
Citation: Al Shahrani, A.M.;

Alomar, M.A.; Alqahtani, K.N.;

Basingab, M.S.; Sharma, B.;

Rizwan, A. Machine

Learning‑Enabled Smart Industrial

Automation Systems Using Internet

of Things. Sensors 2023, 23, 324.

https://doi.org/10.3390/s23010324

Academic Editor: Leopoldo

Angrisani

Received: 27 October 2022

Revised: 18 December 2022

Accepted: 23 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Machine Learning‑Enabled Smart Industrial Automation
Systems Using Internet of Things
Ali M. Al Shahrani 1, Madani Abdu Alomar 2 , Khaled N. Alqahtani 3 , Mohammed Salem Basingab 4 ,
Bhisham Sharma 5,* and Ali Rizwan 4

1 Faculty of Computer Studies, Arab Open University, Riyadh 11681, Saudi Arabia
2 Department of Industrial Engineering, Faculty of Engineering at Rabigh, King Abdulaziz University,

Jeddah 21589, Saudi Arabia
3 Department of Industrial Engineering, College of Engineering, Taibah University,

Madina 41411, Saudi Arabia
4 Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University,

Jeddah 21589, Saudi Arabia
5 Chitkara University Institute of Engineering and Technology, Chitkara University,

Rajpura 140401, Punjab, India
* Correspondence: bhisham.pec@gmail.com

Abstract: Industrial automation uses robotics and software to operate equipment and procedures
across industries. Many applications integrate IoT, machine learning, and other technologies to
provide smart features that improve the user experience. The use of such technology offers busi‑
nesses and people tremendous assistance in successfully achieving commercial and noncommercial
requirements. Organizations are expected to automate industrial processes owing to the significant
risk management and inefficiency of conventional processes. Hence, we developed an elaborative
stepwise stacked artificial neural network (ESSANN) algorithm to greatly improve automation in‑
dustries in controlling and monitoring the industrial environment. Initially, an industrial dataset
provided by KLEEMANN Greece was used. The collected data were then preprocessed. Principal
component analysis (PCA) was used to extract features, and feature selection was based on least ab‑
solute shrinkage and selection operator (LASSO). Subsequently, the ESSANN approach is proposed
to improve automation industries. The performance of the proposed algorithm was also examined
and comparedwith that of existing algorithms. The key factors comparedwith existing technologies
are delay, network bandwidth, scalability, computation time, packet loss, operational cost, accuracy,
precision, recall, and mean absolute error (MAE). Compared to traditional algorithms for industrial
automation, our proposed techniques achieved high results, such as a delay of approximately 52%,
network bandwidth accomplished at 97%, scalability attained at 96%, computation time acquired at
59 s, packet loss achieved at a minimum level of approximately 53%, an operational cost of approxi‑
mately 59%, accuracy of 98%, precision of 98.95%, recall of 95.02%, and MAE of 80%. By analyzing
the results, it can be seen that the proposed system was effectively implemented.

Keywords: industrial automation; robotics; Internet of Things (IoT); machine learning; elaborative
stepwise stacked artificial neural networks (ESSANN) algorithm; industrial environment; principal
component analysis (PCA); least absolute shrinkage and selection operator (LASSO)

1. Introduction
The Industrial Internet of Things (IoT) is a term used to describe a linked system of

interrelated detectors, equipment, and other components to enhance automated industrial‑
ization. This enabled system surveillance and remote control. The primary function of IoT
is to improve the industrial automation process. The IoT concept is utilized to assess, turn
on, and manage various machines in the shipping, automotive, textile, agricultural, food,
and beverage industries. Using data gathering, data frommany sources can be shared and
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analyzed. The acquired data must be analyzed using smart functions to transmit alerts or
triggers to other systems. IoT is used to provide fresh concepts for challenges and improve
the effectiveness of the procedures. It focuses on maintaining efficient interfaces and inter‑
actions using controllers, robots, and monitors. Concepts from the Industrial Internet of
Things were used to improve the effectiveness of the process. There have been reports
on digital industrialization and its role in product design. Software and IoT idea mod‑
ules have been used in contemporary industrial processes [1]. The adoption of IoT across
several industrial sectors has increased exponentially over the last few decades. Accord‑
ing to Gartner, by 2025, there may be 24 billion IoT gadgets. These gadgets create enor‑
mous amounts of data that require effective storage and processing. Increased machine‑
to‑machine (M2M) and direct‑to‑device (D2D) connections are also a part of this process,
which involves data sharing. A strong IoT standards stack that can manage all problems
with data transportation and analysis at different stages is required to address this mas‑
sive data expansion. A structure may be created with the aid of standardized protocols
and layers for IoT devices to perform necessary functions. To satisfy customer requests
and accomplish conservative business objectives, the automobile industry has aggressively
adopted these gadgets [2]. Figure 1 depicts the advantages of industrial automation.
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Figure 1. Advantages of industrial automation.

