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Abstract: The paper reports a machine learning approach for estimating the phase in a distributed
acoustic sensor implemented using optical frequency domain reflectometry, with enhanced robustness
at the fading points. A neural network configuration was trained using a simulated set of optical
signals that were modeled after the Rayleigh scattering pattern of a perturbed fiber. Firstly, the
performance of the network was verified using another set of numerically generated scattering
profiles to compare the achieved accuracy levels with the standard homodyne detection method.
Then, the proposed method was tested on real experimental measurements, which indicated a
detection improvement of at least 5.1 dB with respect to the standard approach.
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1. Introduction

In recent years, research interest in fiber-optic distributed acoustic sensing (DAS) has
experienced significant growth in many applications [1], including earthquake detection [2,3],
pipeline monitoring [4], railway integrity control [5], gas detection [6], and temperature
measurement [7,8]. The advantages of using this method include portability, immunity to
electromagnetic interference, and flexibility.

DAS configurations are based on monitoring scattering pattern variations at every
position along an optical link. External factors such as acoustic vibrations can induce
changes in the refractive index (RI) at different points along the fiber, altering the phase
of propagating light [9]. Therefore, the external impact can be quantified by comparing
the perturbed scattering profile with the reference state. In order to reliably locate the
perturbation point, DAS needs to achieve high spatial resolution.

In optical time-domain reflectometry (OTDR), the fiber is interrogated with a series
of pulses, and the time delay between the signal and its reflection, as well as the received
power, is used to obtain scattering due to each position along the link [10]. A shorter
pulse duration leads to higher spatial resolution. At the same time, the pulse energy is
reduced, resulting in a lower signal-to-noise ratio (SNR) [11]; therefore, a compromise
between spatial resolution and the SNR is required. By contrast, optical frequency-domain
reflectometry (OFDR) interrogates the optical channel with a linearly frequency-swept
signal [12]; hence, higher spatial resolution can be achieved by widening the range of the
sweep, avoiding the degradation of the SNR.

Several applications have recently been explored by researchers of OFDR-based dis-
tributed sensing, including a 25 km long strain sensor with a resolution of 2.5 m [13],
a sensor designed for monitoring the thermal conditions of insulation oil [14], a system for
measuring the vibrations of oil tanks in transformers [15], and a pressure sensor utilizing
a germanium-doped optical fiber core [16]. An OFDR-based DAS system for extracting
phase variations induced by acoustic vibrations was reported in Ref. [17], which is the basis
for the current work. The advantage of this DAS framework is that the acoustic signal is
measured during the frequency scan, enabling high acoustic bandwidth.
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Fading is a phenomenon that commonly occurs when working with DAS, regardless
of its specific implementation [18,19]; the observed backscattering is affected by interference
from reflections caused by the random irregularities of the optical channel [20], leading to
the signal deterioration at some positions. Although OFDR-based distributed measure-
ments tend to be intrinsically more robust to fading, this still affects the results. Compared
to implementations based on measuring the phase difference, the detection schemes that
utilize the cross-correlation technique can mitigate the effects of fading [21] but they also
limit the range of detectable frequencies to the scan rate of the source.

Recently, several papers have proposed methods for mitigating the effects of fading in
distributed OFDR configurations designed for phase measurements. Fading can be lowered
by averaging the scattering patterns across the cores of a multi-core fiber [22]. However,
the method is intrinsically incompatible with the DAS framework considered in this paper,
since it operates on a single-core fiber. In another approach, the phase signals extracted
from the different subsections of a fiber are compared using a sliding window [21]. In the
windowed regions, the average of the signals with the highest degree of similarity is
used to correct the rest of the signals. Still, as the method is limited by the scan rate, it
is not applicable to the considered DAS framework, where the acoustic measurement is
performed during the frequency scan.

There is a growing interest in machine learning applications in distributed sensing [23,24].
For instance, vibration event recognition was implemented using relevance vector ma-
chines [25], support vector machines (SVMs) [26], and a combination of convolutional
neural networks (CNNs) and SVMs [27]. The measurement of corrosion in pipelines with
the assistance of CNNs was also shown to be feasible [4]. In Ref. [2], it was demonstrated
that three models based on multilayer perceptrons, CNNs, and a combination of CNNs and
long short-term memory (LSTM) networks were capable of classifying earthquake signals.
It was also shown that the classification of seismic activity can be implemented using a
model trained on a synthetic dataset [28]. In the distributed humidity sensor based on the
Brillouin spectrum, linear regression was applied to differentiate between humidity and
temperature measurements [29].

