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Abstract: The article provides a discussion on a methodology intended for testing of power trans-
mission systems featuring an innovative highly torsionally flexible metal clutch patented by the
co-authors of this paper. What this methodology takes into account is the amplitude and frequency
analyses discussed in the article, as well as a sensing system based on diverse piezoelectric and
magnetic phenomena, the Doppler effect, etc. Both contact and non-contact (laser measurement)
methods were used during the tests. The purpose of the tests conducted at the stand, originally
designed by the authors in accordance with the methodology proposed, was to evidence that using
the innovative and patented, highly torsionally flexible metal clutch makes it possible to reduce the
vibrations of multi-stage toothed gears, consequently reducing the forces affecting the gear bearings
and those acting at the tooth space, which is to enable the service life of individual components of
the power transmission systems intended for mining scraper conveyors to be significantly extended.
Based on the studies and analyses performed by the authors, one can observe and conclude that
the methodology proposed in the paper makes it possible to use an example of a relatively complex
power transmission system in order to examine the relationships between the processes at work,
i.e., the decline of the linear vibrations of the gear housing (which is undoubtedly positive in power
transmission systems) at the expense of increasing torsional vibrations of the innovative clutch, the
latter not to be considered unfavourable to users in the case analysed.

Keywords: variable load; sensors; vibration; gears; flexible torsion clutch

1. Introduction

In order to ensure adequate performance and, by that means, also cost-effectiveness
of businesses, machines and their subassemblies are expected to be robust and durable
in operation [1–4]. However, this is particularly difficult to achieve when machinery is
exposed to aggressive environmental factors. Such factors [5] may include abrasive agents,
chemical compounds, and variable instantaneous loads which can overload machine
components, thus accelerating their degradation. These detreminants of process systems
can be involved in synergistic interactions [6,7], and their outcome can be significantly
greater. Insofar as the former two factors are typically counteracted by technological means
or by way of material conversion [8–14], the latter component is very difficult to eliminate.
This observation applies particularly to the components of the power transmission systems
used in process machinery, such as toothed gears. Where this is the case, work may proceed
in unsteady states resulting from the occurrence of instantaneous overloads and start-ups.
The highlights of this study include ensuring adequate operating conditions for the gears
used in the power transmission systems of scraper conveyors. At this point, it should
be pointed out that the aforementioned conveyors are among the most critical pieces of
machinery in the process systems of mining plants as well as in the coal handling systems of
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power plants, and furthermore, they often operate under unsteady conditions, comprising
start-ups, overloads, chain slackening, etc.

The factors which affect the vibroacoustic condition of toothed gears may be at-
tributable to both external and internal causes. One can distinguish between three groups
of internal factors affecting the vibroacoustic condition of gears [15–18].

• Structural factors, including nominal rotational speed, nominal gear mesh frequency,
nominal gear load, damping properties of lubricants, fit and stiffness of bearings,
structural form of the gear housing, and free vibrations of the entire system; for
this group of factors, it is possible to make sure that various causes of damage and
malfunction can be significantly reduced at the design stage, for instance by increasing
dimensions or reducing breaking stresses.

• Technological factors, including pitch deviations, tooth line direction deviations, radial
runout, and surface irregularities; a common solution to this group of problems, one
which reduces the potential damage, is increasing the gear teeth manufacture accuracy,
for instance by using advanced machining equipment or highly accurate assembly.

• Disruptive factors interfering with the motion of gears, including change of meshing
stiffness and damping in the mesh within the engagement section, tooth deformation
due to loading, dynamic imbalance of wheels and shafts, change in wheel interaction
conditions attributable to wear of tooth surfaces, inter-tooth play; it is relatively
difficult to curb the negative effects of the aforementioned constituent factors, and
it often requires reference profile alterations, adequate outline modifications or even
gear overhaul.

One must consider certain external forces at play, mainly including start-ups, load
changes, unbalance, and assembly errors across the entire power transmission system. It
is possible to counteract the adverse effects of the said dynamic excitations of the power
transmission system components through continuous vibroacoustic monitoring [19–38]
oriented towards the elimination of the machine’s operating states which cause instan-
taneous overloads of its components, as well as by using clutches enabling the system’s
pulse excitations to be reduced. With regard to the clutches themselves, their reduction
capabilities are closely linked with the more flexible mechanism applied [39–49]. On the
other hand, the vibroacoustic monitoring system must record changes in the parameters of
multiple processes and should not rely solely on contact-mounted vibration acceleration
sensors, and the latter problem has been discussed in more detail further on in this paper.