Many types of businesses and industries utilize industrial automation to develop
more effective operations using various technologies. Industrial applications are replac‑
ing some of the routine tasks that people perform. This frees workers to undertake higher‑
level activities, while enabling repetitive and precise tasks to be accomplished with fewer
mistakes. The modernization of the equipment and systems utilized in sectors such as pro‑
duction and manufacturing is known as industrial automation. The aim was to minimize
the number of tasks carried out by people. The use of industrial automation technology
by organizations improves security, frees up time, improves product quality, minimizes
monitoring, and reduces costs. All these advantages help businesses operate more prof‑
itably, productively, and efficiently [3]. Industries have been using a well‑defined five‑
layer automation infrastructure for the past 30 years or more, where smart monitors and
I/O (such as sensors) at the lowest point communicate with the conceptual processors us‑
ing an analog signal Programmable Logic Controller (PLC). Remotely controlled duties
are performed using Supervisory Control and Data Acquisition (SCADA) systems. Users
usingManufacturing and Execution Systems (MES) can perform difficult activities, includ‑
ing production planning and reliability control. ERP (Enterprise Resource Planning (ERP)
systems at the highest level provide managerial monitoring and communicate production
data, such as order progress, with other software, such as Customer Relationship Manage‑
ment (CRM) systems. This is the traditional automation infrastructure [4].



Sensors 2023, 23, 324 3 of 18

Industrial automation solutions are evolving into more complicated Cyber‑Physical
Systems (CPS), owing to Industry 4.0. The integration of systems across horizontal and
vertical levels in industrial and disciplinary areas is very important. In addition to high‑
level structure and regulation at the implementation network level, the construction of
industrial CPS necessitates Offline and Online Engineering (OOE) work, which includes
designing the device’smechanical and electrical components, aswell as their setup, connec‑
tivity, and information. An integrated solution to handle OOE duties using DevOps, a set
of contemporary software lifecycle administration techniques, is necessary. The develop‑
ment, testing, and implementation of software services are coordinated through Constant
Integration/Constant Deployment (CI/CD) pipelines and Architecture as Code, which are
essential components of DevOps. We combine engineering activities utilizing distributed
version control and the W3C Web of Things to bring the associated advantages of pure
software applications to an industrial CPS [5].

1.1. Contribution to the Work
• An increasing number of businesses and industries are turning to industrial automa‑

tion to take advantage of cutting‑edge technologies and improve productivity. Conse‑
quently, we created an ESSANN algorithm to advance the automated
manufacturing sector.

• Industrial data comprising the cultural factors of elevator HPUs were made available
for this study.

• Data collection is preceded by transformation, extraction, and management.
• The principal component analysis method was used in the process of feature extrac‑

tion, and the least absolute shrinkage and selection operator methods were utilized
in the process of selecting the most relevant features.

• As part of the evaluation process for the proposed work, metrics such as accuracy,
precision, recall, MAE, delay, network capacity, scalability, computation time, packet
loss, and operational cost were compared with those of previously
developed approaches.

1.2. Motivation
In industrial automation operations, robots or computer‑based control systems are

used to monitor and manage machines and processes. Automation has the potential to
boost dependability and output in an industrial context, while minimizing waste and er‑
rors, increasing security, and enhancing production process flexibility. Ultimately, indus‑
trial automation increases safety, reliability, and output. Using these technologies, busi‑
nesses and people can efficiently satisfy their commercial and non‑commercial demands.
Organizations are compelled to automate industrial activities because of the high‑risk ad‑
ministration and inefficiency of conventional techniques. This motivated us to develop the
ESSANN algorithm to significantly improve the automation industry’s capacity to govern
and monitor the structure of the industry without incurring delays or security problems.

1.3. Problem Statement
In our modern age, everything is required to be automated. Until recently, cameras

were the only tools available to monitor conditions. We have deployed IoT in industry
to monitor and alert authorized employees to take relevant actions in an attempt to elim‑
inate human overhead; however, this will only partly satisfy our demand. Because this
procedure may sometimes run overdue and cause damage to both businesses and peo‑
ple, it also improves the security and flexibility of the manufacturing system while reduc‑
ing waste and increasing dependability and productivity. To achieve this goal, we are
working on establishing a system for industrial automation that uses machine learning
and is enabled by a smart industrial automation system built on the supportof the Internet
of Things.
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1.4. Organization of the Research
Section 2 provides an overview of the related work. In Section 3, the implementation

analysis is discussed, and in Section 4, the proposed solution architecture is explained. The
performance analysis is presented in Section 5. Finally, the proposed method is presented
in Section 6.

2. Related Works
Newer versions of many programs incorporate intelligent features that make using

software more pleasurable by taking advantage of knowledge such as IoT and machine
learning. The research in [6] presented the ‘Cluster‑Tree‑based Energy Efficient Data Gath‑
ering (CTEEDG)’ protocol to extend the lifespan and wireless sensor networks (WSN) effi‑
ciencies. CTEEDG employs fuzzy logic to identify the Cluster Head (CH), depending on
the information gathered locally. The article [7] proposed the ‘Enhanced Principal Com‑
ponent Analysis and Hypergraph based Convolution Neural Network (EPCA‑HG‑CNN)’
technique, which is divided into two stages, such as enhanced PCA for feature reduction
and a detailed and precise CNN for anomaly detection. The article [8] suggested a ‘Many‑
Objective Optimization Algorithm Based on the Dynamic Reward and Penalty mechanism
(MaOEA‑DRP)’ to enhance the verification significance of the block design for the improve‑
ment of public blockchain performance and reduction of malicious node gathering. The
authors of [9] evaluated a sophisticated decentralized approach in which an ‘Automated
Guided Vehicle (AGV) could optimally integrate charging stations into a tour of job lo‑
cations. Modern industrial AGV systems employ algorithms to control the entire fleet of
AGVs reliably and effectively.

