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Abstract: The importance of active sonar is increasing due to the quieting of submarines and the
increase in maritime traffic. However, the multipath propagation of sound waves and the low signal-
to-noise ratio due to multiple clutter make it difficult to detect, track, and identify underwater targets
using active sonar. To solve this problem, machine learning and deep learning techniques that have
recently been in the spotlight are being applied, but these techniques require a large amount of data.
In order to supplement insufficient active sonar data, methods based on mathematical modeling are
primarily utilized. However, mathematical modeling-based methods have limitations in accurately
simulating complicated underwater phenomena. Therefore, an artificial intelligence-based sonar
signal synthesis technique is proposed in this paper. The proposed method modified the major
modules of the Tacotron model, which is widely used in the field of speech synthesis, in order to
apply the Tacotron model to the field of sonar signal synthesis. To prove the validity of the proposed
method, spectrograms of synthesized sonar signals are analyzed and the mean opinion score was
measured. Through the evaluation, we confirmed that the proposed method can synthesize active
sonar data similar to the trained one.

Keywords: active sonar; deep learning; signal synthesis; Tacotron

1. Introduction

Sonar stands for sound navigation and ranging, and refers to equipment or methodol-
ogy that identifies the existence, location, and characteristics of an underwater target object.
As water is used as a medium in which propagation proceeds, detection is performed
using sound waves [1]. Passive sonar is a receiver-only system that detects vibrations
originating from objects, such as the vessel’s engines and propellers themselves. Relatively,
it is simple to design and inexpensive to build. However, it requires a vast amount of
data to distinguish only the desired signal by receiving all signals from animals and other
ships. On the other hand, active sonar detects echo signals which are radiated from the
transmitter, reflected by targets, and returned to the receiver. Since the radiated signal
has a preset frequency characteristic and matched filtering can be applied to improve the
signal-to-noise ratio (SNR) with the knowledge of the transmitted signal, active sonar is
promising for underwater target detection in spite of the reverberation [2,3].

Active sonar modeling refers to estimating a returned echo signal reflected by an
underwater target. In general, an active sonar modeling system consists of a transmitter, a
receiver, and a target, and the transmitter and the receiver are located in different places
to perform radiation and reception [4]. Various studies have presented methods for the
simulated generation of sonar data [5–8], one of which is a simulation module provided
by the North Atlantic Treaty Organization (NATO) submarine research center. In the
simulation module, the signal emitted by the transmitter is simulated with the target
through statistical calculation [5]. It also produces a more realistic signal by providing
a target fading effect between sensors as seen in real-world sea environment datasets.
However, in simplifying the sonar equation, the modeled signal inevitably differs from
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the data collected in the real ocean. In [6], La Cour et al. developed a multi-everything
sonar simulation (MESS), reflecting the reverberation and simplified sea environment.
However, the MESS also failed to closely realize the real ocean data because simplified
sea environment parameters were added to the existing sonar equation. In addition, a
simulator of non-acoustic and acoustics (SIMONA) simulators generate signals that reflect
contact states and reverberations, as well as target shapes, multipath fading, and waveform
types [7]. For the full simulation, beamforming and reverberation calculations, which
are required to be input to the matching filter module, play a major role in the realistic
data generation. Therefore, studies on generating reverberation in real time only for
bidirectional active sonar have also been conducted [8]. However, these mathematical
modeling-based methods are limited in accurately simulating by vast and complicated
underwater environments.

Meanwhile, with the rapid development of deep neural networks (DNN), a lot of
interest and research has been conducted on the technology of generating complicated
time series signals of variable length from simple text information in the speech synthesis
area [9–13]. Representatively, WaveNet [9] is a voice signal synthesis model that presented
a remarkable performance in audio sample generation. However, there is a limitation
in that it is only used as a kind of vocoder that uses a mel spectrogram, which contains
linguistic features of the desired voice, not natural language text, as an input. In addition,
DeepVoice [10] is a method that replaced conventional text-to-speech (TTS) pipelines with
DNN. However, the method is limited because the learning process is not an end-to-end
system. Subsequently, a model of the encoder–decoder structure is proposed to improve
synthesis performance, and the importance is calculated using a pre-trained hidden Markov
model (HMM) to predict the vocoder parameters [11]. Furthermore, a Char2Wav [12] model
is designed to enable end-to-end learning, but additional preprocessing is still required in
that it predicts the Vocoder parameter. Finally, Tacotron [13] is an end-to-end TTS model
that succeeds in training a linear spectrum of speech data in natural language text at once.
It consists of an encoder, a decoder, and attention modules, showing high generation
performance enough to be used in commercial applications, and is widely used as a basic
structure of the TTS models.

