., by ECG electrode fall-offs, respiration-belt
misplacement (to tight vs. to wide) or by the movements of the face outside the recording
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area of the video camera or the eye tracking region. The methods of handling these cases
are described in greater detail in Section 2.11. For completeness, we present the number of
instances used throughout our experiment for statistical evaluation and machine learning
in Table A3.

Table A3. Number of records used for statistical evaluation, after removing corrupted records
(see Section 2.11) and outliers in integer percent. The total number of subjects in this study was
51. Methodological details are presented in Section 2.11. The extracted features are described in
Sections 2.8–2.10.

Modality Feature n-back k-drive
Baseline Single Dual Baseline Levels
1 2 1 2 3 1 2 3 1 2 3 1 2 3

ECG HR 100 100 100 100 100 100 100 100 100 100 98 100 100 100

SDSD 100 100 100 100 100 100 100 100 100 100 98 100 100 100

SDNN 100 100 100 100 100 100 100 100 100 100 98 100 100 100

RMSSD 100 100 100 100 100 100 100 100 100 100 98 100 100 100

LF 100 100 100 100 100 100 100 100 100 100 98 100 100 100

HF 100 100 100 100 100 100 100 100 100 100 98 100 100 100

LFn 100 100 100 100 100 100 100 100 100 100 98 100 100 100

HFn 100 100 100 100 100 100 100 100 100 100 98 100 100 100

LF/HF 100 100 100 100 100 100 100 100 100 100 98 100 100 100

SD1/SD2 100 100 100 100 100 100 100 100 100 100 98 100 100 100

PSS 100 100 100 100 100 100 100 100 100 100 98 100 100 100

PIP 100 100 100 100 100 100 100 100 100 100 98 100 100 100

PPG PR 100 100 100 100 100 100 100 100 100 100 98 100 100 100

EDA µ
Amplitude
SCR 100 100 100 100 100 100 100 100 100 100 98 100 100 100

∑W
t SCL′(t) 100 100 100 100 100 100 100 100 100 100 98 100 100 100

#Peaks
SCR /W 100 100 100 100 100 100 100 100 100 100 98 100 100 100

µRise
SCR 100 100 100 100 100 100 100 100 100 100 98 100 100 100

µ
Recovery
SCR 100 100 100 100 100 100 100 100 100 100 98 100 100 100

EMG #Onsets/W 98 98 98 98 98 98 98 98 98 98 96 98 98 98

#Active/W 98 98 98 98 98 98 98 98 98 98 96 98 98 98

max(EMG) 100 100 100 100 100 100 100 100 100 100 98 100 100 100

fRMS 100 100 100 100 100 100 100 100 100 100 98 100 100 100

SKT µT 98 96 98 96 94 92 92 92 98 96 90 98 94 96

σT 98 96 98 96 94 92 92 92 98 96 90 98 94 96

minT 98 96 98 96 94 92 92 92 98 96 90 98 94 96

maxT 98 96 98 96 94 92 92 92 98 96 90 98 94 96

∑ T′(t)/T 98 96 98 96 94 92 92 92 98 96 90 98 94 96

RSP µBR 100 100 100 100 100 100 100 100 100 100 98 100 100 100

σBR 100 100 100 100 100 100 100 100 100 100 98 100 100 100

µ[E−I] 100 100 100 100 100 100 100 100 100 100 98 100 100 100

EYE #F>100/W 86 86 86 86 86 86 86 86 86 86 86 86 86 86

#F66−150/W 86 86 86 86 86 86 86 86 86 86 86 86 86 86

#F300−500/W 86 86 86 86 86 86 86 86 86 86 86 86 86 86

#F>1000/W 86 86 86 86 86 86 86 86 86 86 86 86 86 86

µFD>100 86 86 86 86 86 86 86 86 86 86 82 86 86 86

medFD>100 86 86 86 86 86 86 86 86 86 86 82 86 86 86

#S/W 86 86 86 86 86 86 86 86 86 86 86 86 86 86

µSA 86 86 84 84 84 84 84 84 86 86 66 86 86 86

µSD 86 86 84 84 84 84 84 84 86 86 68 86 86 86

medSD 86 86 84 84 84 84 84 84 86 86 68 86 86 86

#B/W 86 86 86 86 86 86 86 86 86 86 86 86 86 86

µBD 86 86 84 86 84 86 86 86 86 86 64 86 86 86

medBD 86 86 84 86 84 86 86 86 86 86 64 86 86 86

µPS 86 86 86 86 86 86 86 86 86 86 86 86 86 86

IPA 86 86 86 86 86 86 86 86 86 86 86 86 86 86

AUS #AU 66 66 66 66 66 66 66 66 66 66 66 66 66 66
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