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Abstract: Motion analysis is an area with several applications for health, sports, and entertainment.
The high cost of state-of-the-art equipment in the health field makes it unfeasible to apply this
technique in the clinics’ routines. In this vein, RGB-D and RGB equipment, which have joint tracking
tools, are tested with portable and low-cost solutions to enable computational motion analysis.
The recent release of Google MediaPipe, a joint inference tracking technique that uses conventional
RGB cameras, can be considered a milestone due to its ability to estimate depth coordinates in planar
images. In light of this, this work aims to evaluate the measurement of angular variation from RGB-D
and RGB sensor data against the Qualisys Tracking Manager gold standard. A total of 60 recordings
were performed for each upper and lower limb movement in two different position configurations
concerning the sensors. Google’s MediaPipe usage obtained close results compared to Kinect V2
sensor in the inherent aspects of absolute error, RMS, and correlation to the gold standard, presenting
lower dispersion values and error metrics, which is more positive. In the comparison with equipment
commonly used in physical evaluations, MediaPipe had an error within the error range of short- and
long-arm goniometers.

Keywords: RGB-D; biomechanical analysis; Kinect V2; MediaPipe

1. Introduction

Movement evaluation is a handy tool to help treat patients with motor impairment,
such as its use by athletes who seek to improve their techniques [1]. Between them,
cinematic analysis through motion capture (MoCap) systems are widely used [2]. There
are several MoCap types and models in the market, which can be differentiated by the
physical principle used: mechanical, magnetic, electronic, and optical. Among these
models, the optical MoCap systems of reflective markers stand out and are considered the
gold standard for biomechanical evaluation due to their high spatial metric accuracy [3].
In addition, MoCap systems capture patients’ data throughout the analyzed movement,
such as joint amplitude, comparison of execution to the biomechanical pattern, posture,
and body compensations. For these purposes, some criteria are fundamental, such as the
space estimation of the joints and kinematic variables (space, velocity, and acceleration) [4].

In this view, low-cost alternatives represent a viable solution to apply MoCap meth-
ods in clinics and laboratories with lower purchasing power. Among the equipment,
alternatives are RGB-D (red–green–blue–depth) cameras [5]. These devices include Mi-
crosoft Kinect, Intel RealSense, Orbbec Astra, and OpenCV OAK-D, which have a better
cost–benefit ratio, are portable, and do not require the use of markers, making their use
more practical and convenient for the patient. However, despite the inherent economic
advantages, these tools present a trade-off concerning accuracy and precision.
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Furthermore, the development of image processing for tracking and machine learn-
ing enabled the acquisition of depth estimation with only RGB (red–green–blue) color
images [6]. Besides that, algorithms such as OpenPose, MediaPipe, AlphaPose, Detectron2,
etc., allow the identification of the human body and the estimation of the position of joints
in a three-dimensional (3D) space [7]. Thus, methods that use these technologies can
be even cheaper and more practical than RGB-D devices since this technique uses only
conventional RGB images provided by any camera.

In general, it is perceived that RGB-D and RGB capture devices present themselves as
a new perspective for biomechanical evaluation due to their advantageous characteristics
regarding cost and portability. Therefore, a greater understanding of the possibility of ap-
plication and interchangeability of the devices and data generated is necessary. In addition,
the pandemic context has highlighted the need for telemedicine and remote monitoring
advances. Based on this need, this work aims to perform a comparative analysis and evalu-
ation of the angular variation of the major limb joints between different RGB-D devices,
comparing them with each other together with an RGB solution, having as a confidence
parameter a MoCap of reflective markers. This analysis will enable us to understand how
far these measurements can be used as a clinical device for rehabilitation purposes.

2. Pose Estimation/Recognition Solutions

Human pose estimation and recognition have been used in various applications,
from physical therapy in clinics to industrial posture adjustment. For this purpose, different
image processing algorithms use CNNs to identify key points. Some of the available
technologies are YOLO [8], OpenPose [7], and MediaPipe [9], the last being the one used in
this work and described below.

MediaPipe offers a cross-platform open-source framework (e.g., compatible with
Android, iOS, web, desktop, cloud, and IoT) developed by Google to build inference
streams on multimodal data (e.g., video, audio, time series data) [9]. MediaPipe Pose is a
machine learning solution for high-fidelity body pose tracking, inferring 33 3D landmarks
across the body from RGB video frames.

MediaPipe creates an insight pipeline that is built as a graph, composed of modular
components such as inference models, TFLite. The main use of MediaPipe is to design
prototype applications that use joint inference models and other reusable components.

This application performs capture from different perspectives since adding some
processing steps and inference components is necessary. Moreover, developing the same
application for various platforms can be even more difficult, considering the need to
optimize some efforts and alter the processing to suit the target device. To deal with this,
MediaPipe creates flows to make transparent and link the different inference models, which
are already optimized. As a result, the same pipeline can be used on multiple platforms
with the same behavior, allowing the programmer to generate an application on a desktop
and deploy it to a cell phone. A clear advantage of MediaPipe is its capability of running
on mainstream cellphones (due to its low computational requirements), enabling body-
tracking applications to develop these platforms. As a drawback of 3D estimation from 2D
content, the Z coordinates of the joints are calculated in relation to a central point of the
user instead of having an absolute value, which happens with conventional RGB-D sensors
that provide the user’s distance to the sensor.