Therefore, in this paper, we propose a signal synthesis method for active sonar using
the Tacotron model. To achieve our goal, we modified several main blocks of the Tacotron
model to be operated for sonar signal synthesis. Starting with the introduction of the
related works in Section 2, we explain the proposed method in detail in Section 3. Through
experiments, we verify the effectiveness of the proposed method in Section 4 and conclude
in Section 5.

2. Related Works
2.1. Active Sonar Target Signal Generation Based on the Highlight Model

Active sonar modeling means simulating a reflected signal against an underwater
target. When a pulse signal is emitted to an underwater object in a steady state, various
types of reflective signals are generated due to factors such as hull, medium, structural
characteristics, frequency of incident waves, and pulse width. The echo signal of an active
sonar using high frequency is produced by the reflection of the object’s representation,
along with several equivalent scattering inside, characterized by the spatial distribution of
the object’s highlights. Simulating a sonar signal is to consider everything that may occur in
this process of reflection. Entering each point that hits the target into the reflection tracking
algorithm has an infinite number of cases, thus the concept of highlights that simulate the
target as a series of points is introduced [14].

At long range, an underwater target is represented by a single point generated from
a single highlight. However, at short range, the distribution of highlights needs to be
properly expressed because the target can have a distribution characteristic that varies with
time and angle. Assuming that target is a submarine, the concept of a spheroid-placed
highlight is used. The concept of a spheroid-placed highlight discontinuously recognizes
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the surface of the target that varies with the angle of incidence of the highlights attached at
a specific position. Figure 1 shows the concept of the corresponding highlight:

pb(r, x) =
N

∑
g=0

hg
(
rg, x

)
∗ pi(x) (1)
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Figure 1. Spheroid-placed highlight modeling.

Given the time delay of each highlight, the signal pb reflected on all the highlights of
the target can be expressed as a sum, as shown in (1). The receiver is r, the target is x, and
there are a total of N highlight points in a multi-highlight system, including short-range
underwater targets. At this time, the object transfer function of each highlight is called hg
and the incident signal is pi. This highlight modeling is simple but widely used due to high
environmental approximation.

2.2. The Tacotron for TTS Modeling

At long range, an underwater target is represented by a single point generated from
a single highlight. However, at short range, the distribution of highlights needs to be
properly expressed because the target can have a distribution characteristic that varies with
time and angle. Assuming that target is a submarine, the concept of a spheroid-placed
highlight is used. The concept of a spheroid-placed highlight discontinuously recognizes
the surface of the target that varies with the angle of incidence of the highlights attached at
a specific position. Figure 2 shows the concept of the corresponding highlight.
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Figure 2. The Tacotron compared to conventional methods.

The encoder–decoder structure and attention mechanism are the core building blocks
of the Tacotron. The <Text, Speech> pair consists of the input and output of the model,
respectively. The input uses natural language raw text and, as an output, linear and mel
spectrograms are generated, respectively. Finally, the spectrograms are reconstructed as a
WAV audio file through post-processing. The encoder receives text data and outputs a kind
of text embedding, a vector that best represents the meaning of the input text sequence. The
embedded text vector is used as information for reference when the decoder sequentially
generates audio samples.
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In addition, attention techniques determine the importance of text embedding vectors
used by decoders to generate audio sequences at each time step. In the recurrent neural
network (RNN) based sequence-to-sequence (seq2seq) model, the vanishing gradient prob-
lem in which the information itself slowly disappears when it is located at the beginning of
the sentence exists. However, the attention technique successfully alleviates the problem.
With these advantages, the Tacotron became the cornerstone of the end-to-end TTS model.