Rigid and toothed clutches are characterised by very low flexibility, which does not
allow reduction in the dynamic forces occurring in power transmission systems. Tyre
clutches (Figure 1a) or diaphragm clutches (Figure 1b) make use of the significant deforma-
bility of rubber under the load torque which affects gear shafts, but in their case, the load
transfer capabilities are very limited.

Insert clutches (Figure 1c) are very often used in the drive systems of scraper conveyors.
They are capable of transferring a maximum torque of up to 15,000 Nm. The shape of
both the hub claws and the flexible insert ensures optimum interplay under conditions of
misalignment between motor shafts and the device being driven. These clutches are also
characterised by certain torsional flexibility, but in most cases it is insufficient to minimise
the varying loads caused by either start-up or overload.

Hydrokinetic clutches are considered to be the power transmission components which
enable soft starting of scraper conveyors. The foregoing was confirmed in a study by
Dolipski et al. [51–54]. The transfer of torque from the active member, referred to as a pump
rotor, to the passive member, i.e., a turbine rotor (Figure 1d), is performed hydraulically
in hydrokinetic clutches by making use of the change in the kinetic energy of the fluid
circulating between the two rotors [55]. The coupling elements used most commonly are
constant-fill couplings, with or without a retarding chamber, as well as flow couplings.
According to Suchoń [56], a disadvantage of these couplings is inadequate protection of
power transmission system components against sudden locking (stall), which pertains
to the gear in particular. On account of the long time of transition to the steady state of
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operation (even up to 30 s), the couplings of this type are not suitable for the drive systems
which require frequent start-ups and which do not reduce the dynamic loads emerging
in operation.
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Figure 1. Schematic diagrams of different clutch types: (a)—tyre clutch, (b)—diaphragm clutch, 
(c)—double-insert clutch, (d)—hydrokinetic clutch, (e)—CST multi-disc clutch integrated with a 
planetary gear; designations: 1—central gear wheel, 2—planet wheels, 3—cage with output shaft, 
4—internal gear wheel with moving coupling disks, 5—stationary coupling discs, 6—actuator [50]. 
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Figure 1. Schematic diagrams of different clutch types: (a)—tyre clutch, (b)—diaphragm clutch,
(c)—double-insert clutch, (d)—hydrokinetic clutch, (e)—CST multi-disc clutch integrated with a
planetary gear; designations: 1—central gear wheel, 2—planet wheels, 3—cage with output shaft,
4—internal gear wheel with moving coupling disks, 5—stationary coupling discs, 6—actuator [50].

An example of the use of a friction clutch in a power transmission system (Figure 1e)
is the controlled start transmission (CST) system, which integrates two power transmission
components, i.e., the gear and the multi-disc friction clutch. This system ensures load-free
start-up of all drive motors, and it balances the load in the system in the course of steady-
state operation. On the other hand, in the event that the drive is locked (overloaded), the
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device’s control unit commands the relevant actuators to completely disconnect all drives.
However, the CST system’s design is very complex, which also significantly increases the
probability of the power transmission system failure. The study of friction clutch-based
drive systems by Skoć and Drwięga [57] revealed the importance of the heat capacity of the
clutch discs for transfering the loads occurring in the course of frequent start-ups, but also
the dependence of clutch shaft’s resistance in the uncoupled state on residual friction, and
the fluctuation of disc friction coefficient in the coupling process.

A completely new approach to the attenuation of start-ups, dynamic changes and
overloads in scraper conveyor systems was presented by Kowal and Filipowicz [58–60].
These authors proposed to use a screw system aided by a set of springs to form a flexible
element characterised by a very high relative torsional angle of both coupling members
(Figure 2). Such a design of flexible couplings has never been used in the operating practice
of process machines to date. In his own paper, Filipowicz [61] discusses the possibility of
two-directional operation of flexible metal clutches.
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Figure 2. Design (a) and example (b) of a torsionally flexible metal clutch [62]; designations: 1—clutch
shaft, 2—sliding sleeve, 3—set of disc springs, 4—clutch housing, 5—moving splined coupling,
6—cover, 7—clutch hub, 8—cone bearings, 9—thrust bearing, 10—sealing ring.