Although machine learning techniques are increasingly applied to fiber sensing, to the
best of our knowledge they have never been used to mitigate the fading problem. In actual
fact, a neural network trained with the fiber profiles under several different perturbations
can be applied to undo the disruptions in the shape of the detected scattering pattern.
However, the majority of the discussed sensing implementations are classification problems.
For our purpose, a model capable of managing temporal sequences as input and output
is needed. Deep convolutional networks that utilize LSTM put a significant strain on the
computation resources during the training [30]. In adjacent optical applications, spatial
phase information in the form of image data can be processed with a CNN [31,32]. In other
areas, models based on the U-Net architecture have demonstrated promising results in
working not only with image data [33] but also with temporal sequences [30,34].

In order to train such a model, a reliable training dataset is required. However,
in OFDR, it is difficult to experimentally collect a sufficient amount of diverse scattering
profiles subjected to acoustic vibrations because this would require the implementation
of many different links using different fibers. Instead, it is more practical to generate a
synthetic training set, which is a viable approach sometimes adopted in machine learning.
For example, in the generative adversarial network (GAN), the models themselves can
be used to generate new samples [35,36], but other configurations can be trained with
data simulated by applying theoretical models. Synthetic images [37] and seismic signals
modeled with the Ricker wavelet [38] were used to train denoising CNN implementations
in the areas of electron microscopy and seismic imaging, respectively. A CNN model for
the phase and frequency correction of magnetic resonance spectra was also trained with a
simulated set [39]. In the case of the DAS application, another advantage of training the
model with simulated scattering patterns instead of real ones is that the neural network is
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not limited to a specific probing setup or conditions used to obtain the samples. As a result,
the network would be able to exhibit more generalized behavior.

From this perspective, this paper reports a machine learning approach for enhancing
the extraction of phase variations in OFDR-based DAS systems. Firstly, the theoretical
background behind the simulation of the stressed Rayleigh scattering profiles is discussed,
which is followed by the descriptions of the standard homodyne and the neural network
perturbation detection schemes. Then, the performance of the neural network is verified
with a set of simulated scattering patterns. Finally, the new model is also tested on a
real set of backscattering profiles, which were measured from fibers subjected to acoustic
perturbations under experimental conditions.

2. Modeling of Rayleigh Backscattering in Perturbed Fibers

One of the main difficulties in applying machine learning methods is the need for a
reliable training set. As in the case at hand, it is often difficult to access an experimental
dataset large enough to guarantee reliable training. When this happens, a viable alternative
is to use a synthetic training set that is generated by numerically simulating the system.
Of course, the quality of the training depends on the quality of the numerical model.
For this reason, in this section, we describe the model specifically implemented to simulate
OFDR-based DAS measurements.

The Rayleigh scattering profiles of an optical channel subjected to different perturba-
tions are simulated in order to produce the training set for the network. The simulated
channel consists of two fiber links of lengths L1 and L2 connected by a stretcher. As demon-
strated later, considering only one perturbation point is not limiting because the data
analysis starts by evaluating the perturbation-induced phase delay accumulated up to the
fiber section under analysis. Whether this phase delay is due to a single perturbation point
or a sequence of them has no impact on this first step of the analysis.

In OFDR, the fiber is interrogated by a tunable laser that is linearly varied in frequency.
The probing signal can be defined as a0(t) = c(t) exp(j(πσt2 + 2πν0t)), where c(t) is
the baseband component, σ is the frequency sweep rate, and ν0 is the reference carrier
frequency. In all of the cases considered in this paper, the measured distance does not
exceed the coherence length of the source; hence, the effects of the laser phase noise are
neglected in the backscattering model. The signal at the end of the unperturbed section L1
is equal to

a1(t) = e−jβ0L1 a0(t − β1L1), (1)

where β0 is the propagation constant and β1 is the inverse group velocity. As this trans-
mitted signal passes through the subsequent stretcher, the light entering the second link
section of the length L2 is

a2(t) = ejφ(t)a1(t), (2)

where φ(t) is the phase variation induced by the stretcher.
Generally, the light backscattered by a fiber section of length L illuminated by an

arbitrary probe light a(t) can be modeled using the function BL[·] defined as

BL[a(t)] = ∑
k

cke−j2β0zk a(t − 2β1zk), (3)