3. Proposed Method
3.1. System Structure

Figure 3 presents the overall structure of the proposed signal synthesis method for
active sonar. The entire system is largely divided into four stages: dataset configuration,
preprocessing, signal synthesis, and post-processing. In this paper, the dataset configuration
part used a highlight-based active sonar simulator for data generation because the amount
of real ocean datasets is insufficient to train the proposed system model. However, this
data generation part has to be replaced by real ocean data ultimately. The dataset generated
in this way is converted into data to be an input of the model through the preprocessor,
and the input is synthesized by the DNN model and outputs a corresponding linear
spectrogram. By estimating the phases corresponding to the synthesized spectrograms
using the Griffin–Rim algorithm, the synthesized waveform signal is reconstructed through
post-processing.
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Figure 4 compares the inputs and outputs of Tacotron models utilized in speech
and sonar signal synthesis areas. The two Tacotron models are in common with yielding
linear spectrograms corresponding to the provided inputs, whereas they are different in
relevance with time-order dependency. In other words, the input of the TTS model for
Korean synthesis combines 80 symbols in a time-ordered sequence, but the input of the
proposed model for sonar signal synthesis consists of 14 parameters regardless of time
order. Therefore, in order to achieve our goal of reflecting the difference to the Tacotron
model, we modified several main blocks and the modifications will be explained in detail
in the following section.
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3.2. The Tacotron-Based Sonar Signal Synthesis Model

Figure 5 shows the structure of the proposed Tacotron-based sonar signal synthesis
model. As the input of the model, the parameter values used in the configuration of
the dataset are normalized to real numbers in the range of [0, 1] in the order of depth,
transmitter, receiver, target coordinates, and pulse information. After that, it goes through
an encoder network to extract and convert from parameter information necessary for signal
simulation to information necessary for synthesizing a linear spectrogram. The information
vector output of the encoder is input into the decoder and goes through a process of
synthesizing an active sonar echo signal corresponding to the input marine environment
parameters. The active sonar echo signal is sequentially synthesized through multiple
steps using decoder RNN in the form of a spectrogram. In the decoding step, the attention
RNN refers to the necessary information from the parameters input to the model when
synthesizing the frequency coefficient of the corresponding time step.
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3.2.1. The Sonar Environment Parameter Embedding Layer

In the conventional TTS model, tokenization is performed in the process of converting
natural language text into vectors. After converting the order in which the word appears
within a preset word dictionary into a one-hot vector, the neural network can judge the
meaning of the word within the sentence by itself through a text embedding layer. It is a
more effective approach in that it estimates meaning specific to each task than conventional
word embedding algorithms, such as count vectorization [15], bag-of-words [16], and term
frequency–inverse document frequency (TF–IDF) [17,18]. Figure 6 shows the operation
process of this text embedding layer. Although it appears to compute the context vector hc
of the word as the matrix product of the weights Wc

in and the one-hot vector c, the hc can be
easily obtained by selecting the corresponding row of the weight Wc

in.

Sensors 2023, 22, x FOR PEER REVIEW 6 of 15 
 

 

is a more effective approach in that it estimates meaning specific to each task than con-
ventional word embedding algorithms, such as count vectorization [15], bag-of-words 
[16], and term frequency–inverse document frequency (TF–IDF) [17,18]. Figure 6 shows 
the operation process of this text embedding layer. Although it appears to compute the 
context vector ℎ௖ of the word as the matrix product of the weights 𝑊௜௡௖  and the one-hot 
vector 𝑐, the ℎ௖ can be easily obtained by selecting the corresponding row of the weight 𝑊௜௡௖ . 

 
Figure 6. Word embedding layer. 

In this paper, however, the input of DNN used to synthesize sonar signals represents 
a series of numerical vectors of environmental parameter values such as depth, pulse in-
formation, transmitter, receiver, and target coordinates. Unlike text embedding layers that 
estimate only the meaning of words that exist within a dictionary, sonar environment pa-
rameter embedding layers are continuous numbers and the number of cases can be infi-
nite. In addition, due to the nature of the one-hot vector, meaningless zero values occupy-
ing only space are filled as elements, but sonar environment parameter vectors are denser 
and have unique meanings for each element. Therefore, it is necessary to design a weight 
vector so that the meaning can be inferred individually according to each parameter. 

The operation process of the sonar environment parameter embedding layer is de-
picted in Figure 7. Unlike the sparse text embedding vector c, the sea environment param-
eter vector requires processing as a dense structure. The 𝑖th element 𝑠௜ of the vector S is 
assigned a weight 𝑊 and a bias 𝑏௜ to output ℎ௜௦, which transforms the meaning of the 
element into the information needed for signal synthesis purposes with a offset dimension 
n_embed. By performing an operation, such as a fully connected layer for each element of 
the input, it becomes possible to convert a single number into a nonlinear context vector. 
This allows the proposed model to synthesize more realistic active sonar data. 

