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Abstract: Total intravenous anesthesia is an anesthesiologic technique where all substances are
injected intravenously. The main task of the anesthesiologist is to assess the depth of anesthesia,
or, more specifically, the depth of hypnosis (DoH), and accordingly adjust the dose of intravenous
anesthetic agents. However, it is not possible to directly measure the anesthetic agent concentrations
or the DoH, so the anesthesiologist must rely on various vital signs and EEG-based measurements,
such as the bispectral (BIS) index. The ability to better measure DoH is directly applicable in clinical
practice—it improves the anesthesiologist’s assessment of the patient state regarding anesthetic agent
concentrations and, consequently, the effects, as well as provides the basis for closed-loop control
algorithms. This article introduces a novel structure for modeling DoH, which employs a residual
dynamic model. The improved model can take into account the patient’s individual sensitivity to
the anesthetic agent, which is not the case when using the available population-data-based models.
The improved model was tested using real clinical data. The results show that the predictions of the
BIS-index trajectory were improved considerably. The proposed model thus seems to provide a good
basis for a more patient-oriented individualized assessment of DoH, which should lead to better
administration methods that will relieve the anesthesiologist’s workload and will benefit the patient
by providing improved safety, individualized treatment, and, thus, alleviation of possible adverse
effects during and after surgery.

Keywords: general anesthesia; total intravenous anesthesia; target-controlled infusion; propofol; BIS
index; depth of hypnosis; improved mathematical model; population-data-based model; residual
model

1. Introduction

Adequate general anesthesia (GA) is a prerequisite in surgeries as well as in various
other medical procedures. The anesthesiologist must take care of three main aspects of the
patient state during the procedure: besides considering the vital signs, they must administer
substances that keep the patient deeply unconscious, prevent the patient from feeling pain,
and keep the patient’s muscles adequately relaxed. Furthermore, the patient must not be
aware of, or even remember, what was happening during GA. Therefore, it is essential to
properly administer the needed substances during the medical procedure.

GA and the dynamic response of the patient’s body to anesthetic substances can be
regarded as quite complex dynamic systems. Various pharmacokinetic (PK) and pharmaco-
dynamic (PD) mechanisms take place inside the patient’s body; however, it is unfortunately
generally not yet possible to claim that these PK and PD systems have been completely
studied or adequately modeled. Furthermore, the anesthetic depth is a controversial
concept, which involves the three main aspects of hypnosis, analgesia, and muscle relax-
ation. In addition, amnesia must also be ensured. However, anesthetic depth cannot be
directly measured.

The main job of the anesthesiologist is to monitor the patient’s vital functions and
properly maintain the functions of the patient’s organs. Anesthetic agents are administered
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in various ways into the patient’s body so as to achieve adequate GA: the two most com-
monly used methods in clinical practice are the intravenous administration induction of
the anesthetic agent, i.e., injection of the anesthetic agent into a patient’s vein, or the inhala-
tory administration of anesthetic agent, in which the substance is induced by the patient
inhaling a prepared breathing mixture. If the anesthetic agents are injected intravenously,
the anesthesiologic technique is known as total intravenous anesthesia (TIVA) [1,2]. In this
article, we focus on TIVA administration exclusively.

During the medical procedure, the anesthesiologist aims to maintain the appropriate
depth of hypnosis (DoH) by adjusting the dosage of the anesthetic agent. Clearly, the PK
and PD of the anesthetic agent and the type of procedure must be taken into account, e.g.,
long-term sedation in an intensive care unit requires deeper DoH than GA during surgery.
Too-deep anesthesia is manifested as a drop in blood pressure level and heart rate frequency
as well as slow post-operative awakening of the patient from GA [3]. On the other hand, the
opposite is also true. Moreover, inadequate depth of anesthesia results in the activation of
sympathetic nerves, or, in the most unlikely event, with the patient awakening, which must
be avoided at all costs [4]. In modern clinical practice, DoH is determined by assessing
the relevant clinical signs (iris, sweating, movements), by interpreting hemodynamic
measurements [5] and by estimating the DoH from EEG signals [6]. The latter is made
possible by several established measurement systems, such as BIS index, NeuroSense,
Narcotrend, Entropy (Scale and Response), WAVCNS, and Patient State Index.