The research in [10] aimed to discover and research the potential for automation tech‑
nologies enabled by 5G across a range of industries. They also examined the origins and
advancements of pervasive computing devices, concentrated on how innovative 5G net‑
works examined their critical empowering techniques, assessed their issues and challenges,
explored their implementations in a range of industries, and highlighted how theywill her‑
ald in a time of unrestricted communication, intelligent systems, and industry digitization.
The article [11] provides “semi‑supervisedmulti‑scale convoluted feed‑forward neural net‑
works”. A one‑dimensional multiscale convolutional layer was used as the generator, and
an adverse approach was used to develop the model. Research in [12] demonstrated a
‘SCADA’ program written in the C# environment and extensively tested for use in control‑
ling and monitoring industrial automation processes. SCADA software can be used to re‑
motelymonitor and control a facility’s data and log that data to an Internet of Things server.
That article [13] stated that ‘edge computing’ has boosted real‑time big business applica‑
tions and advanced robotic processing of data. These cover edge computing and factory ef‑
ficiency. The research in [14] organized the sensors and PLC to automate the bag‑counting
process. The project also intends to use SCADA for local control of the manufacturing
process and monitoring, gathering, and processing real‑time data. The authors of [15] de‑
veloped a Chameleon Authentication Tree (CAT), a unique basic mechanism that increases
efficiency and enables trustworthy information domain inquiries that can be confirmed.

Thework in [16] illustrated the obstacles faced by automation in an industrial environ‑
ment and how cloud computing might be used to mitigate these concerns. In industry, au‑
tomated methods boost output and improve accuracy. Productivity and precision greatly
increase retailers’ earnings. The article [17] described the outcomes of inverse kinematic
analysis for two application scenarios: point‑to‑point cycloidal trajectories and oceanic
wave motions. The real‑time direct kinematic calculation efficiency was also investigated.
In [18], a WSN with a non‑hierarchical structure was established. “Clique clustering” is a
newprotocol that, unlike prior proposals, incorporates a fail‑safe technique to handle node
failure or removal, both of which are common in WSNs. The authors of [19] reviewed
the ideas of transmission and continuous learning. This review identifies potential tech‑
niques for commercial machine learning that use both groups of techniques for industrial
automation. Therefore, the distinction between continuous and transmitting learning does
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not improve its application in any sector. In [20], the author defines the limitations placed
on quality attributes by industrial automation, outlines the difficulties encountered by in‑
dustrial IoT, and explores the possibilities presented by the use of various technological
solutions. In [21], the author conducted a systematic literature review on the Industrial
Internet of Things (I‑IoT). The author introduced the I‑IoT and described its architecture,
applications (including manufacturing and process automation), and key features. The
state of the art in research across the core facets of the system: control, networking, and
computing is then considered. The author also classifies different types of industrial con‑
trol systems and discusses some of the most current and important studies in this area.
The work in [22,23] covered Industrial Automation utilizing the IoT. Advanced Industries
ushered in a new era of physical manufacturing powered by an information economy. In‑
dustry 4.0 is the fourth industrial paradigm change, in which intelligent manufacturing
technology is integrated with physical machinery. I‑IoT combines industrial systems with
powerful, near‑real‑time computing and analytics, enabled by low‑cost, low‑power sensor
devices with global internet access. Table 1 indicates the summary of existing works.

Table 1. The Summary of existing works.

Reference Algorithm Performance Metrics Objective

Karunanithy and Velusamy [6]
Cluster‑Tree‑based Energy
Efficient Data Gathering

(CTEEDG)

Membership function for input
and output, average energy
consumption in joules, and
average end‑to‑end delay in

seconds are evaluated.

Integration of WSN and IoT

Krithivasan et al. [7]

Enhanced Principal Component
Analysis and Hypergraph‑based
Convolution Neural Network

(EPCA‑HG‑CNN)

Accuracy, mean square error,
time efficiency, and runtime in
seconds are used as performance

metrics.

SCADA system

Cai et al. [8]

Many‑Objective Optimization
Algorithm Based on the Dynamic
Reward and Penalty mechanism

(MaOEA‑DRP)

The average value in BFE
functions.

Industrial Internet of Things
(I‑IoT)

De et al. [9] Sophisticated Decentralized
Approach

Resource level and total average
time are used. Automation

Attaran [10]
This article reviews how 5G can
enable or streamline intelligent
automation in several industries.

Average throughput, flexibility,
delay, limited bandwidth,

dependability, high accuracy,
range, and energy consumption
are some of these assessment

criteria.

Evaluation of 5G

Pan et al. [11] Semi‑Supervised Convolutional
Generative Adversarial Network

Classification accuracy and
average accuracy. Industrial automation system

Phuyal et al. [12] Supervisory Control and Data
Acquisition (SCADA)

DC bus voltage, output voltage,
load current, frequency, and

speed.
SCADA software

Stankovski et al. [13] Edge computing
Comparison of traditional

concepts on edge computing in
industrial automation.