The operating principle of a torsionally flexible metal clutch is that the running torque
acts on the active side of the clutch directly via its shaft (1) and is then transmitted to
a sliding sleeve (2) by means of a multiple thread mechanism. The increasing torque
causes the shaft (1) to rotate against the sleeve (2) and, at the same time, against the
clutch housing (4). The axial force generated in the thread mechanism initiates the sleeve’s
sliding movement along the shaft axis (clutch axis). The sleeve’s movement is restricted
to plane motion by the moving splined coupling (5) between the sleeve (2) and the clutch
housing (4). At the same time, the sleeve’s plane motion causes compression of the set
of disc springs (3) adequately chosen to match the assumed clutch characteristics. The
compression of the springs generates an internal elastic strain force affecting this spring
set. At each momentary fixed position of the sliding sleeve, this force balances the axial
force generated in the thread mechanism, which results from an external running torque.
Thus generated, the balance of forces in the clutch’s thread mechanism, defined by the
momentary fixed position of the sliding sleeve (2) against the shaft (1) and housing (4), is
also defined by the angle of relative rotation of the clutch members—the active and the
passive one, at which the instantaneous value of the running torque is “transferred” from
the active to the passive side of the clutch. Any instantaneous overloading of the power
transmission system by the running torque causes additional compression of the clutch’s
elastic components, while load reduction releases the compressive force. Once the power
transmission system has been fully unloaded, the sliding sleeve (2), compressed by the
gradually relaxing spring set, returns to its initial design position relative to the clutch
shaft axis.

Filipowicz has demonstrated [62–64] that the flexible metal clutch can effectively atten-
uate the torque impulses generated by the braking system. A report by Wieczorek et al. [65]
confirmed the high durability of the screw-nut system against friction. Furthermore,
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Wojnar et al. [66] proposed a method for advanced time–frequency analysis and for or-
der analysis of vibrations measured at the support bearing housing for a flexible and
locked clutch.

The problem of transverse and torsional vibrations is very topical and widely ad-
dressed in the literature. For instance, in paper [67], the properties of the eigenvalues
and eigenmodes for transverse and torsional vibrations of a mechanical system where
two of the three component bars are identical have been defined. The determination of
these properties allows the calculus effort and the computation time and thus increases the
accuracy of the results in such matters. For such kind of structure, we have demonstrated
properties of the eigenvalues and eigenvectors that allow ease and simplify the calculation
of real structures. Paper [68], on the other hand, points out that in many technical applica-
tions (such as those in automotive engineering or in structural mechanics), the mechanical
system studied can be considered as one which is composed of two or many identical
subsystems or parts. These kinds of symmetries of the structure can be used in order to
simplify the analysis of the vibrations and make it possible to reduce the dimension of the
differential equations that describe the motion. Paper [69] addresses one rotational and two
translational degrees of freedom for the rotor and a single arclength degree of freedom for
each absorber, considered in the planar model. The well-defined structure of the vibration
modes is obtained by analytical and numerical investigations of the associated eigenvalue
problem. This vibration mode structure is similar to that for CPVA systems with equally
spaced, identical absorbers. Thus, the disrupted symmetry from multiple absorber groups
does not destroy the vibration mode structure resulting from the cyclic symmetry within
each group. The critical speeds and flutter instability of the system are investigated. The
computational approach is particularly valuable, however, on account of the multitude
of unknown vibration damping and rigidity coefficients; the experimental approach was
chosen for purposes of this study.

However, the foregoing studies do not address the vibroactivity of toothed gears used
in scraper conveyor power transmission systems coupled with a flexible metal clutch of a
novel design. Additionally, the authors identified the need for the detection of torsional
vibrations of the spring clutch itself. The foregoing observations provided grounds for
the objectives of this study, namely to develop a comprehensive method for measuring
vibrations, including torsional vibrations of highly flexible metal clutches and linear vibra-
tions of gear housings, as well as for measuring other physical parameters and recording
useful signals, which is a method that enables detailed analysis of a new and patented
highly flexible metal clutch and makes it possible to prove that using this clutch in a power
transmission system featuring a toothed gear can successfully reduce its vibrations.

The novel aspect of the study is also that the authors made an attempt to illustrate the
relationships between the oscillatory processes observed in the subject of the tests as well
as to demonstrate the effective operation of the clutch patented by two of the co-authors.
Furthermore, our intent was to discuss the methodology of testing of such innovative
power transmission systems and to show that using highly diversified measuring methods
and sensors is necessary.

Both the goal and the scope of the research, as defined above, clearly imply the
innovative nature of the study, since the properties of toothed gears coupled with highly
flexible metal clutches, featuring a screw-and-nut type torsional system and a spring-type
tensioning system, have not been studied under near real-life conditions to date.