Pose estimation for health and wellness applications (e.g., gym, dance, etc.) is par-
ticularly challenging because of the wide variety of possible poses, degrees of freedom,
occlusions, and a variety of body features. BlazePose [10] uses two steps: a detector and
a tracker for pose estimation. The first, BlazePose Detector, is a detector that locates the
pose region of interest (ROI) within the image. The second, BlazePose GHUM 3D, is used
to infer 33 pose reference points across the body in this ROI.
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3. Material and Methods

This was a transversal observational study where joint angle from monoplanar biome-
chanical shoulder, elbow, hip, and knee movements were captured simultaneously from
three depth sensors, one RGB tracking, and a reflexive marker MoCap System, the last
being the reference value. Figure 1 shows the method’s flowchart. The first step is to
prepare the volunteer with the attachment of the reflex markers and position them in front
of the sensors for simultaneous recording.

Figure 1. General flowchart of the steps and processes performed in the research.

With the recorded data, each sensor was preprocessed before the angle calculation.
As seen in Figure 1, some sensors needed to undergo a skeleton extraction, identified
by the pink and orange flowcharts. By skeleton extraction, we mean extracting the 3D
positions of the human body joints. One of the sensors was used as the source of the
recordings for the RGB method. After obtaining all the skeletons, the angular variation’s
values were calculated, finishing with the filtering and synchronization of the data for the
last comparative analyses.

Additionally in Figure 1, each step of the method is separated and identified, starting
with the setup containing the equipment, the volunteers, the markers’ positioning, and the
volunteers’ recording. In sequence, the sensors are determined by different colors due
to the flow each data will follow. The pink color for the gold standard and orange for
the equipment without SDK all went through a preprocessing stage to determine the
skeleton. The blue flow of the sensor with SDK with this skeleton estimatebranches
into the green, representing the copy of the recording with input to the RGB method.
All data come together in the angular calculation and pass through a set of filters. The data
from the sensors (in green) pass to the interpolation and then synchronize.

3.1. Subjects

We developed an experimental study at LACAF (Kinesiology and Functional Assess-
ment Laboratory) of the Universidade Federal de Pernambuco (UFPE). Inclusion criteria
were young adults over 18 years old and students at UFPE. The only exclusion criterion
for the selection of subjects was the existence of any disease or injury affecting their co-
ordination and range of motion, previously assessed by a physical therapy researcher.
No restrictions were imposed on age, weight, height, and gender. Participants were re-
cruited at the end of December 2021. The volunteers are students from the physical therapy
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department of UFPE. A total of 6 healthy subjects participated of the study: 5 males and
1 female. The associated demographic data are presented in Table 1. The Ethics Com-
mittee of UFPE approved the experiment, which was approved under opinion: 3.225.381
(CAAE:03508918.9.0000.5208).

Table 1. Volunteer characteristics.

Mean Standard
Deviation Minimum Maximum

Age [y] 21.5 1.37 19 23
Height [m] 1.69 0.12 1.65 1.96
Weight [kg] 63.65 7.33 55 73

BMI [kg/cm2] 21.17 2.8 18.22 25.26

3.2. Materials and Setup

This research selected Microsoft Kinect v2, Orbbec Astra, and Intel RealSense (D415
model) as RGB-D capture devices. The Google MediaPipe API was chosen for the RGB ap-
plication due to its differential in estimating depth with only one RGB camera, besides being
a new framework and with few articles for its application in joint tracking. The reference
adopted as the gold standard for comparison of angular measurements in this work was
obtained using the Qualisys motion capture system.

Three MoCap RGB-D systems were used: Microsoft Kinect v2, Intel RealSense (D415
model), and Orbbec Astra, whose technical specifications are described in Table 2. In addi-
tion, the Google MediaPipe framework was used to track and estimate joints in RGB images.

Table 2. Specification of the equipment used.

vProperties Kinect v2 Astra RealSense

RGB camera
resolution 1920 × 1080 (px) 640 × 480 (px) 1920 × 1080 (px)

Depth camera
resolution 512 × 424 (px) 640 × 480 (px) 1280 × 720 (px)

Frame rate 30 (fps) 30 (fps) 30 (fps)
RGB field of view 70 × 60 (degrees) 60 × 49.5 (degrees) 69 × 42 (degrees)

Depth field of view 84 × 53 (degrees) 60 × 49.5 (degrees) 69 × 42 (degrees)

It is important to note that we did not include Kinect Azure in this comparison, which
is the newest version of the Kinect sensor. Despite the fact that Kinect Azure provides
better accuracy regarding joint and depth estimation compared to its predecessors [11,12],
this sensor is not yet globally available; its sale by Microsoft is still restricted to some
specific countries. In addition, it was unavailable in our laboratory when this research was
developed. For this reason, we used Kinect V2 as a reference as it is estimated for body
joints, and depth information is still widely used by the scientific community, even if its
production was discontinued by Microsoft.

The captured equipment was arranged in front of the collection area, positioned next
to each other, as shown in Figure 2, at a ground elevation of about 1.20 m. The MoCap
used was the Qualisys gold standard, equipment with 6 cameras was used as a reference
parameter for the angular variation. The recordings were simultaneous for all equipment.
However, the recording frequencies differed between the RGB-D/RGB equipment (30 Hz)
and the gold standard (180 Hz).
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Figure 2. View of the RGB-D equipment. (a) Posterior view of the equipment aligned with the
recording track. (b) Front view of the equipment and lifting tripods.

Furthermore, to prepare the volunteers for the Qualisys capture, 24 reflective markers
were used in two main configurations (for the upper and lower limbs). For the positioning
of the markers, we followed the guide available on the C-Motion Wiki website:

• Lower Limbs:

– Coda Pelvis.
– Shank 4.
– Thigh 3.
– One Segment Feet.

• Upper Limbs:

– Thorax/Abdomen Model 2.
– Upper Arm and Lower Arm Segment Model 1.