BIS index is a noninvasive measurement method. A BIS monitor is connected to
electrodes on the patient’s head and the bispectral index is calculated from the measured
EEG signals. The BIS monitor provides a single dimensionless number, which ranges from
0 (equivalent to EEG silence) to 100. A BIS value between 40 and 60 indicates an appropriate
level for GA, whereas a value below 40 is appropriate for long-term sedation due to head
injuries. The reference can thus be set to the applicable value; the manner and speed of
approaching the reference value depend on the specific characteristics of the procedure
and the pharmacokinetics and pharmacodynamics of the substance in the patient’s body.
The BIS value can, therefore, be considered as a representation of the DoH, although some
papers question the relevance of BIS measurement for representing hypnosis as a graded
state during surgery [7,8]. The authors in [7] pointed out the poor correlation between
BIS and serum concentrations of propofol, which calls into question the relevance of the
BIS measurement in representing hypnosis as a graded state during surgery. When they
included all values during anesthesia, there was a significant correlation between BIS and
serum propofol, but the correlation was poor and disappeared when the outliers were
removed. Their results do not seem to support the idea that BIS represents a continuous
measure of DoH, assuming that elevated serum concentrations of propofol correspond
to deeper hypnotic levels. However, because they have too few data points to test the
correlation between serum concentration and BIS in individual patients, the reason could
be that there are interindividual differences in sensitivity to propofol. They noted that a
correlation could exist in a single patient but is not evident in data from many subjects.

In the literature, there are several approaches to modeling the effect of propofol, which
is a hypnotic anesthetic agent. For this purpose, a number of PK and PD models have been
developed, e.g., [9–12]. The models of propofol response define the general structure of
the dynamic system, whereas the particular parameters depend on the individual patient’s
characteristics, such as gender, age, height, weight, etc., as well as the particular patient’s
individual sensitivity to the effects of propofol and their ability to have propofol eliminated
from the body. Certain infusion pumps employ the PK models to enable target controlled
infusion (TCI), where the pump sets the proper flow of the medication with regard to the
model [13].

In the last years, an emerging paradigm in medicine seems to have grasped the idea
of personalized medicine [14]. In the field of drug delivery systems, this includes mod-
eling, control, analysis, and pharmacological studies, as well as development of novel
medical devices and conducting of targeted clinical trials. In this regard, the systematic
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employment of dynamic-system analysis along with control theory offers a wide range
of application opportunities in the medical domain [15–20]. Despite the fact that for TCI
various PK models can be implemented, all having their own advantages and drawbacks,
the Marsh [21] and Schnieder [22,23] models are mainly used in clinical practice. However,
these models often do not reflect the actual dynamic properties that depend on individual
sensitivity to the substance of the particular patient, which is generally not considered. For
instance, the authors in [24] found that titration of propofol based on BIS monitoring allows
a reduction in drug consumption that is associated with a similar decrease in propofol
plasma concentrations compared with TCI. An inverse relationship between cardiac output
and plasma propofol concentration was reported in [25]. In addition, the authors in [26]
showed that remifentanil plasma concentrations during remifentanil and propofol anesthe-
sia are influenced by cardiac output in a similar manner to propofol, although the metabolic
sites are different. Because cardiac output is known not to be constant during anesthesia,
this also significantly affects plasma concentrations and, thus, the effects of propofol and
remifentanil. The authors concluded that actual blood concentrations of remifentanil and
propofol may differ significantly from expected concentrations, especially when cardiac
output is low. Cardiac output is therefore an important factor whose influence should be
investigated in PK and PD models. This again supports the idea that individualized PK
and PD modeling could improve anesthetic delivery methods. Therefore, approaches using
population-based-data models often cannot ensure optimal performance, especially when
treating a patient with a particularly considerable discrepancy from the population-data-
based models. A population-data-based approach cannot yield universally usable models,
even if a very large number of patients would be taken into account and despite the fact
that only relatively healthy patients are considered.

The dynamic mathematical models can be directly used in clinical practice for assess-
ing DoH-related variables by implementing them in soft sensors [27] or state observers [28],
which would improve the anesthesiologist’s assessment of the patient state regarding
anesthetic agent concentrations and, consequently, the effects, hence benefiting the patients
in the long run. In addition, the models can enable in silico testing of various potentially
clinically implementable closed-loop control algorithms, e.g., PID-controller-based ap-
proaches [29–31]. Furthermore, they represent the basis for a number of advanced control
approaches, such asrobust control [32–34], model-predictive control [35,36], fuzzy-rule-
based decision system [37], event-based control [38], etc. Despite difficulties in objective
pain measurement [18,39], a number of articles also consider the inherent MIMO (or MISO)
nature of the controlled system, which is due to drug interactions, especially when anal-
gesics (such as remeifentanil) are considered [40–42].