2. Materials and Methods

The flexible metal clutch (Figure 3) was characterised [65] by the following parameters:

torsional stiffness—135 Nm/deg,
dimensionless damping coefficient ψ—0.52,
nominal torque transferred—600 Nm,
safety factor—3.
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The clutch in question operated in two modes: flexible and non-flexible. The static
characteristics of the clutch for the flexible operating mode have been provided in Figure 4.
It is rather evident that, under static conditions, the clutch is characterised by a certain
hysteresis caused by the friction between the screw and the nut, causing a phase of higher
clutch flexibilisation relative to the current load to emerge while load is being relieved.

The impact of a highly torsionally flexible metal clutch on the level of housing vibra-
tions under conditions of time-varying dynamic loads was examined using a toothed gear
typical of scraper conveyors (Figure 5), having the following characteristics [70]:

long-term power transmitted (at 1470 rpm)—22 kW,
three-stage gear (1 conical and 2 cylindrical stages),
total gear ratio i = 12.962,
splash lubrication with a VG 220 grade mineral oil.
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The proper studies of the gears in question were preceded by determining the effect
of the rotation direction on the housing vibrations generated. While conducting tests, no
measurable differences were detected either for the vibration acceleration values previously
obtained or for the frequency spectrum. This was due to the fact that the gear in use was
characterised by a very low ratio of the bevel stage, which caused no significant effect on
the responses observed in the bearings. Tests were conducted at a test stand (Figure 6)
enabling variable loads to be generated.

The gears subject to testing were mounted at the test stand in an identical manner to
that in which they are arranged in in a lightweight scraper conveyor. This made it possible
to run the vibroactivity measurements on their housings under near real-life conditions.

The relevant load variables were generated by way of instantaneous changes in
frequency applied at the braking motor inverter, whose behaviour corresponded to a
rectangular function (No. 17, Figure 6). This triggered a change in the motor’s rotational
speed and, by that means, also a unilaterally pulsating load on the power transmission
system subject to testing. As mentioned above, a rectangular input function was applied
during the tests, causing changes in the torsional angle of the clutch members in the power
transmission system examined, as discussed in detail in Section 3 of this article. The mean
values of the load torque and of the amplitude of the load torque changes thus induced in
the power transmission system in question between the flexible clutch and the multi-stage
reduction gear as well as the operating modes of the clutch have all been provided in



Sensors 2023, 23, 287 7 of 25

Table 1. The period of the load torque changes was set at 2 s (50% for low state and 50% for
high state) on the basis of the article authors’ long-term experience in the specifics of the
operation of mining conveyors.
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Figure 6. Test stand; designations: 1—driving motor, 2—stiff sleeve clutch, 3, 9, 13, 15—torque meters
(respectively: M1, M2, M4, M3), 4, 7—bearing support, 5—relative rearrangement angle sensor for
active and passive coupling members, 6—torsionally flexible metal clutch, 8—Polytec RLV-5500
laser vibrometer, 10—gear’s input shaft bearing housing, 11—multistage reduction gear (subject to
testing), 12—uniaxial vibration acceleration transducer, 18—triaxial vibration acceleration transducer,
14—multistage mulitplying gear, 16—powder brake, 17—braking motor.

Table 1. Summary of test variants.

Mean Load Torque ± Amplitude
of Load Torque Changes for

Flexible Clutch Operation Mode [Nm]
Rotational Speed [rpm] Clutch Operation Mode

41.8 ± 27.9

1480

flexible (red colour)
locked (green colour)

79.2 ± 55
flexible (red colour)

locked (green colour)

114.8 ± 75.9
flexible (red colour)

locked (green colour)

On account of the need to reduce the impact of potential inverter interference on the
measurements, dedicated anti-aliasing filters were designed and implemented.

For purposes of the identification studies of the flexible metal clutch, a new method
was developed based on the following:

• Torque measurement using torque meters M1, M2, M4 (No. 3, 9, 15—Figure 6) (MT-750,
Pracownia Elektroniki R. Pomianowski, Poznań, Poland) set up- and downstream the
flexible clutch as well as at the output of the gear performing the multiplier function;
the measurement signal from the torque meter sensor was conditioned in a matching
circuit, transmitted to a three-channel measuring system, and recorded in parallel with
the other signals recorded;

• Torsional angle measurement—this measurement was taken using a magnetic sensor
which generated a signal related to the rotation of a measuring disc featuring a wound
bipolar magnetic tape (add designation, Pracownia Elektroniki R. Pomianowski, Poz-
nań, Poland); the measurement signal received from this sensor was conditioned in
the matching circuit, transmitted to a single-channel measuring system, and recorded
in parallel with the other signals recorded;