Figure 6. Word embedding layer.

In this paper, however, the input of DNN used to synthesize sonar signals represents
a series of numerical vectors of environmental parameter values such as depth, pulse
information, transmitter, receiver, and target coordinates. Unlike text embedding layers
that estimate only the meaning of words that exist within a dictionary, sonar environment
parameter embedding layers are continuous numbers and the number of cases can be
infinite. In addition, due to the nature of the one-hot vector, meaningless zero values
occupying only space are filled as elements, but sonar environment parameter vectors are
denser and have unique meanings for each element. Therefore, it is necessary to design a
weight vector so that the meaning can be inferred individually according to each parameter.

The operation process of the sonar environment parameter embedding layer is de-
picted in Figure 7. Unlike the sparse text embedding vector c, the sea environment pa-
rameter vector requires processing as a dense structure. The ith element si of the vector
S is assigned a weight W and a bias bi to output hs

i , which transforms the meaning of the
element into the information needed for signal synthesis purposes with a offset dimension
n_embed. By performing an operation, such as a fully connected layer for each element of
the input, it becomes possible to convert a single number into a nonlinear context vector.
This allows the proposed model to synthesize more realistic active sonar data.
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3.2.2. Attention Layer

The proposed model has an autoregressive structure that synthesizes variable-length
signals in units of a specific number of frames and again uses them as input to the decoder
cell to output frames of the next time step. The RNN-based seq2seq model [19] inputs an
entire sequence, referencing one information vector output from the encoder equally across
all steps, and iterating the process until an end-of-sequence (EOS) token appears. However,
after the Transformer model [20] came out, an attention layer that acts as an intermediary
between the encoder and the decoder was introduced. Although the seq2seq structure is
used as it is in the decoder output of the model, the attention layer determines its important
input features at that time step, helping to process and generate more flexible performance.
In this paper, we also use a structure that introduces an attention mechanism to enable
the extraction and processing of encoded information necessary to form a signal spectrum
output at frame time t. A Bahdanau attention mechanism [21] was used as the method of
calculating attention in the same manner as the Tacotron, and its configuration is as follows:

Q = St−1, K = H, V = H (2)

et = Watanh
(
WqQ + WkK

)
(3)

at = so f tmax(et) (4)

ct = Vat (5)

St = D
(
concat

(
ct, It

))
(6)

We performed the importance calculation process by repeating up to the last frame
generation point T with a total of three vectors: Q, K, and V, which mean queries, keys,
and values. St−1 refers to the decoder cell’s hidden state at the point just before the point
t and H refers to the encoder cell’s hidden states at all points in time. Similarly, three
types of weights: Wa, Wq, and Wk correspond to attention values, queries, and keys and
are calculated to obtain attention score values et. Furthermore, et becomes the attention
value at via the softmax function, and computes a context vector ct that utilizes only
important information from the encoded information vector via a dot product operation
with V. Finally, the calculated ct is concatenated to the input It of the current decoder D(x),
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resulting in St. In this way, determining how important information is in synthesizing
signals plays a crucial role in improving synthesis performance.

3.2.3. Positional Decoding

The biggest difference between speech synthesis and the proposed sonar signal syn-
thesis is in time information. The text sequence, which is the input of the speech Tacotron
model, is representative time series data, and the list of each word in the sentence affects
each other a lot in order, which also directly affects the output speech spectrogram. How-
ever, the sonar Tacotron model simultaneously receives a number of sea environment
parameters as input. The corresponding values have a profound effect on the output of
each element, but the arrangement order of the parameters does not affect the output. This
temporal mismatch causes confusion as the decoder of the model does not correspond to
the input in yielding the output sequence sequentially. Therefore, in this paper, we add
a term to the input of the cell under decoding to indicate at what point in the entire file
the frame corresponds to so that the decoder can track the context of the output point.
The added temporal term is expressed in the form of a normalized floating point of [0,
1], and each time point t is expressed in the order of frames rather than information in
seconds; thus, t divides the total number of frames in the generation file by T and uses it as
location information. This alleviates the problem of perception confusion between inputs
and outputs of models that do not correspond to each other in time, as described above.