where ck is the Rayleigh backscattering coefficient of the kth scattering center and zk is
its position. Thus, the light backscattered by the first fiber section is b0(t) = BL1 [a0(t)].
Similarly, using Equations (1) and (2), the backscattering generated in the second fiber
section by a2(t) is

b2(t) = ejφ(t)e−jβ0L1 BL2 [a0(t − β1L1)]. (4)
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Then, this signal backpropagates through the stretcher and the first section so that the
full reflection due to the second section is

b1(t) ≈ ejφ(t)e−jβ0L1 b2(t − β1L1), (5)

where we assume, as usual, that the phase variation in the perturbation is negligible within
the round trip time across the second fiber section. Hence, the total backscattering of the
stressed fiber can be defined as bstr(t) = b0(t) + b1(t).

The total backscattering in the state of rest, bre f (t), is obtained by setting φ(t) equal
to zero and then applying the same series of formulas. Despite the degree of randomness
contributed by the scattering centers and Rayleigh coefficients, the reference pattern is
expected to be constant if any outside impact is avoided. Hence, it can be used as the
signature pattern of the fiber [40].

3. Estimation of Phase Difference
3.1. Standard Detection

For completeness, we briefly review the standard detection technique described in
Ref. [17]. Firstly, the signals in the spatial domain are separated into shorter channels
so that by considering each channel individually, the perturbed point can be identified.
To achieve this, the detected signal bstr(t) is transformed into the frequency domain using
a fast Fourier transform (FFT). The resulting signal, Bstr( f ), is equivalent to the spatial
domain representation Bstr(z), since the frequency is directly proportional to the distance
through f = 2ne f f σz/c0, where ne f f is the effective refractive index and c0 is the speed
of light. A spatial window function W(z) is applied to isolate each channel from the
overall signal:

Bstr,n(z) = Wn(z) · Bstr(z), (6)

where n indicates a particular channel that needs to be isolated. For each n, the window
Wn(z), which is a Tukey window in this case, has cutoff points defined by the positions
where the channel Bstr,n(z) is supposed to start and end. The length, LW , of the region
isolated by the window is related to the acoustic bandwidth of the filter, Ba:

LW =
Bac0

2ne f f σ
. (7)

Inverse FFT is applied to each of the channels, obtaining their time-domain form
bstr,n(t). The same series of steps is repeated for the reference signal to produce bre f ,n(t).
Then, the phase difference at the nth channel, θn(t), can be determined as

ej2θn(t) =
bstr,n(t)
bre f ,n(t)

. (8)

Ideally, θn(t) would be equal to the applied perturbation, φ(t). Given the fiber of
length L, the overall number of channels is N = L/LW . The number of points in each
isolated channel is

Nt =
4LWne f f σT

c0
= 2TBa, (9)

where T is the duration of the frequency sweep.
It has to be noted that the phase in Equation (8) is the total one accumulated up to the

considered channel. Nevertheless, local information can be easily retrieved by assessing
the difference

∆θn(t) = θn+∆n(t)− θn(t), (10)

where ∆n = LW+∆L
∆z , ∆L is the separation between the windows that must be lower than L,

and ∆z is the spatial resolution of the OFDR distance axis.
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3.2. Neural Network Detection

The fading can occur due to the division in Equation (8). Hence, this step is replaced
with computations using a neural network in order to maintain the continuity of the phase
evolution along the fiber. The neural network configuration is tested and compared with
the standard detection.

One fiber profile is separated into N spatial channels; the network operates on each
channel independently. A single spatial channel contains two complex traces bstr,n(t) and
bre f ,n(t), which correspond to the perturbed state and the reference state. The length of
each trace is Nt time samples, selected according to Equation (9) to achieve the required
acoustic bandwidth. Hence, the input has a shape of 2 × Nt. The data are further split
into real and imaginary components, doubling the first dimension of the shape. Therefore,
the overall shape of the complex-valued input is 4 × Nt. The output of the network is the
phase difference between the stressed trace and the reference trace; thus, the first dimension
of the input transforms from 4 to 1, since the phase difference is a real value. As a result,
the output of the neural network is an array of Nt values corresponding to the phase
variations that occurred in the considered Nt time samples.