• Measurement of vibration accelerations on the gear housing by contact methods using
four Endevco 44A10 3-axis accelerometer sensors (measuring points: 14519, 14553,
10244, 14448—Figure 7) and one Dytran 3093 3-axis accelerometer sensor;
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• Non-contact laser measurement of the instantaneous changes in the torsional vibration
velocity of the flexible clutch’s input shaft using the Polytec RLV-5500 Rotational Laser
Vibrometer (Waldbronn, Germany);

• Determination of the impulses associated with the shaft rotation using two ROLS (tacho)
laser sensors with a power of <1 mW and a measuring frequency of 1–250,000 rpm.
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Three Sirius cards (from Dewesoft, Trbovlje, Slovenia) were used for recording and
analysis purposes with 24-bit 16-channel synchronous sampling using DEWESOFT soft-
ware (from Dewesoft, Trbovlje, Slovenia). A sampling frequency of 20 kHz was applied
during the measurements. The arrangement of the measuring sensors at the test stand has
been shown in Figure 7.

As mentioned above, in order to provide the most comprehensive presentation of the
relationships between the oscillatory processes observed in the subject of the tests as well
as to demonstrate the effective operation of the clutch patented by two of the authors of this
article, next to the conventional relays of vibration accelerations as well as the torque meters
and the magnetic sensor used for angle measurement, as described in the previous section,
also a concept of contactless laser measurement of the velocity of torsional vibrations,
significantly less popular in measurements, was used under the studies.

Figure 8 (drawn up with reference to [71]) visually represents the operating principle of
a rotational laser vibrometer based on the Doppler effect, similarly to the laser vibrometers
used to measure linear vibrations (one- and three-dimensional), the difference being that
the rotational laser vibrometer uses two parallel laser beams enabling measurements of
velocities VA and VB. Where this is the case, the following relationships hold:

VA = VtA · cos αLa = ω · RA · cos αLa, (1)

VB = VtB · cos βLa = ω · RB · cos βLa, (2)

where ω angular velocity; designations of the remaining variables have been provided
in Figure 8. Based on these velocities and in accordance with relationship (3), one can
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determine angular velocity ω of the shaft, and on such grounds, also instantaneous angular
velocity changes ∆ω (Figure 9).

ω =
VA+VB

d
, (3)

where d is fixed separation of laser beams resulting from the measuring head’s design.
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Figure 9. Visual representation of the processing of signals (a) using the Polytec RLV-5500 rotational
laser vibrometer (b)—see Figure 6, item No. 8 [72,73].

The most important parameters of the rotational laser vibrometer used in the studies
addressed in this paper have been summarised in Table 2.
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Table 2. Specification of the Polytec RLV-5500 rotational laser vibrometer.

Rotations per Minute

RLV-500 Sensor Head 7.5 mm beam separation 24 mm beam separation
Measurement range –8000 RPM–+20,000 RPM –2500 RPM–+6500 RPM

Analogue output –4 V–10 V –2.5 V–+6.5 V
Calibration error 1 <0.6% of RPM reading ±2 RPM <0.3% of RPM reading ±2 RPM

Angular Velocity (∆ω)

RLV-500 Sensor Head 7.5 mm beam separation 24 mm beam separation
Peak analogue
output (Vpeak) 10 100 1000 12,000 10 100 1000 6000

Measurement
ranges (◦/s/V) ±10 ±10 ±10 +10/−4 ±10 ±10 ±10 +6.5/−2.5

Frequency range (kHz) 0.001–10 0–10 0.001–10 0–10

Measurement error <1% (at f = 1 kHz)
1 Valid at nominal stand-off distance ± 50 mm.

Operating temperature: +5 ◦C–+40 ◦C. Laser type: Helium-Neon, 633 nm (red).
Laser output: <1 mW per beam, class 2. Other detailed parameters of the RLV-5500 laser
angular velocity relay (laser vibrometer) can be found in papers [68,70]. The rotational
laser vibrometer used under the studies in question was characterised by the separation of
beams oriented towards the object of d = 7.5 mm and by the sensor head’s distance to the
measurement surface of 400 mm.

3. Results and Discussion

Figure 10 illustrates the recorded behaviour of the relative torsional angle of the
clutch members (φ) in the function of time. Under the impact of the applied time-varying
load (Table 1), with respect to the flexible clutch operation (red colour), the peak-to-peak
values of the changes in the relative torsional angle of the clutch members came to 14.0◦,
27.3◦, and 39.2◦ (the uncertainty of the angle determination did not exceed ± 1.7◦ for
all the cases analysed). These values corresponded to the load values of 41.8 ± 27.9,
79.2 ± 55, and 114.8 ± 75.9 Nm, respectively (the uncertainty of torque determination did
not exceed ± 1.2 Nm for all the cases analysed). For the clutch in the locked condition,
constant small angle changes with the peak-to-peak value of 0.8◦ could be observed,
corresponding to the circumferential backlash of individual power transmission system
components, and of multi-stage gears in particular. Given that the amplitude in the changes
is particularly relevant to the dynamic operation, before the measurements of the torsional
angle of the locked clutch members started, it was not necessary to reset the system used
to record the torsional angle of the clutch members, and hence the negative values which
Figure 10 shows for the case of the clutch’s locked operation mode (green colour).