The article introduces a novel structure for modeling DoH. The modeling framework
results in an improved individualized assessment of DoH, which is reflected in better
predictions of the related anesthetic agent concentrations as well as the measured BIS signal.
The article is structured as follows. First, we introduce the basic three-compartmental
model and the upgraded population-data-based model, namely, the PK and PD parts.
Next, we introduce the improved model structure and present the residual dynamic model
add-on. In Section 4, the identification procedure is presented, including the identification
signals, filtering, and parameter estimation. This is further extended to online recursive
parameter estimation. Next, we validate the improved model by comparing the simulated
data for the particular patient to real clinically acquired data, which were logged during a
surgery in a real clinical setting. We end the article with some concluding remarks.

2. Propofol Pharmacokinetic and Pharmacodynamic Modeling

The pharmacokinetics of the basic population-data-based model is described by the
Schnider model [22,23]. A well-established three-compartmental model structure is used as
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the basis for dynamic relations. For details, see [43,44]. The internal dynamics of the model
can be formulated using Equations (1)–(3).

dx1

dt
= φ− k12x1 − k13x1 − k10x1 + k21x2 + k31x3 (1)

dx2

dt
= −k21x2 + k12x1 (2)

dx3

dt
= −k31x3 + k13x1 (3)

In Equations (1)–(3), the variables x1, x2, and x3 represent the amount of the drug
in compartments V1, V2, and V3, respectively. The infusion flow rate is denoted as φ. As
noted above, the parameters k12, k21, k13, and k31 represent the partition coefficients that
determine the speed at which the drug moves from one particular compartment to another.
Finally, k10 is the rate of elimination of the drug from the patient’s body. Note that the
concentration in the central compartment is often referred to as plasmatic concentration.

The effect site for the drug propofol is basically the central nervous system. The effect
site is thus part of the central compartment, but the effect of the drug is subject to some
dynamics with regard to the (theoretical) concentration in the central compartment [44].
Therefore, a first-order model was used to describe the effect-site concentration dynamics,
as given in Equation (4).

dxe

dt
= −ke0xe + ke0x1 (4)

The effect-site concentration of propofol is considered as the main influence on the
DoH. Despite acknowledging that DoH is a multivariable and a not very easy to grasp
concept, involving deep unconsciousness, analgesia, amnesia, and muscle relaxation, we
want to keep the model as simple as possible, yet not too simple for our requirements.
Therefore, we first assume that BIS index is an adequate measure for DoH, despite the
fact that the assumption might be debatable [8,45,46]. Furthermore, we consider an SISO
model, where the input represents propofol inflow, and the output represents the value of
the BIS index.

Despite the fact that the PD effect mechanism has not been fully studied yet, in
the literature, a sigmoid Emax model based on the general Hill equation [47] is usually
considered, as given in Equation (5).

yBIS = yBIS(xe)

yBIS = BIS0 − (BIS0 − BISmin)
xγ

e

xγ
e50 + xγ

e

(5)

In Equation (5), BIS0 denotes the characteristic value for a fully awake patient, BISmin
stands for the minimum value of BIS index, and γ is the parameter that defines the nonlinear
shape of the response curve.

Therefore, the combined model can be regarded structurally as a Wiener nonlin-
ear model.

The parameters of the phamacokinetic model are taken from [22,23,48]. The values
are given in Table 1.
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Table 1. Parameter values.

Parameter Value

Vc 4.27l

k10
0.443 + 0.0107·(weight/kg − 77) −
− 0.0159·(LBM/kg − 59) +

+ 0.0062·(height/cm − 177) / min

k12 0.302 − 0.0056·(age/years − 53) / min

k13 0.196 /min

k21
[1.29 − 0.024·(age/years − 53)] ·
·[18.9 − 0.391·(age − 53)]−1 / min

k31 0.0035 / min

ke0 0.456 / min

Note that the values of model parameters depend on the patient’s age, weight, height,
and gender. Parameter LBM is calculated as given in Equation (6).