3.3. Experimental Protocol

The recordings occurred at different times for the lower and upper limbs to facili-
tate the identification of markers after the recordings and the organization of the saved
data. Movements were performed in two joints for each limb, performing the following
monoplanar movements:

• Knee (flexion and extension).
• Hip (abduction and adduction, flexion and extension).
• Elbow (flexion and extension).
• Shoulder (abduction and adduction, flexion and extension).

For each movement, two recordings were made with different inclinations concerning
the sensors, 0◦ and 30◦, respectively, as shown in Figure 3.

However, the knee flexion movement was performed with the volunteer perpendicular
to the sensors so that the activity occurred in the frontal plane of the sensors.

The moving segments were always the right limbs, as shown in Figure 3. In total, 120
repetitions were performed per volunteer and analyzed separately for each sensor.

3.4. Data Processing and Treatment

The raw data collected were depth information, spatial marker position, color images,
and joint estimates. In this bias, the Kinect V2 provides the joint tracking already included
in its SDK, requiring no preprocessing. On the other hand, Astra and RealSense sensors
provide joint tracking for a monthly subscription. Because of this, the MediaPipe was
used to identify the position of the joints, and then the depth and RGB images were
superimposed to obtain the 3D coordinate of the joints.
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Figure 3. Movements and positioning of the volunteers during the exercises. (a) Movement of the LE
facing the sensors. (b) Movement of the UE facing the sensors. (c) Movement of the LE inclined to
the sensors. (d) Movement of the UE inclined to the sensors.

The joint positions for the four alternatives compared in this work were obtained in
the following way:

• Kinect: The 3D joint positions were directly obtained from Kinect SDK.
• Astra: We applied MediaPipe’s joint estimation on Astra’s RGB image and then

correlated the 2D joint positions with the depth image captured by the sensor, resulting
in 3D joint positions.

• RealSense: We applied MediaPipe’s joint estimation on RealSense’s (D415) RGB image
and then correlated the 2D joint positions with the depth image captured by the sensor,
resulting in 3D joint positions.

• MediaPipe: We applied MediaPipe’s joint estimation on Kinect’s RGB image and
obtained the estimated 3D joint coordinates (notice that, in this case, the depth infor-
mation was estimated based on the central point of the user’s body).

3.4.1. Skeleton Processing

After the recording, extracting the skeletons from the recordings is necessary.
Each sensor presented a form of skeleton extraction. The Kinect V2 SDK provides the
joint estimation. On the other hand, Astra and RealSense do not offer a free charge for
the SDK for extraction. Thus, it was necessary for an intermediate extraction step using
MediaPipe to identify and track the joints in the 2D RGB images and subsequently perform
the overlay with the depth images and convert them into 3D coordinates. On the other
hand, for the Qualisys recordings, the company’s licensed software, Visual 3D, was used to
determine the positions of the desired joints from the markers.

3.4.2. RGB and Depth Image Overlap

Due to the absence of the free SDK for the Astra Orbbec and Intel RealSense sen-
sors, it was necessary to use a hybrid method for joint inference. The MediaPipe frame-
work (BlazePose) was used to detect and track the volunteers’ joints for the Astra and
RealSense devices.

The information in the RGB image is planar coordinates that must be associated with
the depth image to obtain the 3D representation of the joints. For this, we used the method
described by Knust et. al. [13] of projection and distance similarity relationships.
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Knust [13] used the similarity of triangles to correlate the planar measurement with
(x,y) and transform it into 3D world coordinates given the relationships expressed in
Equation (1) and Figure 4.

xp

d
=

x
z

(1)

yp

d
=

y
z

(2)

Figure 4. Representation of the angular similarity process. (a) Projection of the front of the camera.
(b) Representation without considering main points. (c) The x-axis view. (d) The y-axis view [13].

Since the sensor provides depth (z) information, the screen coordinates can be trans-
formed into world coordinates. Considering the displacement of the reference origin,
we obtain

(xw, yw, zw) =

(
(xp − xo) ∗ z

f
,
(yp − yo) ∗ z

f
, z
)

(3)

For the 2D to 3D transformation calculations, a C++ library was implemented, with a
Python wrapper, employing PyBind. Thus, C++ was used for Astra since it is the standard
language employed in Orbbec’s library. For RealSense, we used its library available in
Python, which contained the basic commands for the operation and functioning of the
equipment, although it did not include the joint inference SDK.

3.4.3. Angular Calculations

After estimating the positioning of the skeletons, a file was obtained for each motion,
and each sensor organized the joints. In general, the files contain the following data
organization, {[α]i}j, where α is a tuple (x,y,z) of the coordinates, i is the index of each joint,
and j is the corresponding frame of the recording.

For the angular calculations, the International Society of Biomechanics (ISB) references
were adopted for the joint coordinate system (JCS), described by Da Gama [14], using the
three anatomical planes (frontal, sagittal, and horizontal) as standard, as shown in Figure 5.
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Figure 5. Representations of ISB definitions. (a) Anatomical planes. References used for the coordinate
system: (b) shoulder and cervical; (c) pelvis and lumbar; (d) elbow and knee; (e) wrist and ankle.
Adapted from [14].

Three joints need to be correlated two by two to calculate the angle of the desired joint
being equivalent to the central joint. Then, two successive joints are connected to represent
the body segments, with the proximal joint as the origin point and the distal joint as the
endpoint, creating a vector.