The changes in the torsional angle of the clutch members shown in Figure 10 generate
instantaneous changes in the angular velocity of the shaft (Figure 11) situated between
the multi-stage reduction gear (No. 11 in Figure 6) and the clutch, since it is this multi-
stage reduction gear that transfers the time-varying load torque generated by the braking
motor (No. 17 in Figure 6). The higher peak-to-peak values of the instantaneous changes
in the velocity of the torsional vibrations of the flexible clutch’s input shaft recorded by
a contactless method using a rotational laser vibrometer (RLV-550, Polytec, Waldbron,
Germany) for each of the loads tested correspond to the flexible operation mode of the
clutch. The foregoing is attributable to the fact that, at times when the load increases, it is
the flexible clutch members that are subject to torsion, and this causes larger instantaneous
changes in the angular velocity of the shaft analysed.
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Figure 10. Recorded time histories of the torsional angle of the clutch members for the following
load scenarios: (a) 41.8 ± 27.9 Nm, (b) 79.2 ± 55 Nm, (c) 114.8 ± 75.9 Nm; red colour marks the
results obtained for the flexible operation mode of the clutch; green colour corresponds to the locked
operation mode.
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Figure 11. Time histories of instantaneous changes in the velocity of the torsional vibrations of the
shaft between the clutch and the multi-stage reduction gear recorded by a contactless method for
the following load scenarios: (a) 41.8 ± 27.9 Nm, (b) 79.2 ± 55 Nm, (c) 114.8 ± 75.9 Nm; red colour
marks the results obtained for the flexible operation mode of the clutch; green colour corresponds to
the locked operation mode.

Figure 12 shows the time histories of the vibration accelerations recorded in three mutu-
ally perpendicular measurement directions using transducer No. 14519 (Figure 7) attached
to the housing of the output shaft bearing in the multi-stage reduction gear. Figure 13, on
the other hand, shows the time histories of the vibration accelerations recorded in three
mutually perpendicular measurement directions using transducer No. 14519 (Figure 7)
attached to the housing of the output shaft bearing in the multi-stage reduction gear.

Having analysed the results provided in Figures 12 and 13, one can clearly conclude
that, for the housing of the bearing of both the input and output shaft in the multi-stage
reduction gear, and for all the three loads and all the three measurement directions analysed,
the peak-to-peak values of vibration accelerations obtained for the clutch in the locked
operation mode were significantly lower than those obtained when the clutch was func-
tioning in the torsionally locked operation mode. Based on these results, it can be further
concluded that loads in the form of a time-varying braking torque are converted into tor-
sional vibrations and, consequently, the linear vibrations observed on the bearing housings
transferred from the meshing zone via the shafts to the bearings and their housings are
lower, which is definitely a beneficial effect.
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(a) 

Figure 12. Time histories of the vibration accelerations recorded in three mutually perpendicular
measurement directions using transducer No. 14519 (Figure 7) attached to the housing of the
output shaft bearing in the multi-stage reduction gear: (a) 41.8 ± 27.9 Nm, (b) 79.2 ± 55 Nm,
(c) 114.8 ± 75.9 Nm; red colour marks the results obtained for the flexible operation mode of the
clutch; green colour corresponds to the locked operation mode.
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Figure 13. Time histories of the vibration accelerations recorded in three mutually perpendicular mea-
surement directions using transducer No. 14553 (Figure 7) attached to the housing of the input shaft
bearing in the multi-stage reduction gear: (a) 41.8 ± 27.9 Nm, (b) 79.2 ± 55 Nm, (c) 114.8 ± 75.9 Nm;
red colour marks the results obtained for the flexible operation mode of the clutch; green colour
corresponds to the locked operation mode.
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The signal’s root mean square (RMS) value is a measure of the energy of the signal,
which is why the RMS values of the analysed signals were calculated, yet not straightfor-
wardly by considering the entire behaviour of the vibration accelerations recorded, but
they were established within a time window moved along the time axis. The length
of the time window was 0.1 s, and the results obtained for the signals measured at
the housings of the output and input shaft bearings in the reduction gear are shown
in Figures 14 and 15, respectively.