LBM =
1.1 · weight/kg− 128(weight/kg

height/cm )2 ; male

1.07 · weight/kg− 148(weight/kg
height/cm )2 ; female

(6)

The parameters of the BIS-index-effect output submodel (see Equation (5)) are set as
suggested in [49] and are given in Table 2.

Table 2. Parameter values.

Parameter Value

BIS0 95.6

BISmin 8.9

xe50 2.23

γ 1.58

3. Residual Model Introduction—Improvement of the Population-Data-Based Model

Population-data-based mathematical models, such as the one described in the previous
section, are regularly used in clinical practice, namely, for TCI propofol infusion, which
has become a standard approach in administration of the anesthetic agent. In spite of this,
we need to consider the fact that the available models are derived from population-based
measurements, both regarding the pharmacokinetic and the pharmacodynamic part.

Prior to a medical procedure, the implemented mathematical model is always tuned
to the particular patient’s properties (e.g., age, weight, height, and gender). Despite this,
the model is still based on a broader population sample that was involved in the measured-
data gathering. Hence, it is impossible for such a model to take into account specific
interpatient variabilities. Therefore, the basic population-data-based model can broadly
predict DoH, but it can exhibit severe discrepancies from the actual BIS-indicated DoH of
a particular patient, especially when the particular patient’s sensitivity to the anesthetic
agent is considerably different from the dynamics assumed in the mathematical model.
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In order to improve the population-data-based model accuracy by taking into ac-
count the specific patient’s individual dynamic properties, we propose an extension to
the basic model structure. The whole model is then structured as follows: besides the
population-data-based model, we introduce an additional residual model, which is in-
tended to mathematically describe the dynamic discrepancy of the patient’s particular
sensitivity to anesthetic-agent infusion. The discrepancy signal represents the ideal residual
model output. The improved model structure, with the additional residual dynamic add-
on, is shown in Figure 1. The output of the improved model BISsim is, therefore, calculated
as given in Equation (7).

PDB model

Residual model

Φpropofol

BISsim
BISPDB

yres

-

Figure 1. The improved model structure consisting of the population-data-based (PBD) model, and
the residual dynamic model.

BISsim = BISPDB − yres (7)

Here, BISPDB denotes the basic population-data-based model output, and yres is the
residual model output.

The goal of introducing the residual model is thus to improve the combined model
output. This means that the combined model includes the population-data-based model as
the basis for modeling the patient dynamic response to propofol. In addition, the residual
model considers the particular patient’s individual dynamic response to propofol, namely,
the individual patient discrepancies from the population-data-based model, thus enabling
a more accurate assessment of DoH expressed by BIS index. Note that the following
conditions prevent a patient from being included in the study: patients with poor general
condition (ASA > 3), patients with BMI > 35, drug addicts, patients taking psychotropic
medicines or opioid analgesics (including tramadol), patients with a severe psychiatric
disease or central nervous system disease (except the reason for surgery), patients with
arrhythmia affecting or preventing the measurements (e.g., chronic atrial fibrillation), and
patients that received benzodiazepines.

4. Identification of the Residual Dynamic Model
4.1. Identification Signals

The residual dynamic model is identified based on the data measured during a medical
procedure treating an individual patient. The input of the residual dynamic model is the
actual propofol inflow φpropo f ol , whereas its output is obtained by subtracting the actual
measured BIS signal BISdata from the population-data-based model output BISPDB, as
shown in Equation (8). The latter is calculated according to the predefined population-data-
based PK and PD model, taking into account the individual patient’s properties.
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Both signals are sampled using Ts = 1 s sampling rate. The whole experiment is
therefore represented by two discrete-time signals in Equations (8) and (9).

yres,id(z) = BISPDB(z)− BISdata(z) (8)

ures,id(z) = φpropo f ol(z) (9)

4.2. Residual Dynamic Model Structure

The structure of the residual dynamic model should be as simple as possible, but at
the same time complex enough to be able to adequately model the patient’s discrepancy
from the population-data-based model. Despite that higher complexity of the models and
possibly evolving identification could yield favorable approximations [50–52], especially if
the identification data are noise-free, we established that an appropriate structure for our
case is a second-order model, which is structured as an affine autoregressive model with
exogenous inputs. Its discrete-time formulation is given in Equation (10).

yres(t + Ts) = a1yres(t) + a2yres(t− Ts) + b1ures(t) + c (10)

Here, a1, a2, b1, and c represent the parameters to be estimated. Note that t represents
a particular time-instant of the model. A single step of the model Ts is not necessarily equal
to the data-sampling rate Ts,data. In our case, it is Ts = 5 · Ts,data = 5 s.