Big data

Banaulikar et al. [14] Programmable Logic Controller
(PLC) and SCADA

Speed, default bag length, and
current bag length are used as

performance metrics.
PLC

Xu et al. [15] Chameleon Authentication Tree
(CAT)

Time and average time are
assessed. Verifiable Data Streaming (VDS)

Mentsiev et al. [16] Cloud computing
Enhance analysis of data and
enhance consolidation of

workload.
Cloud computing
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Table 1. Cont.

Reference Algorithm Performance Metrics Objective

Silva et al. [17] Stewart Platform robot Time evolution for the generation
of Cartesian motion. Motion control automation

Saravanan and Solairaju [18] Wireless Sensor Network (WSN) Backbone reorganization is
evaluated. WSN

Maschler and Weyrich [19] Ideas of transmission and
continuous learning

Analyzing anomalies, time series
forecasts, visual computing, fault

finding.
Deep learning

3. Implementation Analysis
In addition to saving a significant amount of time and effort, automation enables a task

to be completed very precisely. Robotic, command, and control systems and desktops are
used in industrial automation to manage and perform specific processes. Therefore, we
present the ESSANN method to considerably enhance the automation industry’s ability
to regulate and analyze the industrial environment without experiencing any latencies or
security flaws.

3.1. Analysis of the Dataset
An industrial dataset was provided by KLEEMANN Greece, including the cultural

parameters of the elevator HPU which was made available. These measurements corre‑
spond to quality tests that monitor the speed of the elevator, pressure developed in the
hydraulic unit, and noise produced during operation. The dataset includes 7200 unique
examples that represent diverse customer orders and use different settings and specifica‑
tions. An analysis of the presented dataset showed that the translational direction had no
impact on the obtained slopes. As a result, orientation was not considered as a classifica‑
tion criterion, and the computed slopes for all orientations were combined into a single
dataset of 2 × 7200 = 14,400 samples. However, there have been inconsistencies in the test‑
ing settings, such as some tests lasting longer than others or the HPU operating at a varied
range of speeds. Such variances are inevitable because of the unique customer needs for
every order; hence, data preprocessing is required, as shown in the next subsection.

The number of time steps captured in each HPU ranged from 201 to 1035; however,
most samples (approximately 80%) only had 201 time steps. To make mini‑batch process‑
ing possible, all data sequences were of the same length, which was 201 time steps. All
speeds were within the same range, from 0 to 0.91. The noise and pressure had very dif‑
ferent ranges: [0, 91.2] and [0, 53.98], respectively. To make them comparable, they were
divided according to their highest values. The new dataset was divided into two parts:
90% for training and 10% for testing. (Sample time step variables) was the size of each
dataset. Table 2 presents the sample datasets used.

Table 2. Utilization of datasets.

Set of Data Sample Size

Training samples 13.968 × 312 × 5

Testing samples: A 1.625 × 312 × 5

Testing sample: B 1.625 × 312 × 5

3.2. Data Preprocessing
Data preprocessing refers to any operation carried out on the original data to prepare

it for further analysis. Data pre‑processing should combine disparate data sources with
varying logic and phrasing to provide a unified computer source of information. There‑
fore, many operations must be executed, including data transformation, extraction, and
management. In this section, we provide a solution in the form of a framework, complete
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with preparatory processes. The obtained data are used by the framework to create a uni‑
fied representation of the data, and the model’s accessibility to the ML system paves the
way for expert learning. Subsequently, the information was collected and entered into
a dataset for further pre‑processing. The three stages of preprocessing are data transfor‑
mation, data extraction, and data management, which are used to verify and integrate
the data.

The mechanism of changing data from one place to another, usually from that of a
source system to that required by a destination system, is known as data transformation.
Data transformation was performed to examine the quality and feasibility of the data. The
process of gathering or extracting various forms of information from numerous sources,
many of which may be erratically arranged or entirely unorganized, is known as data ex‑
traction. Data extraction refers to the process of employing advanced methods to separate
data from a system. Data management is the process of gathering, storing, and utilizing
data in an expensive, accurate, and safe manner. Data control for several scenarios was
made possible using a data management platform. Customer information can be gathered
from many resources, analyzed, and organized using a data management platform.

3.3. Feature Extraction Using Principal Component Analysis (PCA)
PCA is a popular approach for analyzing massive amounts of data with many vari‑

ables and attributes per inference. It is a quantitative strategy for lowering the dataset’s
complexity to preserve the most material while improving comprehensibility. The algo‑
rithm is depicted below (Algorithm 1).

Algorithm 1: PCA Algorithm

1. Determine the average attribute vector
   α = 1

x ∑x
n=1 Gn

where Gn is the design (n = 1 to x), x is the set of entries, and x is the attribute vector.
2. Calculate the correlation matrix
   B = 1

x ∑x
n=1{Gn − α}{Gn − α}T where T represents the transpose of matrix.