From the skeletons, the BioAnalysis library was used [13], a library written in Haxe,
which uses the ISB standard to calculate the angulation of an input joint or vector relative
to one of the body planes [14]. For each frame, the skeleton is passed into the library,
along with the joint, plane, and tolerance that will be analyzed (the maximum value that
the movement can occur out of the plane). With this, BioAnalysis computes the angle
between the normal of the plane and the vector that is moving (if it receives a joint as input,
BioAnalysis converts it to the vector that represents the joint).

In practice, first, the skeleton is converted to body coordinates, and the coordinates
are given concerning the coordinate system of each joint. To achieve this, each vector
undergoes a base change made for its coordinate system. For example, in the case of the
upper limbs, the vector from the middle of the column to the top is used as the y-axis,
the vector product of the vector created from the left and right hip and the y-axis and the
vector product of x and y is usedto form the z-axis.

The coordinate system is normalized and defined by the vectors ~x, ~y, and~z, described
above. The process of converting coordinates from a system centered on the sensor to a
system centered on the joint of interest is expressed by the following change-of-basis matrix
(Equation (4)):

[v]bc = [I]sc
bc[v]sc (4)

as long as [I]sc
bc is the transformation matrix from sc (sensor coordinates) to bc (body

coordinates). Thus, we have

[I]sc
bc =

{
[B]bc}−1

=

ax bx cx
ay by cy
az bz cz

−1

(5)

As the vectors in body coordinates, we have ~x, ~y, and~z as the vectors (1,0,0), (0,1,0),
and (0,0,1), respectively. To calculate the tolerance, first, the angle between the vector that
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is moving and the normal of the plane in which the movement is being made is analyzed.
For this, the mathematical relation of cosine between vectors is used after checking that the
vector belongs to the plane, i.e., the vector that is moving must have an angle of 90° to the
normal of the plane. Subsequently, considering the given tolerance, the angle between the
moving vector and one of the perpendicular vectors that belong to the plane is calculated.
For the frontal plane, the calculation between the moving vector and the y-axis will be
performed. An error is returned if the vector does not belong to the plane.

3.4.4. Data Treatment

After computing the angles, the motion signals must be smoothed and synchronized.
A Python script was built using the libraries NumPy, SciPy, and Matplotlib because they
are free and allow easy adjustments and the possibility to share the algorithm.

In the data processing flow, first, filtering is performed with the seventh-order But-
terworth low-pass filter with a cutoff frequency of 5 Hz and 30 Hz for the signals from
the RGB-D and Qualisys sensors. Then, a moving average filter with a kernel size of 7
is applied.

With the signals properly filtered and better smoothed, it is necessary to make them of
equal size since the signals coming from Qualisys present more than 6 times the capture
frequency of the RGB-D sensors (180 Hz/30 Hz). Therefore, the interpolation process was
carried out simultaneously with the synchronization process. The signals were divided
into three parts:

• Start to first peak.
• First peak to last peak.
• Last peak.

The peaks of the signals represent the same instant of time, which is the maximum
angular displacement value of the movement under analysis. First, the distance between
the number of frames between the samples about the interpolation reference was identified.
Then, we used a second-order polynomial interpolation function from these sections and
the number of points that needed to be interpolated.

The first process was to perform peak identification to identify the beginning of the
movements. Figure 6 displays the change in each piece of data throughout the process.

Figure 6. Graphs of the data treatment process. First row contains the pure data without any kind of
treatment. Second row represents the data after filtering with the moving average and Butterworth
filters. Third row contains data with only the motion execution.
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Figure 7 displays the difference in sample sizes resulting from the discrepancy between
the sample frequencies of the equipment. After interpolation and synchronization, all
data presented the same phase (Figure 8). It is important to note that, even with the
filters, the curves of the RGB-D equipment did not show the same smoothness as those of
the Qualisys.

Figure 7. Unsynchronized and interpolated data.

Figure 8. Synchronized and interpolated data.

An alphabetic code was determined to simplify the recording and identification of
movements, following the rule: Joint-movement-position relative to the sensor index of the
recording, K-FLEX-FR-1 stands for knee-flexion-frontal-recording 1.

3.4.5. Validation and Statistical Variables

With the data adequately interpolated and synchronized, it was possible to perform the
comparison tests. As the objective of this work was to evaluate the performance of different
sensors in relation to the gold standard, the sensors’ absolute error (AE) and their root mean
square (RMS) were calculated to understand the error variation and sample dispersion.

EA = |θs − θQ| (6)
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RMSAE =

√
1
n
(

x2
1 + x2

2 + · · ·+ x2
n
)

(7)

The absolute error was classified as excellent, good, moderate, or poor according to
its median value and standard deviation concerning the clinical reference (CR), estimated
by the human error performed in the clinical environment (12.78 ± 7.44 degrees) [15].
Thus, the final classification was as follows: (i) great, when error plus its standard deviation
is below CR; (ii) good, if the error is below the CR; (iii) moderate, if it crosses CR until five
degrees; and (iv) weak, if the error is more than 5 degrees higher than CR.

In addition, we evidenced that the data did not behave as a normal distribution, thus
we can classify them as a nonparametric dependent. Since the data distribution did not
behave parametrically, the median data translates more behavioral information than the
mean. Along with the median, the RMS represents the study’s dispersion of the absolute
error data. Therefore, we used the significance of the difference test, Friedman’s rank-sum
analysis, for multiple comparisons of the sensors, with the same levels for p < 0.05 and (**)
for p < 0.001. Another post hoc analysis used was the Wilcoxon test between each pair of
sensors, where two levels of significance were defined and reported as (*) for p < 0.05 and
(**) for p < 0.001 [16].