The model parameters can be gathered in the parameter vector Θ as given in Equation (11).

ΘT = [a1, a2, b1, c] (11)

The regressor is defined in Equation (12).

Ψ(t)T = [yres(t), yres(t− Ts), ures(t), 1] (12)

In this way, Equation (10) can be rewritten in Equation (13).

yres(t + Ts) = ΘTΨ(t) (13)

4.3. Parameter Estimation

The parameters of the residual dynamic model a1, a2, b1, and c are estimated from the
measured data concerning the particular patient.

As the measured BISdata signal is prone to significant noise, the first step is to apply
a suitable filter, which should ensure better identification results. We established that a
simple first-order filter (with a filtering time-constant τf ) is adequate. The filter can be
represented by the transfer function in Equation (14). Its discrete-time equivalent is given
in Equation (15).

τf = 20 s

H f (s) =
1

τf s + 1
=

1
20s + 1

(14)

H f (z) =
0.04877

z− 0.9512
(15)

Finally, the filtered identification signals are given in Equations (16) and (17).

yres,id, f (z) = H f (z)yres,id(z) (16)

ures,id, f (z) = H f (z)ures,id(z) (17)
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The filtered signals yres,id, f and ures,id, f are used for estimating the parameters of the
residual dynamic model Θ.

The output data vector Y contains the output variable as given in Equation (18).

Y =

 yres,id, f (t1)
...

yres,id, f (tP)

 (18)

The regression matrix Ψ is obtained by using the whole set of measured data, as given
in Equations (19) and (20).

Ψ =


ΨT

f (t1)
...

ΨT
f (tP)

 (19)

Ψ(ti)
T
f =

[
yres,id, f (ti), yres,id, f (ti − Ts), ures,id, f (ti), 1

]
(20)

Here, ti represents a time instant concerning a particular identification data pair
(i = 1, . . . , P).

According to Equations (18)–(20) and (13), the parameters of the residual dynamic
model Θ can be obtained using the least-squares identification method, as given in Equation (21).

Θ = (ΨTΨ)−1ΨTY (21)

5. Online Recursive Parameter Estimation

In order to implement the proposed modeling framework as an intelligent soft sensor
for assessing DoH, we must be able to acquire the improved combined model for DoH
during surgery. The population-data-based submodel is based on patient data and can be
derived prior to surgery. On the other hand, the particular patient’s individual dynamic
response to propofol, namely, the individual patient discrepancies from the population-
data-based model, can only be assessed after the measured data becomes available, i.e.,
either after finishing the medical procedure, as proposed in Section 4.3, which can rarely be
used, or during the medical procedure as soon as new data become available. The latter
approach enables the use of the improved model during the medical procedure.

The recursive parameter estimation is carried out as described below. The residual
model in Equations (10) and (13) is linear in the parameters, therefore it is possible to
analytically derive a least-squares estimate of the parameters. Furthermore, if the identified
system parametersare expected to be time-varying, the online estimation algorithm can
place more emphasis on newly acquired data and gradually discard older data. Therefore,
the proposed approach implements a recursive least-squares identification with exponential
forgetting [53]. The algorithm can consider a least-squares loss function for exponentially
discarding older data as time passes. The model parameters are, therefore, estimated using
Equations (22)–(24).

Θ̂(t) = Θ̂(t− Ts) + K(t)
(

yres,id, f (t)−ΨT
f (t)Θ̂(t− Ts)

)
(22)

K(t) = P(t− Ts)Ψ f (t)
(

λ + ΨT
f (t)P(t− Ts)Ψ f (t)

)−1
(23)

P(t) =
(

I − K(t)ΨT
f (t)

)
P(t− Ts)/λ (24)

In Equations (22)–(24), P(t) denotes the covariance matrix (P(t) ∈ Rn×n), where n
represents the length of the regressor. Θ̂(t) denotes the vector of the identified or estimated
process parameters, λ denotes the forgetting factor, and I is the unity matrix, where
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I ∈ Rn×n. The recursive parameter estimation is carried out online—in every time step
t—and returns the calculated parameters of the model Θ̂(t).

The forgetting factor λ is defined in Equation (25), where tλ stands for the time constant
for the exponential forgetting and Ts is the sampling time.