The data are processed by a series of convolutional down- and upsampling blocks, as
shown in Figure 1a. The architecture is similar to the U-Net model reported in Ref. [41].
The first convolutional layer is used to increase the number of input features from 4 to 32.
Each downsampling block (as shown in Figure 1b) consists of two convolutional layers
with a one-dimensional kernel size of 3. The first layer uses a stride equal to 2 in order to
implement downsampling. The architecture is mirrored by each upsampling block, as its
first layer utilizes a transposed convolution in order to increase the number of samples.
Each convolutional layer in the network uses 32 nodes, except for the last layer, which uses
1 node to obtain a single channel for the final output. Each layer is also followed by the
ReLU activation.

Figure 1. (a) Network layers of convolutional down/upsampling configuration. (b) Architecture of
single downsampling block.

Normalization to a range between 0 and 1 is applied to the inputs of the network,
xi,normalized = (xi − x−)/(x+ − x−), where xi is a value from a set x that needs to be
normalized and x− and x+ are the averages of the negative and positive values in the
set, respectively.

Network Training

For the training of the network, 160 fiber profiles, each subjected to a different per-
turbation φ(t), are simulated. The overall length of each simulated fiber is 10 m and the
length of the isolated spatial channels is 2 cm, corresponding to 500 channels; the other
simulation parameters are summarized in Table 1. Perturbation is applied in the middle
of the fiber, which means that 250 channels are useful for the model training; therefore,
due to the overall number of synthetic fiber profiles, there are 40,000 input traces in the
training set.

Given the effective refractive index, sweep rate, and sweep duration shown in Table 1,
Equation (9) stipulates that the length of each trace is equal to 500 points. Substituting
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LW into Equation (7), the sampling frequency equal to 2.5 kHz is obtained; thus, as per
the Nyquist theorem, the maximum detectable frequency is 1.25 kHz. During the training,
perturbation signals φ(t) at frequencies in a range from 0 to the detection limit are used.
The number of frequency components in different signals is varied from 1 to 4. The fiber
length, L, determines the number of isolated channels in a single fiber profile. It is directly
related to the number of available input traces but has no impact on their size, Nt. Moreover,
after training, due to the constant kernel size of the convolutional layers, the input of the
model is not going to be limited by Nt or any of the parameters it is dependent on, including
Lw, ne f f , σ, and T, as per Equation (9). Hence, the network performance is scaled with Lw
and the corresponding frequency limit, and it is possible to apply the model to traces of
varying lengths, regardless of the training parameters listed in Table 1.

Table 1. Simulation parameters.

L (m) LW (cm) ne f f σ (THz/s) T (s)

10 2 1.5 12.5 0.1

Since the exact value and application point of the generated stress are available,
the nominal phase θn(t) is known for every point of all channels n and is used as the
ground truth for the network training. The smoothness of the targeted output is supposed
to help the network learn how to maintain the continuity of the detected phase.

4. Results
4.1. Numerical Verification

Another set of 50 stressed fiber profiles, which resulted in 12,500 channel traces, was
simulated to compare the standard method and the tested neural model. The frequencies
and the amplitudes of the simulated perturbations were evenly distributed in ranges
between 0–1200 Hz and 0–1 rad, respectively. For each channel of every signal, the mean
error between the detected phase difference and the corresponding nominal waveform,
E, was calculated to characterize the impact of noise on the performances of the tested
detection methods. Then, the values ε that comprised the resulting error sets were used to
estimate the cumulative distribution function (CDF) equal to F(E) = P(E ≤ ε). Figure 2a
presents the survival function P(E > ε) = 1 − F(E), i.e., the probability that the mean error
was larger than a value ε. In general, the neural network performed better, indicating a
6 dB improvement over the standard method. Figure 2b uses the same error metric to show
the dependency of the accuracy on the perturbation frequency. The performances of the
methods degraded as the perturbation approached the detection limit, but the network
consistently resulted in error values lower than those of the standard approach.

Figure 2. (a) Survival function for mean errors between the detected phases and their best fits.
(b) Relationship between mean best fit error and frequency.
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In principle, the performance of a neural network depends on its complexity and the
quality and size of the training dataset. In our numerical tests, we also verified that, for the
complexity of the selected neural network, the performance had not significantly improved
when utilizing datasets larger than the one used for the current model.

4.2. Experimental Tests

The performance of the neural network was also tested on the Rayleigh scattering
profiles measured with a commercial OBR (Luna OBR 4600, Luna Innovations). Due to
the misalignment caused by a linearizing interferometer used in the OBR, the time axis of
the applied perturbation needed to be corrected using the compensation technique from
Ref. [17] before the analysis. According to the method, another reference signal is applied to
the fiber concurrently with the perturbation. This known signal is extracted and the differ-
ence between the measured time axis and the actual time axis of the reference is estimated.
Then, this value is used to resample the time axis of the whole OBR measurement.