To finalize the analysis, Pearson’s correlation was used between the angular values
because the correlation indicates the relative proximity between two variables and the
strength of their linear relationship. We used the Pearson correlation scale established by
Portney and Watkins. The correlation limits are classified as poor (<0.5), moderate (≥0.5
and <0.75), good (≥0.75 and <0.9), and excellent (≥0.9) [17].

The absolute error, RMS, and Pearson’s correlation between the gold standard and
the sensors were evaluated for the entire dataset, and each movement was analyzed.
R software was used for the statistical calculations, as it is free and open source.

4. Results

This section contains the results obtained from the processes described for data treat-
ment. A quantitative and statistical evaluation of the angular information was performed
to determine the equipment’s accuracy compared to the gold standard. For better visual-
ization and understanding of the results, this section was divided into data loss, general
results, lower limbs, and upper limbs.

4.1. Data Loss

Some of the movements listed for the recordings could not be compared due to the
infeasibility of extracting joints in Visual 3D and/or consistency in the RGB-D sensor
recordings. This problem was due to the loss of joint definition markers throughout the
recording, so it was impossible to interpolate these markers’ displacement. Thus, it was
impossible to define the segments in Visual 3D to determine the position of the joints.
Additionally, sensor losses occurred due to generating noisy data or asynchronous depth
and color image recordings. When the loss came from one sensor, the other recordings were
not evaluated to ensure comparison among all sensors at all times. As shown in Table 3, we
could not analyze 19 from 120 recordings; 15.83% lost. In addition, the 101 was scrutinized,
resulting in 505 execution.

Table 3. Table of recorded movements, explaining which ones were not analyzed, identified by “o”
for the positive ones and “x” for the negative ones.

Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 Volunteer 5

K-FLEX-FR-1 o x o o o
K-FLEX-FR-2 o x o o o
K-FLEX-IN-1 o o o o x
K-FLEX-IN-2 o o o o o



Sensors 2023, 23, 3 12 of 22

Table 3. Cont.

Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 Volunteer 5

H-ABD-FR-1 o o x o o
H-ABD-FR-2 o o o o o
H-ABD-IN-1 o x o o x
H-ABD-IN-2 o x o o o
H-FLE-FR-1 o o o o o
H-FLE-FR-2 o o x o o

H-FLEX-IN-1 x o o o o
H-FLEX-IN-2 x o o x o
E-FLEX-FR-1 o o o o x
E-FLEX-FR-2 o o o o o
E-FLEX-IN-1 o o o x o
E-FLEX-IN-2 x o o o x
S-ABD-FR-1 x o o x o
S-ABD-FR-2 o x o o o
S-ABD-IN-1 o o o o o
S-ABD-IN-2 x o o o o
S-FLEX-FR-1 o o o o o
S-FLEX-FR-2 o o o o o
S-FLEX-IN-1 o o o o o
S-FLEX-IN-2 o o o o o

4.2. General Data

Of the variables analyzed, the first was the absolute error of the angular variation of the
sensors against Qualisys. In Table 4, it is possible to see the error for all movements and split
for upper and lower limbs movements. In addition, it is possible to analyze its classification
in relation to human error performed in clinical practice (12.78 ± 7.44 degrees) [15].

Table 4. Absolute error classification in relation to clinical error. Excellent is in dark green, good is
in light green, moderate is in yellow, and poor is in red. Data are presented as means and standard
deviation in degrees (◦ ) for all movements and splitting for upper limbs and lower limbs movements.

Sensor/Data All Data Upper Limbs Lower Limbs
Astra 11.60 ± 3.71 12.36 ± 4.27 10.84 ± 3.27
Intel 11.56 ± 4.38 11.56 ± 3.74 11.57 ± 5.32

Kinect 12.65 ± 5.99 16.01 ± 6.72 9.30 ± 2.62
MediaPipe 8.57 ± 3.06 9.98 ± 3.79 7.16 ± 1.21

The absolute error was classified as excellent, good, moderate, and poor according to
its median value and standard deviation concerning the clinical reference (CR), estimated
by the human error performed in the clinical environment (12.78 degrees) [15]. Thus,
the final classification was (i) excellent when error plus its standard deviation is below CR;
(ii) good if the error is below the CR; (iii) moderate if it crosses CR until five degrees; and
(iv) poor if the error is more than 5 degrees higher than CR.

It is possible to see the error distribution. Among the sensors, MediaPipe presented
the lowest median (8.3◦). Kinect showed the highest median value, 12.2◦ . Astra and Intel
gave higher maximum and peak values of discrepancy.

Evaluating Figure 9, it is possible to understand that the behavior of MediaPipe and
Kinect presented less dispersed values. This dispersion can be considered by the RMS
values of the absolute error. Given this, it is possible to notice that the distribution of error
values for the Kinect and MediaPipe sensors obtained the lowest values.
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Figure 9. Absolute error RMS plot comparing all sensors for error dispersion.

The last element evaluated was the correlation between the sensors and Qualisys by
Pearson’s method. In the Pearson correlation matrix test, all sensors presented a p < 0.001.
Table 5 displays the Pearson correlation values for the sensors; MediaPipe and Kinect had
good correlation values, while Astra and Intel had moderate correlation values.

Table 5. Pearson correlation for the angular variation data. For all sensors, p < 0.001.

Astra Intel Kinect MediaPipe

0.69 0.73 0.81 0.86

4.3. Lower Limbs

The separate evaluation of the lower limbs was performed in two forms of analysis,
first considering all the LE data and later each movement and evaluating the mean.