λ = e−
Ts
tλ (25)

The regressive parameter estimation method can consider time-varying dynamics of
the identified process; therefore, exponential forgetting can be employed. The forgetting
factor has to be set between 0 < λ ≤ 1. In this manner, the data used for parameter
estimation are pondered, so that the last data are pondered by factor 1, whereas the data
that are ks · Ts time steps old are pondered only by a factor of λks .

The initial covariance matrix P(0) has to be positive-definite and properly sized. If the
regressive parameter estimation method is interpreted as a Kalman filter, it can be regarded
as ensuring that the parameters are distributed with an initial covariance P(0) and initial
mean-values Θ̂(0) [53].

In each time step t, a new estimation is calculated. The new parameter estimations Θ̂(t)
are recursively based on the estimations from the previous time step t− Ts and the online
newly measured data. Therefore, the resulting model adapts to the new measurements as
soon as they are available.

6. Model Validation Based on Real Clinical Data

In order to validate the proposed modeling approach, we gathered real data during
a TIVA medical procedure. In our case, the treated patient was a 46-year-old male who
weighed 59 kg and was 175 cm tall.

6.1. Recorded Signals

The signal denoting the inflow of propofol φpropo f ol was parsed from the clinically
recorded data and is shown in Figure 2. One can see that, firstly, a bolus dose is introduced
in order to rapidly increase the concentration of propofol in the body. This phase is called
the induction of anesthesia and results in the patient losing consciousness. Later, a suitable
dose of propofol is continuously administered in order to keep the proper anesthetic depth.

The recorded BISdata signal for the particular treated patient is shown in Figure 3.
The plasmatic concentration of propofol cp and effect-site concentration of propofol ce
are obtained by simulating the dynamic model defined in Equations (1)–(4) based on
the measured inflow signal of propofol φpropo f ol . Next, the population-data-based BIS
trajectory BISPDB is obtained according to Equation (5). Finally, it is possible to obtain the
identification signals for the residual dynamic model yres,id, f and ures,id, f using Equations (8),
(9), and (15)–(17). The identification signals are shown in Figure 4. Note that only the
relevant interval of the measured data is considered.
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Figure 2. The inflow of propofol φpropo f ol .
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Figure 3. The measured BIS trajectory BISdata.
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Figure 4. The identification signals for the residual dynamic model yres,id, f and ures,id, f .

6.2. Identification Results

The final resulting parameters of the residual dynamic model are given in Equation (26).

ΘT = [1.7376,−0.7469,−0.0053, 0.1638] (26)

When conducting online recursive parameter estimation, the parameters converge to
the values in Equation (26). Before starting, the initial values for the algorithm are set as
given in Equations (27)–(29).

P(0) = 100 · I =


100 0 0 0

0 100 0 0
0 0 100 0
0 0 0 100

 (27)

Θ̂T(0) = [1.7242,−0.7356,−0.0040, 0.1729] (28)

λ = 1 (29)

As the recursive parameter estimation is carried out, the parameters a1, a2, b1, and c
change their values along the trajectories shown in Figure 5.
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Figure 5. Online recursive parameter estimation.

6.3. Model Validation

In order to validate the obtained model, we employ a quantitative measure for predic-
tive quality assessment, which is often used in the literature, namely, the prediction mean
square error (PMSE). It is calculated according to Equation (30).

PMSEx =
1
N

N

∑
i=1

(xi,sim − xi,data)
2 (30)

Furthermore, there are two more quantitative measures that are often used in the liter-
ature to compare the simulated and the measured signal, such as the BIS-index trajectory:
the median performance error (MDPE), which is calculated according to Equation (31), and
median absolute performance error (MDAPE), which is calculated according to Equation (32).

MDPEx = median{
xi,data − xi,sim

xi,sim
· 100%}i=1,...,N (31)

MDAPEx = median{|
xi,data − xi,sim

xi,sim
| · 100%}i=1,...,N (32)

In Equations (30)–(32), xsim and xdata denote the simulated and the measured data,
respectively, whereas N stands for the number of data points in the dataset.

Figure 6 shows the output of the residual dynamic model yres compared to the
measurements-based trajectory yres,id, f .
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Figure 6. Residual dynamic model validation: yres and yres,id, f .