3. Compute Eigenvalue τj and Eigenvector uj of the correlation matrix
   CVj = τj uj (j = 1, 2, 3 . . . m), m = number of attributes
4. Estimate the high value of an Eigenvector.
(i)  Set up all of the Eigenvalues (τj) in higher to lower order;
(ii)  Select the limit value, θ;
(iii) Number of high‑valued τj may be selected to fulfill the requirement

   (∑T
j=k τj)(∑

y
j=1 τj)

−1 ≥ θ, where T = number of high‑valued τj chosen;
(iv) Select Eigenvectors corresponding to selected high‑valued τj.
5. From the original attribute representation, retrieve the small attribute vectors (PCA).
   P = uT G, where u is the matrix of principal components and G is the matrix of the
attribute.

Generating the Eigenvalues of the covariance matrix derived from the feature space is
a fundamental component of the PCA technique. Only a small number of characteristics,
which correspond to those with strong Eigenvalues, will have discernible isolation from
one another and may be considered for further analysis. The remaining features were
disregarded. As a result, the complexity of the feature matrix is drastically reduced.

Other names for Fisher discriminant analysis (FDA) include Fisher’s criteria, which is
an extension of PCA. To calculate the discriminant distance qx,y

n between two classes, x and
y, the mean and standard deviations of the selected features must be known. Equation (1)
provides a formula for calculating the discriminant distance according to PCA.

qx,y
n =

∣∣∣(Avg px
n)− Avg

(
py

n

)∣∣∣2
[Sv(px

n)]
2 +

[
Sv
(

py
n

)]2 (1)
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where the nth feature for the carrying circumstances x and y, correspondingly, is px
n and

py
n. The Fisher discriminant distance between the two categories of orientations x, and

y, for the nth functionality, is 〖q 〗_n^(x, y); Average () and Sample variance () are the
average values and sample variations. It is evident that its dispersion inside categories
is identical to the sum of their variances, which is the denominator of the above equation,
and that the dispersion among categories is identical to the squares of the distance between
their averages.

It depicts the visual distinction between two sets of data and, therefore, is nondimen‑
sional. Equation (2) contains the information for multiple (categories of both x and y) chal‑
lenges. Thediscrepancy between the average scores and sample variations iswell described.

Tx,y
n =

∣∣∣(Mean px
n)−Mean

(
py

n

)∣∣∣2
[Std(px

n)]
2 +

[
Std
(

py
n

)]2 (2)

where the carrying requirements x and y belong to the nth features and functionality, and
n is the separation index for that extracted features.

Construct each part of the attribute data for the extraction as an A‑shaped vector.

Y = [Y1, Y2, . . . . . . , Yn] (3)

The sample has r points, where n is the total number of samples. The correlation
matrix S is then computed as shown in Equation (4).

T =
1
m

m

∑
k=1

(
Yk −Y

)(
YK −Y

)S (4)

s.t.X =
1
n

n

∑
k=1

Xk (5)

The example numerical value is Y. The Eigenvector S = [u1, u2, . . . . . . , un] should be
produced as S is an r r matrix, and its Eigenvalues are [δ1, δ2, . . . . . . , δn] (δ1 ≥ δ2 ≥ . . . . . .
δ2 ≥). This Eigenvector serves as the orthogonal foundation for the data from the industry.
A higher feature value may contribute more. Using normalized techniques to calculate the
proportion, the proportion Qkmight be calculated as shown in Equation (6).

QK = λk

(
m

∑
i=1

δj

)−1

(6)

Any Eigenvectors with a negligible feature value need to be disregarded. The model
is restored by utilizing the initial d vectors of the restoration vectorY, whereQ is themodel.
The correlation matrix is calculated to determine the components with the largest correla‑
tion, and these components are givenmuch greater weight on the electro‑attribute data for
automation than the ones with the smallest correlation. This offers a means of achieving
dimensionality reduction, considerably speeding up the retrieval of ideal features.

X =
d

∑
i=1

uT
i Xui (7)

3.4. Feature Selection Using Least Absolute Shrinkage and Selection Operator (LASSO)
The LASSO approach was employed to select the parameters and decrease the dif‑

ferences in the estimation. When there are many factors but few data in a sample, the
regression shrinkage approach is widely used. This method reduces the residue sum of
the squares under the condition that the total actual value of the factors is smaller than a
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constant, which is equivalent to reducing the sumof squareswith such constant∑
j

∣∣β j
∣∣ ≤ P,

and causes certain of the factors to be decreased to zero. By applying a penalty, the tech‑
nique optimizes the target while using L1 regularization. The overall actual value of the
factors makes up this penalty, which determines which factors and how much of them
reduce. The LASSO estimate comes from

δLasso =
mininum

δ

(
k

∑
a=1

(ui −∑
q

δqVij)
2
+ Γ ∑

q

∣∣δq
∣∣) (8)

where the shrinking factor is denoted by Γ.
LASSO is insufficient to fulfill the oracle attribute. Consequently, each coefficient has

a weight function, which is specified in Equation (4).

δModi f ied LASSO =
minimum

δ

(
k

∑
a=1

(ui −∑
q

δqVij)
2
+ Γ

m

∑
q=1

Ŵ f
∣∣δq
∣∣) (9)

Wf is a weight function that is computed by W f = 1
|δ̂ f |α

where α is a positive factor,∣∣∣ ˆand δ f

∣∣∣ is the initial computation of the δ factor.
The LASSO algorithm is described below (Algorithm 2).