3.2.4. Target Masked L1 Loss

The design of appropriate cost functions is essential for the optimization of DNN
models. To design a cost function comparing the linear spectrogram of the model’s output
speech signal with the actual one, the conventional method used mean absolute error
(MAE), as shown in (7):

Ltotal =
1
T

1
N

T

∑
t=0

N

∑
i=0

∣∣∣oi
t − ôi

t

∣∣∣ (7)

Time information, i.e., the total number of frames, is T, the ith frequency spectrum
coefficient of the tth frame output by the model is ôi

t, and the frequency spectrum coefficient
of the reference signal is set to oi

t. The L1 distance of oi
t and ôi

t was averaged over the entire
frame and coefficients as a loss value, which presented better performance than using mean
squared error (MSE) [13].

However, as described above, the sonar signal synthesis model does not effectively
pass time information in the decoding step. Using positional decoding to provide temporal
information to decoders is only an auxiliary role and is not a fundamental solution. In
addition, due to the nature of the sonar signal, the background noise or clutter occupies
most of the time except for the target portion at a specific point in time, so it is necessary
to design the cost function to focus more on reducing the difference from the original. To
solve this problem, we propose a target-masked MAE. A frequency coefficient of the target
signal is mainly larger than the magnitude of the background noise. We calculate a binary
mask M that is 1 where the target is estimated, as shown in (8–11), and 0 where there is no
target. We add LmaskedLinear to the overall cost function Ltotal , which allows the energy to be
compared only to the target locations through the element-specific product of the output
value of the neural network model and the frequency spectrum of the original signal.

µ =
1
N

N

∑
i=0

si
t (8)

M =

{
0, si

t ≤ 2µ

1, si
t > 2µ

(9)
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LmaskedLinear =
1
T

1
N

T

∑
t=0

N

∑
i=0

∣∣∣M � si
t − M � ŝi

t

∣∣∣ (10)

Ltotal = Llinear + LmaskedLinear (11)

4. Experiments
4.1. Dataset Configuration

As described in Section 1, the proposed method aims to synthesize more realistic echo
signals but requires more than a certain amount of data due to the nature of the data-driven
approach. Because it is difficult to collect large amounts of sonar data in practice, data
generated by an active sonar simulator are used for training the proposed Tacotron model.
Ultimately, this generated data should be replaced by real ocean data when the real data is
sufficiently collected.

In order to generate highlight-based active sonar data introduced in Section 2, the
active sonar simulator receives parameters, including the coordinates of the transmitter,
target, and receiver, calculates the signal reflected on the target, and outputs it in the form
of a waveform. The input parameters of the highlight-based active sonar signal generator
are summarized in Table 1.

Table 1. Input parameters of the highlight-based active sonar signal generator.

Parameter Description Setting Range

depth depth information (unit: m) [0, 5000]

tx transmitter coordinates (x,y,z)
(unit: m)

[0, range]/[0, range]/[0,
range]

rx receiver coordinates (x,y,z)
(unit: m)

[0, range]/[0, range]/[0,
depth]

target target coordinates (x,y,z) (unit:
m)

[0, range]/[0, range]/[0,
depth]

svp sound velocity profile (unit:
m/s) [0,∞]/[0,∞]

highlight
highlight information

(number of points, relative
position)

[0,∞]/[0,∞]

range calculation limit range (min,
max, and step) (unit: m) [0,∞]

pulse

pulse information (type,
duration, center frequency,

and bandwidth) (unit: linear
frequency modulation, and

continuous
wave/sec/Hz/Hz)

[0,∞]

When the entire range and the step are set to 15,000 m and 10 m, respectively, the
sound ray is tracked until the entire distance is reached by the interval by the set parameter.
The tracking altitude is calculated by dividing the [−20,20] degree range set as the default
value by 400, the number of indexes, as shown in Figure 8.
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In the experiment of this paper, a dataset was constructed by changing a total of
three parameters that have a noticeable influence on the characteristics of sonar signals:
depth, pulse length, and pulse center frequency. The sound velocity profile used for data
generation is presented in Table 2. Highlight points were set to 10 and Gaussian noise is
added to generated sonar signals corresponding to 10 dB SNR. The total number of cases
considered in this experiment for training the model is summarized in Table 3.

Table 2. The sound velocity profile.

Depth (m) Sound Speed (m/s)

0 1502
31 1504
60 1480
90 1477

120 1482
150 1481
180 1482
210 1476
240 1477
360 1479

..
.

..
.

5000 1480

Table 3. Dataset configuration.