4.3.1. General Analysis

Figure 10 expresses the box plot for the absolute error of the samples in a paired side-
by-side comparison of the sensors. The results were very close to the overall comparisons
in the previous subtopic. MediaPipe showed the lowest median absolute error, a value of
7.01°. At the same time, Kinect had the second lowest median, 8.56◦. On the other hand,
Astra and Intel performed with the highest median values for error, respectively, 9.86◦ and
9.9◦. These values indicate that the error rate within the distribution presents the middle
of the matters at these points. Associating this with the RMS, it is possible to understand,
along with the box plot, the dispersion behavior of the error within the sample. Figure 11
shows the RMS values, and it is possible to see that MediaPipe and Kinect presented less
dispersion. However, it is common for all sensors to have high maximum error values,
possibly resulting from synchronization or unfiltered noise.

Figure 10. Box plot of the absolute error of each sensor in relation to Qualisys, for the lower limb movement.
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Figure 11. RMS of the absolute error for each sensor against all lower limb data in degrees.

After determining statistical relationships and error results, data correlation was calcu-
lated with Qualisys to determine the sensor closest to the gold standard.
Table 6 shows Pearson’s correlation between RGB-D equipment in ascending order from
left to right, proximity range from 0 to 1. Kinect and MediaPipe both obtained a good index.

Table 6. Pearson correlation of sensors for all data to LL data; blue (>0.75 and <0.9) and yellow (>0.5
and <0.75).

Astra Intel Kinect MediaPipe

0.62 0.66 0.80 0.87

4.3.2. Motion Analysis

The same analysis as in the previous section was performed for each type of move-
ment recorded to verify the performance at each joint and recording slope. Through the
statistical tests, it was determined that the samples do not behave as normalized data.
Therefore, the post hoc nonparametric Friedman rank sum was used, obtaining the value
of p < 0.001 for all sensors.

The absolute error and the RMS were calculated using the same analysis meth-
ods for each movement. Figure 12 condenses the information of the AE distribution.
Evaluating the results for each movement, we can see that in Q-ADB-FR the Astra sensor
had the lowest median value (5.39◦); in Q-FLEX-FR, Kinect had the lowest median value
for the error (4.28◦); for the other movements, MediaPipe presented the lowest error values,
being J-FLEX-FR (6.74◦), J-FLEX-INL (8.56◦), abd Q-ADB-FL. In addition, the Q-ADB-FR
and Q-FLEX-FR movements had the second smallest values, respectively, 5.63◦ and 7.67◦.

Table 7 presents the values described for each movement to understand all the move-
ments and median error values. MediaPipe had the lowest mean median as well as the
standard deviation. Kinect V2 sensor had the second lowest mean and standard deviation
of the median absolute error. Since the data are not parametric, the evaluation of the median
indicates the data behavior; associating it with the RMS makes it possible to establish and
understand the data behavior and evaluate which one presented the most desired behavior.

Table 7. Table of medians of absolute error for lower limbs in degrees (◦ ).

Astra Intel Kinect MediaPipe

K-FLEX-FR 14.34 7.3 10.74 6.74
K-FLEX-INL 11.3 10.26 11.38 8.56
H-ABD-FR 5.39 8.08 8.86 5.63

H-ABD-INL 8.79 7.79 10.89 6.03
H-FLEX-FR 11.97 15.46 4.29 7.67

H-FLEX-INL 13.22 20.5 9.64 8.31

Mean 10.84± 3.26 11.57± 5.32 9.3± 2.62 7.16± 1.21
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Figure 12. Grouped box plots of the absolute error (in degrees) of each LE movement.

Evaluating the RMS of the EA of the movements together with the box plots, it is
possible to understand the behavior of the data in comparison with the gold standard
and to have indications of which presented a better performance in relation to the error.
Therefore, Figure 13 contains a side-by-side comparison of all the movements in a bar
chart. There is a match between the RMS and the box plot. Five of the six smallest RMS
values coincided with being the same sensor with the smallest medians. Although they are
complementary information, they are not correlated. A discrepancy occurred only in the
Q-ABD-FR movement since the lowest median value was from Astra and the RMS from
MediaPipe. This occurred due to the dispersion of the data of the first and third quartile
and higher maximum, compared to the box plot of MediaPipe.
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Figure 13. RMS plots of the pooled absolute error (in degrees) for all sensors for LE collection.

Table 8 presents the average behavior of the RMS along the movements.
Again, MediaPipe obtained the lowest average value and the standard deviation. Thus, it
can be interpreted that the MediaPipe data presented less dispersion among the sensors for
lower limbs.

Table 8. Absolute error RMS values and mean for lower limbs in degrees (◦).

Astra Intel Kinect MediaPipe

K-FLEX-FR 14.34 7.3 10.74 6.74
K-FLEX-INL 11.3 10.26 11.38 8.56
H-ABD-FR 5.39 8.08 8.86 5.63

H-ABD-INL 8.79 7.79 10.89 6.03
H-FLEX-FR 11.97 15.46 4.29 7.67

H-FLEX-INL 13.22 20.5 9.64 8.31

Mean 29.31± 13.32 28.63± 10.44 21.53± 4.42 16.9 ± 3.39

The previous subsection performed the Pearson correlation test for each movement.
Table 9 displays the Pearson correlation between the RGB-D equipment for all sensors
and movements, the value of p < 0.001 in the correlation matrices. Kinect V2 obtained a
correlation index of excellent in two movements (Q-ABD-INL and Q-FLEX-FR), being the
only one to achieve this metric. However, in the average evaluation, Kinect and MediaPipe
obtained an index of good.
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Table 9. Pearson correlation of the sensors for each lower limb movement; p-value < 0.001 for all
Pearson correlationmatrices.