Algorithm 2: LASSO Algorithm

1. Start B = P + δJ; the Magnitude of B does not vary.
2. Repeat for q = 1, 2 . . . m, and so on until convergence:

(a) Divide matrix B into Section 1: all but the qth row and column, and Section 2: the
qth row and column.

(b) Compute the solution for the estimating equations B11γ − P12 + δ. Assign (γ) = 0
utilizing the cyclical coordinate‑descent algorithm (17.26) for the advanced LASSO.

(c) Increase b12 = B11δ̂ .

3. In the last step (for each q), solve for ϑ̂22 = −δ̂.ϑ̂22, with 1
ˆϑ22

= b12
T δ̂.

4. Proposed Solution
4.1. Elaborative Stepwise Stacked Artificial Neural Networks (ESSANN)

In a very short period, artificial neural networks can analyzemassive amounts of data
with complicated characteristics and isolate various patterns. Consequently, they are help‑
ful for a wide range of commercial functions, including industrial automation, spotting
data abnormalities or mistakes, and picking up certain sights, noises, or visuals. With lim‑
itless supplied inputs, they may employ identity to deliver the best results. A collection
with the ESSANN for all conceivable variables measured was proposed to provide suffi‑
cient guidance. First, in a StackWise neural network, particular combination strategies of
MLPs based on a simple average, the least‑squares approach, and a nonlinear combination
strategy based on a cascade of neural networks were considered. The performance of the
different models was compared using the entire set of patterns. A schematic of the pro‑
posed structure is shown in Figure 2. The stacking strategy was implemented on a subset
of the available suboptimal models after they were sorted based on their modeling perfor‑
mance. Thus, better‑working MLPs were considered first. The input fed to the proposed
ESSANNmodel was partitioned into subsets. In Figure 2, k indicates kth instance to be ana‑
lyzed by themodel. ESSANNmodel is a group of ‘n’ MultiLayer Perceptron (MLP)models
stacked over each other. EachMLP layer consists of an input layer, multiple hidden layers,
and an output layer. The process involved in each MLP layer is explained below. The in‑
dustrial data to be analyzed is provided as input to the first MLP layer. The first MLP layer
processes and analyzes the industrial data to output the industrial decision. The output of
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the first MLP layer is sent as input to the second MLP layer. In this way, data are propa‑
gated from the previous MLP layer to the next MLP layer in the ESSANN model. As the
data reaches the nth MLP layer, the output of the nth MLP layer is presented as the final
output of the ESSANNmodel.
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Figure 2. Elaborative stepwise stacked artificial neural networks. Level of input: It receives inputs
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characteristics. Level of output: This layer is used to communicate the output after the data have
undergone several alterations in the hidden layer.

In an MLP neural network, it is particularly important to choose the number of hid‑
den layers and the number of neurons in each layer. In a small dataset, too many hidden
layers will not only make the model more complicated, but also lead to overfitting of the
model and poor model generalization ability. Therefore, in small datasets, one or two hid‑
den layers of MLP neural networks are generally used for modeling. We established one
hidden layer and two hidden layers of MLP models and chose the model with the least
error as the final prediction model of the pollutants. To solve this issue, a stepwise model
was established through the influence of various factors on industrial automation systems,
and it was used to provide the fitted value of the automation system at the corresponding
moment. Then, the stepwise MLP neural network model was established by taking the
fitted value and other data and time measured by the self‑built point as input values and
the national control point data as output values. An algorithmwas employed to determine
the elaborative stepwise stacked artificial neural network parameters for each pairing. The
algorithm for ESSANN is depicted below (Algorithm 3).

ESSANNs are non‑parametric machine learning techniques that comprise a matrix of
linked neurons. Based on an input signal, the neuron weights and the inputs are given. In
each MLP layer, the input layer has data, random weights, and bias term. These then pass
through the hidden layer, and it then outputs the result. After this, the model learning er‑
ror is determined, and finally, based on error, the model weights are updated. This weight
updating is done continuously until we get a satisfactory error rate. This iterative weight
updating process is applied to each MLP layer in the ESSANN model. The generation of
the output signal depends on the signal. This signal is then sent and may activate more
neurons depending on the structure of the network. In contrast, machine learning (ML)
is related to the learning representation of data. The ESSANN, as these are often called,
is motivated by the organization and function of the brain. The method uses a pyramid
of ideas in a subject area to help the machine learn from experience. Because this infor‑
mation is obtained automatically, this method does not require manual interaction to offer
machine expertise. A pyramid of ideasmakes it easier to divide complicated ideas into sev‑
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eral levels of easier things. When there are several processing levels, ML approaches learn
through several different layers. This method has been used in industries such as robotics,
genetics, and pharmaceuticals. ESSANN in industrial automation contributes to increased
efficiency, reliability, and efficiency, all of which reduce operating costs. However, a de‑
crease in production costs is the main benefit of an industrial automation system. This can
be achieved by employing the proposedmethod. Wemust first understand the structure of
a neural network to understand the structure of an elaborative stepwise stacked artificial
neural network. Amassive amount of elaborate artificial neurons, also known as modules,
are assembled in a hierarchy of levels to construct a neural network.