Parameter Step Number of Files

depth 100–1000 m, 10 m per step 100
pulse duration 100–1000 m, 10 m per step 100

pulse center frequency 1000–7000 Hz, 60 Hz per step 100

4.2. Experimental Settings

Instead of loading a single long signal file and entering the entire file, it divides into
frames and goes through all processes such as processing, input, and training. This section
describes all parameters used in the experimental process. It is divided into two categories,
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audio processing and DNN training, and consists of parameter names, numerical values,
and parameter descriptions.

(a) Audio processing parameters.

• num_mels: 80, the number of mel filters to obtain the mel spectrogram.
• num_freq: 1025, the number of frequency coefficients.
• frame_length_ms: 50 ms, the length of the frame.
• frame_shift_ms: 12.5 ms, the length of the shift between frames.

(b) Model training parameters.

• Parameter embedding dimension (same as encoder input dimension): 256.
• Encoder output dimension: 128.
• Attention type: the Bahdanau attention.
• Attention dimension: 256.
• Decoder input dimension: 256.
• Decoder output dimension (meaning the final output dimension of the model): num_freq

and num_mels.

4.3. Experimental Results

To evaluate the synthesis performance of the proposed model, we examined three
aspects: comparing spectrograms, checking attention alignment, and measuring mean
opinion scores (MOS). The evaluation was conducted using an untrained test file, and 10
were separated for each parameter.

(a) Spectrogram comparison.

Spectrograms of the original sonar data generated by an active sonar simulator and
spectrograms of the synthesized signal according to changes in depth, pulse length, and
pulse center frequency are presented in Figures 9–11. As can be seen in the figures, a
target echo signal is successfully synthesized in each parameter condition. The time of the
signal, which means the distance of the target and its shape are, similarly synthesized to the
original signal. However, attenuation of the background noise level, which is synthesized
by simple repetition, is observed.
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with a depth of 180 m. (b) A synthesized signal with a depth of 180 m. (c) An original signal with a
depth of 660 m. (d) A synthesized signal with a depth of 660 m.
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Figure 10. Spectrograms of active sonar signals with various pulse duration parameters. (a) An
original signal with a pulse duration of 160 ms. (b) A synthesized signal with a pulse duration of
160 ms. (c) An original signal with a pulse duration of 770 ms. (d) A synthesized signal with a pulse
duration of 770 ms.
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(a) 

Figure 11. Spectrograms of active sonar signals with various pulse center frequency parameters. (a)
An original signal with a pulse center frequency of 2080 Hz. (b) A synthesized signal with a pulse
center frequency of 2080 Hz. (c) An original signal with a pulse center frequency of 5920 Hz. (d) A
synthesized signal with a pulse center frequency of 5920 Hz.

(b) Attention alignment.

In order to check the attention mechanism, we visualized the importance of parameters
for synthesizing sonar signals. As shown in Figure 12, the high parameter importance
resulted in the corresponding training cases. Thus, we confirmed that the attention mecha-
nism for model training was normally operated.

(c) The MOS score.

In order to measure the subjective quality between the generated and synthesized
data, we conducted an MOS test [22]. A total of five persons participated in this experiment,
and each type of data, i.e., generated and synthesized data, are evaluated. The average
score of the participants for each sea environment parameter is shown in Table 4.
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Table 4. The MOS score.

Depth Pulse Duration Pulse Center
Frequency

Generated 4.03 4.10 4.51
Synthesized 3.68 3.78 4.32

As shown in Table 4, the MOS score of the signal synthesized by the proposed model
is similar to the generated original sonar signal. From these results, it can be seen the sonar
signal synthesized by the proposed model generates a signal similar to the trained signals.

5. Conclusions

In this paper, we proposed a Tacotron model based on DNN for active sonar signal
synthesis. The proposed Tacotron-based sonar signal synthesis method is suitably modified
for active sonar. It consists of three submodels: an encoder that turns the input vector into
an information vector needed to simulate the environment, a decoder that sequentially
generates output based on the received information vector, and an attention module that
extracts and processes only the information needed at each point in time when decoding.
To evaluate the proposed method, we performed spectrogram comparison, attention results
checking, and MOS tests. Through the evaluation, we confirmed that the proposed Tacotron
model successfully synthesized almost similar data used for training. Furthermore, the
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proposed Tacotron model can be improved using variable signal generation models, such
as Tacotron2 [23], combined with the WaveNet Vocoder and Flowtron [24] from NVIDIA,
but it remains to be tested in a future work.
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