Figures 14 and 15 explicitly imply that the RMS values of vibration accelerations
calculated within the set time window were significantly lower than those obtained when
the clutch was torsionally locked. This proves the high utility value of the clutch proposed
for mitigating the effects of external loads on the load and vibrations of the gear.

A single toothed gear is a heavily nonlinear system, which is evidenced by the models
of toothed gears discussed in the literature on the subject (as well as by the model developed
by one of the co-authors of this paper [74]). Even in a one-stage toothed gear, nonlinear
phenomena arise from the nonlinear rigidity of the meshing, gear play, vibration damping
in the meshing, etc. The subject of the study in question is a three-stage toothed gear.

One can identify various parameters in the vibration signal generated by a one-stage
toothed gear, including the following:

meshing frequency,
pinion and gear frequency,
frequencies characteristic of the operation of rolling bearings, including the following:

• BPFO (Ball Pass Frequency Outer) or outer race failing frequency;
• BPFI (Ball Pass Frequency Inner) or inner race failing frequency;
• BSF (Ball Spin Frequency) or rolling element failing frequency;
• FTF (Fundamental Train Frequency) or cage failing frequency.

Furthermore, one may also deal with successive harmonics of these frequencies, and in
the case of the three-stage gear subject to the studies, their number was several times greater.
Additionally, what may be observed is mutual increase in the amplitude of vibrations
originating at a given gear stage, characterised by a given fundamental frequency or its
harmony with vibrations of identical or similar fundamental frequency (or its harmony),
arising from the same or another phenomenon and another stage of the three-stage gear in
question. All these input functions excite vibrations of the gear housing, which is sensitive
to excitation with different frequencies. The same root mean square value of the signal or
the same maximum peak-to-peak value may be caused, for instance, by vibrations of a given
frequency and a high amplitude or by several signal components of different frequencies
and lower amplitudes. The latter of these cases corresponds to the aforementioned subject
of the studies more closely, where, for instance, one is processing a signal comprising several
components of different frequencies and different amplitudes on account of a change in the
system’s parameters; either the signal’s RMS value or the signal’s maximum peak-to-peak
values evident in time histories may decline, but judging by the time histories one cannot
be completely sure that the amplitude of each signal component has been reduced since, for
example, the foregoing may be due to a significant decrease in the values of amplitudes of
two signal components originally having nearly the highest amplitude; or where the value
of the signal component originally having the highest amplitude has increased even more,
instead of dropping, which no longer is a phenomenon that can be considered beneficial
from a technical point of view and considering the effects on a physical object. Not until
the FFT analysis is performed can such a doubt be dispelled, which is why spectra of
the signals of accelerations of the vibrations measured at different points and in varying
directions have been provided in Figures 16 and 17. These spectra prove that the use of
the innovative flexible clutch in question did not cause the amplitude dominant within the
frequency spectrum to increase for the associated frequency in the case of the locked clutch
operation, but on the contrary—it actually caused the amplitude to decline at least thrice
for this frequency (depending on the measurement point and direction).
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Figure 14. Behaviour of the RMS values of the signals recorded at the output shaft housing in the 
multi-stage reduction gear (point 14519) established within a time window moved along the time 
Figure 14. Behaviour of the RMS values of the signals recorded at the output shaft housing in the
multi-stage reduction gear (point 14519) established within a time window moved along the time
axis: (a) 41.8 ± 27.9 Nm, (b) 79.2 ± 55 Nm, (c) 114.8 ± 75.9 Nm; red colour marks the results obtained
for the flexible operation mode of the clutch; green colour corresponds to the locked operation mode.
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axis: (a) 41.8 ± 27.9 Nm, (b) 79.2 ± 55 Nm, (c) 114.8 ± 75.9 Nm; red colour marks the results obtained
for the flexible operation mode of the clutch; green colour corresponds to the locked operation mode.
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Figure 16. Spectra (FFT) of the vibration acceleration signals measured at the output shaft housing in the
multi-stage reduction gear (point 14519): (a) 41.8 ± 27.9 Nm, (b) 79.2 ± 55 Nm, (c) 114.8 ± 75.9 Nm; red
colour corresponds to the flexible clutch operation mode, green—locked clutch operation mode.
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Figure 17. Spectra (FFT) of the vibration acceleration signals measured at the input shaft housing in the
multi-stage reduction gear (point 14553): (a) 41.8 ± 27.9 Nm, (b) 79.2 ± 55 Nm, (c) 114.8 ± 75.9 Nm; red
colour corresponds to the flexible clutch operation mode, green—locked clutch operation mode.
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The spectra provided in the paper prove that for the associated component frequency
of the signal measured for the fixed clutch operation, the amplitude dominant within the
frequency spectrum did not increase after the clutch was set to operate in the flexible mode,
e.g., at the expense of decreasing the amplitudes of other frequencies, while instead it
actually declined at least thrice for this frequency depending on the measurement point
and direction.