Algorithm 3: ESSANN

1: ESSANN approach (Input, Neurons, Iteration)
   Generate a source database
2:  Input← a database that includes every variation of variables that might exist
Equip ESSANNs
3:  for Input = 1 to n do
4:       for Neurons = 1 to n do
5:    for iterate = 1 to n do
6:       Equip ESSANN
7:       ESSANN‑Storage← saves the highest value
8:    end for
9:  end for
10:  ESSANN‑store← based on inputs, preserve the most accurate forecasting ESSANN
11:  end for
12: Return ESSANN‑Storage ESSANN for all variable combination
13: end approach

4.2. Benefits of ESSANN
• Flexibility in handling several tasks concurrently. The ESSANN has a specific value

that is capable of doing so.
• The material used in conventional computing is saved all over the system, not just in

a database, as opposed to the database itself. The system continues to function, even
if some material temporarily disappears from one location.

• Considering storage allocation: For ESSANN to be capable of adapting, it is crucial
to identify the instances and to motivate the system by presenting such instances to
the system to produce the desired output. The system outcome may be incorrect if
the action cannot be represented by the system in all of its characteristics, since the
system’s continuity is approximately equal to the selected occurrences.

4.3. Drawbacks of ESSANN
• Guarantee of an appropriate network framework. There is no set formula for deter‑

mining the structure of an ESSANN. The correct network model is achieved through
practice, effort, and failure.

• Unknown networking attitude. This is ESSANN’s most important problem. The ES‑
SANN does not offer explanations about why or how it came up with a test solution.
This erodes the confidence of the system.

• Technology constraint: Owing to the nature of ESSANN, simultaneous processors are
required. Consequently, the realization of the equipment is dependent.

• Statistical data may be used using ESSANN. Before issues are presented to ESSANN,
they must be transformed into numbers. The platform’s efficiency is significantly af‑
fected by the presentation technique, which must be determined here. This depends
on the user’s skills.

• The system is restricted to a certain standard error, and this relative error does not
provide the best outcomes.
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5. Performance Analysis
Integrating the IoT and machine learning has potential in the contemporary age of

automation and smart computing. We proposed the elaborative stepwise stacked artificial
neural network (ESSANN) technique to create a system that can autonomously monitor
applications in the industry, produce notifications or warnings, or make intelligent deci‑
sions utilizing the IoT idea. The parameters used to compare the proposed method to ex‑
isting methods include delay, network bandwidth, scalability, computation time, packet
loss, and operational cost. The efficacy of the proposed approach is compared to exist‑
ing techniques, such as the Unified Artificial Immune System (UAIS), 5G‑enabled IoT
and Blockchain (Blockchain 5G‑IoT), Blockchain‑based Cyber Threat Mitigation System
(BCMS), and clock synchronization techniques (CST).

5.1. Delay
The delayed state is the instant beginning of the process of delaying, blocking, or

pushing objects to move more slowly than normal. Delay for automated decision‑making
process in industries is calculated by Equation (10). Their current automated decision‑
making process is slow. When the results of the experiment were compared with those
of the previously known technique, as shown in Figure 3, we discovered that a low‑level
delay was obtained using the ESSANN methodology. ESSANN shows a 52% delay for
250 nodes. This proves that delay regarding the industrial automated decision‑making
process based on ESSANNwas minimal compared to existing industrial automation tech‑
niques like UAIS, BCMS, CST, and Blockchain 5G‑IoT.

y[n] = x[n− n0] (10)
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5.2. Network Bandwidth
Network bandwidth is a measurement of a network’s capability or information trans‑

mission rate. Bandwidth required for automated data transmission in industries is calcu‑
lated by Equation (11). This is an essential connection characteristic for comprehending a
network’s performance and reliability. This demonstrates how the proposed method au‑
tomates data transmission in the industry. Figure 4 shows the network bandwidth. The
ESSANNobtained 97%bandwidth for 250 nodes, whichwas higher than that that obtained
by existing approaches. Therefore, the proposed approach is more efficient than existing
systems. Higher network bandwidth achieved by industrial automation systems relying
on the proposed ESSANNmodel ensures the higher speed of industrial data transmission
in industrial network.

H
(

ejω̂
)
= e−jω̂n0 ,

∣∣∣H(ejω̂
)∣∣∣ = 1 (11)
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5.3. Scalability
The ability of a system to adapt its performance and efficiency to changing applica‑

tions and industrial automation needs is referred to as scalability. Based on the ESSANN
methodology, we found that the scalability was 96% for 250 nodes, as depicted in Figure 5.
Scalability observed for the ESSANN which was suggested for industrial automation sys‑
tem was higher than that of existing industrial automation techniques like UAIS, BCMS,
CST, and Blockchain 5G‑IoT. This shows that the industrial automation process can be
effectively enhanced by utilizing the proposed ESSANNmodel in industrial networks.

αj(s, t) =
1
st

log log E
[
e2X,|0,r|

]
(12)
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5.4. Computation Time
Computation time is the length of time required to accomplish a calculation (some‑

times known as “running time”). Computation time for automated decision making was
calculated by Equation (13). It shows how promptly our model detects the problem and
makes a decision. Figure 6 shows the computation time. ESSANN obtained 59 s for
250 nodes. Therefore, the proposed approach takes less time than the existing systems.
These findings suggest that utilizing ESSANN in the industrial automation process helps
in reducing the computation time for industrial problem detection and decision making.