First, a sinusoidal vibration at 41 kHz was applied at a distance of 8 m along a 12 m
long fiber using a loudspeaker. The perturbations obtained using the compared methods
with a window size of 75 cm and a frequency limit of 45 kHz can be seen in Figure 3.
The window separation, ∆L, was 15 cm. The reference frequency of the signal used to
correct the OBR time axis was 3 kHz.

Figure 3. 41 kHz perturbation detected by (a) the standard method and (b) the neural network.

Upon visual inspection along the vertical axis in Figure 3a, the signal was heavily
deteriorated by noise around the perturbation frequency. However, the neural network
was able to lower the intensity of this noise pattern, making the perturbation frequency
significantly more prominent compared to the standard method. The efficiency of the
proposed method can be evaluated by measuring the mean value of the SNRs calculated
for each channel of the perturbed region. With respect to the standard method, the neural
network achieved an SNR improvement equal to 7.3 dB. An example of the detected
spectrum, collected at the 8 m position, can be seen in Figure 4, which also corroborates the
decrease in noise and shows that the perturbation frequency was more pronounced.

In the second test, a more complex perturbation with several frequency components,
as shown in Figure 5, was applied at a distance of 15 m along a 50 m long fiber. The
perturbation is defined as A1 sin(2π f1t) + A2 sin(2π f2t) · exp(−0.5(t − µ)2/Λ2), where
A1 = 27.69 × 10−2, A2 = 18.46 × 10−5, f1 = 150 kHz, f2 = 120 kHz, µ = 0.5 ms and
Λ = 0.4 ms. The detection was conducted using a window size equal to 4 m, which yielded
a frequency limit of 250 kHz. The window separation, ∆L, was 25 cm. The reference fre-
quency for correcting the OBR misalignment was 150 kHz, which was within the detection
limit. Figure 6 presents the 2D maps where the obtained frequency spectra are plotted for
each spatial channel; to enhance the visibility of the result, only subbands of 100 Hz around
the harmonic frequencies are shown. The proposed method successfully detected the most
prominent frequency components shown in Figure 5b.
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Figure 4. Frequency spectrum detected when measuring 41 kHz perturbation at 8 m by (a) the
standard approach and (b) the neural network.

Figure 5. Perturbation of increased complexity applied experimentally (a) in the time domain; (b) in
the frequency domain.

Figure 6. Perturbations of increased complexity detected by (a) the standard method and (b) the
neural network (demonstrated spectral width around each component was 100 Hz).

In the perturbed section, the average SNR of the neural network was 5.1 dB higher
than that of the standard approach. The improvement achieved by the tested model in
this experiment was lower than in the case of the 41 kHz perturbation shown in Figure 3b,
which can be explained by the higher complexity of the detected signal. The observations
about noise reduction can be supported by the examples of the detected perturbations
shown in Figure 7, which were collected at a distance of 20 m. The neural network was
also able to provide more efficient detection of the perturbation components at frequencies
lower than 117 kHz.
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Figure 7. Frequency spectrum detected when measuring perturbations of increased complexity at
20 m by (a) the standard approach and (b) the neural network.

5. Conclusions

The new machine learning method for extracting the phase difference from the Rayleigh
scattering profiles measured by OFDR in perturbed fibers has been proposed and verified
with a set of real fiber profiles subjected to acoustic vibrations during the experiments.

Firstly, a specific mathematical model that describes the scattering by OFDR signals in
stressed fibers has been presented and used to generate synthetic data comprising scattering
patterns under perturbations of different frequencies. These simulated profiles were applied
to train a neural network, which is based on the U-Net architecture and receives real
and imaginary components of the Rayleigh scattering as the input. After validating the
performance using another set of synthetic scattering profiles, the network was also tested
on real experimental measurements of scattering in perturbed fibers, achieving at least a
5.1 dB improvement over the standard method.
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Abbreviations
The following abbreviations are used in this manuscript:

DAS Distributed acoustic sensing
RI Refractive index
OTDR Optical time-domain reflectometry
OFDR Optical frequency-domain reflectometry
SNR Signal-to-noise ratio
SVM Support vector machine
CNN Convolutional neural network
LSTM Long short-term memory
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GAN Generative adversarial network
FFT Fast Fourier transform
CDF Cumulative distribution function
OBR Optical backscatter reflectometer
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