Astra Intel Kinect MediaPipe

K-FLEX-FR 0.31 0.83 0.83 0.89
K-FLEX-INL 0.51 0.69 0.81 0.86
H-ABD-FR 0.54 0.26 0.82 0.69

H-ABD-INL 0,7 0.37 0.91 0.66
H-FLEX-FR 0.68 0.49 0.91 0.87

H-FLEX-INL 0.71 0.41 0.69 0.84

Mean 0.58 ± 0.15 0.51 ± 0.22 0.83 ± 0.08 0.8 ± 0.1

4.4. Upper Limbs

The absolute error, RMS, and Pearson’s correlation between the gold standard and the
sensors were evaluated for the entire dataset and for each movement analyzed. The process
was the same for the upper limbs, making it possible to present the results more concisely.

Motion Analysis

As in the previous section, the data were analyzed by Friedman’s rank sum test
p-value < 0.001 considering all sensors for the comparison. The absolute error and RMS
were calculated using the same analysis methods for each motion. Figure 14 condenses the
information of the EA distribution. In C-FLEX-FR, Kinect obtained the lowest median with
10.26◦. In C-FLEX-INL, Intel obtained the smallest with 9.67◦. Astra obtained the lowest
median values in two moves: O-ABD-FR, 7.5◦, and O-ABD-INL, 7.48◦. Similarly, MediaPipe
showed lower values in two movements: O-FLEX-FR, 10.26◦, and O-FLEX-INL, 6.81◦.

Table 10 presents the values described for each movement to understand all the
movements and median error values. MediaPipe presented the lowest average median,
followed by Intel, which presented a small standard deviation compared to the others.
The lowest median indicates the behavior, representing that in half of the data, the error
was at least lower than the median, its lowest value being a positive indicator.

Table 10. Grouped box plots of the absolute error of each UE movement.

Astra Intel Kinect MediaPipe

E-FLEX-FR 17.31 17.23 10.26 13.56
E-FLEX-INL 11.6 9.7 11.13 15.92
S-ABD-FR 7.5 8.3 9.6 8.17

S-ABD-INL 7.8 7.9 18.59 7.97
S-FLEX-FR 13.88 13.58 20.31 7.47

S-FLEX-INL 16.39 13.18 26.15 6.81

Mean 12.36± 4.27 11.56± 3.74 16.01± 6.74 9.98± 3.79

In addition, to evaluate the behavior of the error dispersion, it is possible to associate
it with the RMS. Figure 15 presents the RMS results of the absolute error. Kinect presented
lower RMS values in C-FLEX-FR and C-FLEX-INL. The second one presented the second
lowest median (11.13◦) but with smaller data dispersion. In O-ABD-INL, Intel presented the
lowest RMS with 13.17◦, followed directly by MediaPipe with 13.86◦. MediaPipe obtained
the lowest values in both movements where it obtained a lower median, O-FLEX-FR, 12.19◦,
and O-FLEX-INL, 17.33◦, in addition to O-ABD-FR, with RMS of 10.94◦.
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Figure 14. Grouped box plots of the absolute error (in degrees) of each UE movement.

Figure 15. RMS plots of the pooled absolute error (in degrees) for all sensors for UE collection.

Additionally, Table 11 expresses the RMS across the movements and the average
by comparing the results. MediaPipe obtained the lowest average RMS and standard
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deviation, followed by the Kinect. Therefore, the less dispersed behavior of the MediaPipe
is noticeable.

Table 11. RMS values of absolute error and mean for upper limbs.

Astra Intel Kinect MediaPipe

E-FLEX-FR 30.24 28.20 21.55 22.49
E-FLEX-INL 22.65 16.86 15.21 21.87
S-ABD-FR 13.05 14.98 11.56 10.94

S-ABD-INL 16.61 13.17 19.11 13.87
S-FLEX-FR 25.56 23.26 22.43 12.19

S-FLEX-INL 26.34 24.66 27.68 17.33

Mean 22.41± 6.45 20.19± 6.01 19.59 ± 5.68 16.45± 4.93

As in the previous section, Pearson’s correlation test was performed for each move-
ment. Table 12 displays Pearson’s correlation between the RGB-D equipment. For upper
limbs, the correlation between RGB-D and RGB equipment was high, as the lowest correla-
tion obtained the metric of good. Kinect and MediaPipe achieved excellent correlation.

Table 12. Pearson correlation of the sensors for each upper limbs movement.

Astra Intel Kinect MediaPipe

E-FLEX-FR 0.60 0.63 0.83 0.78
E-FLEX-INL 0.73 0.87 0.93 0.85
S-ABD-FR 0.91 0.87 0.96 0.97

S-ABD-INL 0.84 0.90 0.96 0.96
S-FLEX-FR 0.73 0.81 0.91 0.96

S-FLEX-INL 0.82 0.76 0.94 0.95

Mean 0.77 ± 0.11 0.81 ± 0.10 0.92 ± 0.05 0.91 ± 0.08

5. Discussion

The objective of the work was to evaluate the analysis capacity of RGB-D equipment
as a source of joint position estimation for biomechanical evaluation. Consequently, as-
sessing the equipment’s ability to recognize and track the joints’ 3D position enables the
measurement of angular variations as long as the range of motion is a parameter used
to follow the evolution and condition of the patient [18]. The Kinect V2 sensor and the
MediaPipe API showed better results in the metrics evaluated. On the other hand, Astra
and Intel showed inferior performances.

Along with the median, the RMS represents the study’s dispersion of the absolute
error data. Thus, MediaPipe obtained the best absolute error and RMS results so that
the median error was lowest on average in the analyses of MMSS (EA = 9.98± 3.79 and
RMS = 16.45± 4.93) and MMII (EA = 7.16± 1.21 and RMS = 16.92± 3.39). Considering
all recordings for the limbs, MediaPipe performed wellwith the results of EA = 8.57± 3.06
and RMS = 16.68± 4.05.