CTime = C− ClockCycles ∗ Clock_CycleTime=
C_Clock_Cycles

Clock_Rate
(13)
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5.5. Packet Loss
Packet loss occurswhen a small number of supplied data packets aremisplaced inside

a packet. Consequently, there may be performance issues in all types of industrial automa‑
tion. Packet loss involved in the industrial network was calculated using Equation (14).
Figure 7 compares the experimental resultswith those of the previously recognizedmethod‑
ology, and we discovered that the decreased packet loss had scores of 53% for 250 nodes
based on the ESSANN technique. It was confirmed that the number of industrial data
packets lost during transmission can be effectively minimized by the proposed ESSANN
model in industrial automation systems.

Packet Loss =
(Total Tx− Total Rx)

Total Tx
× 100% (14)
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5.6. Operational Cost
The continuous expenditures for deploying industrial automation utilizing our strat‑

egy are known as the operational costs. Figure 8 shows the operational costs. The ESSANN
achieved 59% accuracy for 250 nodes. Therefore, the proposed approach is less costly than
existing industrial automation techniques like UAIS, BCMS, CST, and Blockchain 5G‑IoT.
The results observed from Figure 8 illustrated that deploying industrial automation utiliz‑
ing ESSANN strategy is cost‑effective.

Operating leverage =
Fixed costs
total Costs

(15)
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5.7. Accuracy, Precision, and Recall
In industrial automation, two measurements of observational error are known: accu‑

racy and precision. Accuracy refers to how close a certain collection of measures is to their
actual value, whereas precision refers to how close the measurements are to one another.
Recall, which is synonymous with sensitivity, refers to the percentage of total significant
samples collected. Figure 9 shows the accuracy, precision, and recall comparisons of the
proposed ESSANN with those of existing methodologies. From the figure, it is clear that
the proposed approach has a higher accuracy, precision, and recall percentage. The re‑
sults observed in this study depicted that application of ESSANN in the decision‑making
process was highly efficient for industrial automations.
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5.8. Mean Absolute Error
In industrial automation, the difference between the measured or inferred value of a

quantity and its actual value is known as the mean absolute error. Figure 10 shows the
MAE comparisons of the proposed ESSANN with the existing methodologies. From the
figure, it is clear that the proposed approach has less MAE percentage when compared
to existing methodologies. Error in industrial process‑related decision making using ES‑
SANN was very much reduced compared to conventional models. This in turn indicates
that employing ESSANN in industrial automation system results in appropriate decisions
regarding industrial problems.
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A comparison of the recommended technique with the existing models is shown in
Figures 3–10. Existing methodologies such as UAIS, Blockchain 5G‑IOT, BCMS, and CST
were used in this investigation. Owing to the limitations of the already‑used methods, the
proposed strategy is superior to the existing methods in terms of its performance. The dis‑
advantages of the approaches already in use are as follows. Modern oil refinery processes
involve large amounts of material and rapid assessment of performance data, which raises
the chance ofmaking poor selections regarding themanagement of sophisticated high‑tech
machinery. As a result, [24] suggested the creation of a unified artificial immune system
(UAIS) as an advanced system for the management of complicated assets in the oil and
gas business. It has a very low reliability. The authors of [25,26] suggested a 5G‑enabled
IoT as the foundation for blockchain (blockchain 5G‑IOT)‑ based industrial automation
for use in smart cities, digital homes, healthcare 4.0, intelligent farming, automated cars,
and supply chain administration, among other industries. IoT‑integrated industrial au‑
tomation provides an effective decentralized access control method for device‑to‑device
(D2D) connectivity in numerous industrial domains. The authors of [27,28] suggested a
Blockchain‑based Cyber threat Mitigation System (BCMS), which would identify barriers
to industrial automation in businesses, provide a grid for intelligent vehicle communica‑
tion, and provide techniques for putting together an automation process among connected
vehicles. Data transactions occur at an extremely slow rate. The authors of [29,30] sug‑
gested employing clock synchronization techniques (CST) for further industrial automa‑
tion, enhanced information conveyance, and the addressing of protection challenges. Its
cost of computing is quite high.

6. Conclusions
Industrial automation has recently gained increasing support from a variety of sectors

owing to itsmany advantages, including higher efficiency, reliability, and security at cheap
prices. As a result, we may save time and make fewer mistakes compared to physically re‑
peating repetitive instructions. In this paper, we proposed an elaborative stepwise stacked
artificial neural network (ESSANN) algorithm to greatly improve automation industries in
controlling and monitoring the industrial environment. The simulation results achieved
better performance when compared to the existing methods in terms of delay time (52%),
network bandwidth (97%), scalability (96%), computational time (59 s), packet loss (43%),
operational cost (59%), accuracy (98%), precision (98.95%), recall (95.02%), andMAE (80%).
The application of industrial automated systems by organizations improves safety, frees
up energy, improves productivity, minimizes monitoring, and reduces expenses. These
advantages help businesses operate more profitably, productively, and efficiently. Indus‑
trial automation cannot perform difficult or non‑repetitive operations because of the ef‑
ficiency and high availability gains provided by the machines. Consequently, complex
production‑related challenges remain unsolved using existing automation technologies.
Hence, advanced optimization algorithms may suit the future scope of research.
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