Additionally, considering such a nonlinear object as a power transmission system with
a toothed gear where specific modifications have been introduced and despite the fact that
the overall level of vibrations has been reduced, i.e., the RMS value of the signal and the
peak-to-peak values observable within the relevant time histories have been decreased, it
would be advisable to use the FFT to establish whether or not the vibrations to be generated
are characterised by a higher (or comparable) amplitude, yet a different frequency than
that which was dominant within the spectrum and which had occurred in the test object
before it was modified. Furthermore, having analysed the spectra of the accelerations of
the vibrations measured at different points and in varying directions (Figures 16 and 17) in
the test object before and after the innovative clutch is introduced, one can observe that the
use of the flexible clutch in question did not lead to reducing all the amplitudes dominant
in the spectra by a fixed amplitude-reducing factor, common to all the frequencies, for any
of the signals, which the authors consider to be a proof that the system is non-linear.

4. Conclusions

1. Using the methodology proposed by the authors of this article for testing of power
transmission systems featuring the innovative and patented highly torsionally flexible
metal clutch in question—a methodology which takes into account the sensing systems
based on diverse phenomena: piezoelectric, magnetic, the Doppler effect, etc., as well
as the amplitude and frequency analyses discussed in the paper, it can be concluded
that, since the time-varying forces emerging between the mating gear teeth (including
those induced by time-varying external loads) are transmitted through the shafts and
bearings to the gear housing, the reduction of the vibration acceleration values of the
bearing housings of both the input and output shaft in the gear owing to the use of the
innovative flexible clutch in the power transmission system implies that the dynamic
forces affecting the gear meshing as well as the shaft bearing have decreased, which is
particularly desirable with respect to the service life of the power transmission system.

2. With reference to the complex power transmission system and based on the established
instantaneous changes in the velocity of the torsional vibrations of the shaft between
the clutch and the multi-stage reduction gear, illustrated in Figure 11 and recorded
using a rotational laser vibrometer relatively seldom used for testing purposes, the
studies addressed in this article made it possible to establish the relationships between
the processes at work, i.e., the decline of the linear vibrations of the gear housing
(which is undoubtedly positive in power transmission systems) at the expense of
increasing torsional vibrations of the innovative clutch, the latter not to be considered
unfavourable to users in the case analysed.

3. Having analysed the vibration accelerations signals observed, one can clearly conclude
that, for the housing of the bearing of both the input and output shaft in the multi-stage
reduction gear, and for all the three loads and all the three measurement directions
analysed, the peak-to-peak values of vibration accelerations obtained for the clutch in
the flexible operation mode were significantly lower than those obtained when the
clutch was torsionally locked in operation. The fact that the results discussed in the
paper could be obtained precisely for all three loads, two measurement points, at the
input and output of the multi-stage toothed gear, and three measurement directions
prior to the actual studies and analyses was actually neither obvious nor certain, but
was ultimately proved, which surely is a valuable outcome.

4. The signals of the RMS values of the vibration accelerations calculated within a time
window explicitly imply that, for the housing of the bearing of both the input and
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output shaft in the multi-stage reduction gear, and for all the three loads and all the
three measurement directions analysed, the root mean square values of vibration
accelerations obtained for the clutch in the flexible operation mode were significantly
lower than those obtained when the clutch was torsionally locked; the foregoing
proves the clutch proposed as the means to reduce the effect of external loads on the
load and vibrations in the toothed gear to be highly useful.

5. Based on the results of the frequency analysis of the vibration acceleration signals for
both the gear output shaft bearing housing and for that of the gear input shaft, it was
established that:

a. Within the frequency bands where the vibration acceleration amplitudes showed
the highest values, the vibration acceleration amplitudes were reduced multiple
(at least three) times where the clutch was locked in operation as a result of
the application of the patented innovative flexible clutch, this being a very
beneficial effect;

b. The fact that the innovative and patented highly flexible clutch was introduced
into the power transmission system did not cause that within the spectrum
of the signals any amplitude emerged with a value higher than that of the
amplitude dominant in the case of the locked operation of the clutch, yet
associated with a frequency different than the frequency corresponding to the
amplitude dominant in the case of the locked operation of the clutch.
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