Finally, the output of the improved model is calculated according to Equation (7). The
relevant BIS trajectories are shown in Figure 7.
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For the case of the particular patient and medical procedure, the calculated criteria for
yres and BIS are given in Table 3 and Table 4, respectively.

Table 3. Predictive quality measures for yres.

yres PMSE MDPE MDAPE

Without residual
model 166.0 N/A N/A

With residual model 50.8 −4.88 101.4

Improvement 3.27 N/A N/A

The presented residual dynamic model reduces the PMSE of the difference between
yres and yres,id, f from 166.0 to 50.8; therefore, the improvement factor is 3.27.

Table 4. Predictive quality measures for BIS.

BIS PMSE MDPE MDAPE

Without residual
model 179.8 −10.85% 22.56%

With residual model 63.3 −0.605% 16.92%

Improvement 2.84 10.24% 5.64%

The implementation of the improved model reduces the PMSE from 179.8 (BISBMS
and BISdata) to 63.3 (for BISsim and BISdata). In this case, the improvement factor is 2.84.
Furthermore, the MDPE criterion improved by 10.24%, and MDAPE by 5.64%.

The main limitation of the proposed model is that it cannot be rigorously validated for
a specific patient before its implementation because of its dependence on online measure-
ments collected during the medical procedure. Moreover, no two anesthetic applications
are alike, even if the same patient undergoes the same type of surgery several times, for
example. Since the dynamic characteristics of the patient may change over time, it is not
possible to compare the performance in two different interventions even if the same patient
is treated. Because we cannot claim that the individualized dynamic model in question is
time-invariant in the long run, it cannot be validated by using a special validation dataset
that is strictly separate from the dataset used for identification. Furthermore, as the goal of
the additional residual model is to consider the individual patient’s discrepancy from the
population-data-based model, it is not sensible to cross-validate it using another patient’s
measurements.

On the other hand, the results suggest that a significant improvement can be achieved,
compared with the approach based only on the population-data-based model. In the future,
the modeling framework will be further verified with several more datasets on different
individuals treated with TIVA.

7. Conclusions

The article introduces a novel structure for modeling DoH, resulting in an improved
individualized assessment of DoH, which is reflected in better predictions of the measured
BIS signal. The presented model structure for modeling DoH dynamics employs the resid-
ual dynamic model add-on, which is used to model a particular treated patient’s individual
dynamic discrepancies from the population-data-based model. In such a manner, the model
can take into account the patient’s individual sensitivity to the anesthetic agent, which is
not the case when using the population-data-based model exclusively, e.g., when using
TCI, as is often the case in clinical practice. Therefore, the proposed modeling framework
provides an improved mechanism for predicting DoH measured by the BIS index.
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The improved model was verified using real clinical data logged during a medical
treatment of a particular patient that lasted a little more than one hour. The results show
that the predictions of the BIS-index trajectory were, indeed, considerably improved. Hence,
the improved model seems to provide a solid foundation for better simulations as well
as for the implementation in closed-loop model-based predictive control of DoH. The
modeling framework will be further verified with several more datasets concerning various
individuals that have been treated with TIVA.

To sum up, the presented framework provides a basis for a more patient-oriented
individualized model for assessing DoH. The model seems to provide a deeper insight
into DoH dynamics, which should lead to better administration methods that will relieve
the anesthesiologist’s workload and will benefit the patient by providing improved safety,
individualized treatment, and, thus, alleviation of possible adverse effects during and
after surgery.
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University Medical Centre Ljubljana for providing the measured data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Rifai, Z.; Mulvey, D. Principles of total intravenous anaesthesia: Practical aspects of using total intravenous anaesthesia. BJA

Educ. 2016, 16, 276–280. [CrossRef]
2. Absalom, A.R.; Glen, J.B.; Zwart, G.J.; Schnider, T.W.; Struys, M.M. Target-Controlled Infusion: A Mature Technology. Anesth.

Analg. 2016, 122, 70–78. [CrossRef]
3. Wesselink, E.M.; Kappen, T.H.; Torn, H.M.; Slooter, A.J.; van Klei, W.A. Intraoperative hypotension and the risk of postoperative

adverse outcomes: A systematic review. Br. J. Anaesth. 2018, 121, 706–721. [CrossRef]
4. Tasbihgou, S.R.; Vogels, M.F.; Absalom, A.R. Accidental awareness during general anaesthesia–A narrative review. Anaesthesia

2018, 73, 112–122. [CrossRef]
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