In this bias, it is necessary to evaluate the error in front of other forms of measure-
ment. In their work, Hancock et al. [19] evaluated different conditions and equipment of
goniometry common in clinical settings for measuring knee angle in flexion–extension.
In their work, Halo digital goniometer, long- and short-arm goniometer, visual estimation,
and cell phone app goniometer were evaluated, obtaining the estimated error for each
piece of equipment, respectively: 6◦; 10◦; 14◦, 14◦, and 12◦. Therefore, it can be seen that
the MediaPipe error would be below the measurement range of short- and long-arm go-
niometers (error between 10◦ and 14◦), while the other sensors would be within the range.
Furthermore, MediaPipe’s average error of 8.57◦ is below the error of tools commonly used
in physical therapy clinics for joint angle assessment. Additionally, compared to the results
obtained by Russo [15], the human error for angular measurements is 12.78 degrees. Thus,
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MediaPipe scored excellent for all data and lower limbs and good metric for upper limbs.
Kinect scored excellent for lower limbs, good for all data, but a moderate score for upper
limbs, the lowest result among the sensors.

It is a tool that uses only one RGB camera and can estimate depth data and thereby cal-
culate three-dimensional angular variations. Thus, the performance of the MediaPipe was
surprisingly better than three RGB-D devices (Astra, Intel, and Kinect V2) for measuring
angular variation.

The Astra and Intel sensors had the worst correlation and numerical results for lower
limbs. Both showed moderate results of r and the highest results of absolute error and
RMS, values far away from the other sensors. Kinect v2 and MediaPipe showed good
correlation results. MediaPipe showed results closer to the standard (EA = 12.51± 11.33
and RMS = 17.22), while Kinect showed intermediate results between the sensors of
EA = 14.21± 15.81 and RMS = 21.26.

The upper limbs results are similar concerning the LE, since the Kinect and MediaPipe
perform better than Astra and Intel RealSense. As seen in Table 6, Table 9 and Table 12,
this correlation was better for all data, with the sensors obtaining at least moderate corre-
lation. Astra and RealSense showed a correlation of good. For AE and RMS values, both
showed worse results, although, better than in LE, Astra obtained EA = 16.9± 16.50 and
RMS = 23.65, while Intel obtained EA = 15.58± 14.81 and RMS = 21.50. We did not find
in the literature articles evaluating these devices’ performances of angular metrics.

Furthermore, the Kinect and the MediaPipe showed better ability to evaluate angular
measurements. When each type of movement was assessed, both showed excellent corre-
lation. Mangal and Tiwari [20], in their work on muscle dysfunction assessment, found
excellent correlation values for shoulder abduction and flexion movements, respectively,
r = 0.98 and r = 0.96, corroborating the research data.

This work presented some limitations in its application. First, the small number
of volunteers did not address the diversity of body pattern variations to evaluate the
capabilities of different anatomical characteristics. The low number was due to movement
restrictions and social distance because of COVID-19. Third, the high number of repetitions
was established to obtain a considered number of executions of the analysis movement.
In this movement bias, the synchronization was performed by identifying the movement
peaks and not by synchronizing the start of several equipment. This option facilitated
the collection asthe sampling theorem states that for the reconstruction of a system, it
is necessary to capture at least twice the frequency; thus, recording at 30 Hz guarantees
the rebuilding of the data entirely once the movements had no more than 1 Hz execution.
Finally, front camera testing in monoplanar movements may have made it easier to estimate
the depth measurement of the MediaPipe, whereas the inclined recordings were performed.

6. Conclusions

The application of motion capture and analysis techniques represents powerful tools in
the rehabilitation field and can bring several advantages to patient treatment.
However, applying optical MoCaps of reflective markers widely in clinical settings is
limited due to their high cost and the high demand for time and skilled labor for setup.
In addition, considering the context experienced in the pandemic, there was, in many cases,
the impossibility or the need to remove the patient from treatment centers due to the risk
of contamination. Thus, the need for remote monitoring was evident in a reliable way for
the continuity of motor rehabilitation treatments.

In this perspective of use in clinical and even home care environments, RGB-D and
RGB applications may represent a paradigm shift in healthcare. First, however, it is neces-
sary to understand how close these devices are to the gold standard. Because of this, this
study sought to analyze the ability to evaluate and estimate joint angles. We investigated
three RGB-D equipment (Kinect V2, Astra, and Intel RealSense) and a technique based on
RGB images (MediaPipe). Among the results, the Intel and Astra equipment had the worst
correlation values with the gold standard; however, they were within the error range of
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goniometry equipment in all evaluations. On the other hand, Kinect had one of the best
correlation results and the second lowest error for lower limbs. Still, its performance in the
upper limbs was the worst, making its overall average error the highest.

In contrast, MediaPipe showed the best values. The Kinect V2 result corroborates the
literature data with correlations of good and excellent for angular evaluation. In addition,
the MediaPipe showed a surprising result, presenting numerical results better than the
other sensors and below the error scales of clinical equipment. Thus, this represents
the possibility of developing and applying techniques using only RGB components for
rehabilitation applications on par with RGB and depth imagery solutions.

The results of the research demonstrate the feasibility of applying the MediaPipe for the
measurement of angular variation for biomechanical evaluation. Therefore, the following
steps of the study will be to actively search for other RGB methods that present depth
calculation and to perform tests in other, more complex, and functional activities and
examinations with users in a clinical environment.
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