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Abstract: Since its invention in 1955, the Galperin symmetric triaxial seismometer has been widely
used for seismic detection on Earth, and most recently on the planet Mars. In this paper, we present
detailed physics of such seismometers, which has not yet been published in open literature. We
extended Galperin’s original work, which is based on idealized geometry and assumptions, to
include more practical cases, including (1) non-idealized tilt angles of its component seismometers;
(2) component seismometers that are not exactly oriented 120◦ apart; (3) distributed mass on the
boom; and (4) the case of operations at lower frequencies.
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1. Introduction

A seismometer is a precision instrument that measures ground motion through the
principle of inertia by suspending a mass from an elastic element [1]. While rotational
ground motion can be measured [2], traditionally seismic detection has focused on the
translational motion [3]. Earlier seismometers measured translational ground motion in
the cardinal X, Y, and Z coordinate frame, corresponding to east/west, north/south, and
vertical ground motion [4,5].

In the symmetric triaxial seismometer, three single-axis sensors are spaced equally
apart on a circle in the horizontal plane while the vertical component of the sensors all
experience the same gravitational acceleration. The UVW sensing directions are given
by the direction orthogonal to the boom, which suspends the moving mass. As shown
in Figure 1, the tilt angle α is the angle that the boom makes with respect to the vertical
direction (it is also the same angle that the sensing axis makes with the horizontal axis). For
the Galperin symmetric triaxial seismometer, α is tan−1 1√

2
or 35.26◦ and the UVW axes

create an orthogonal reference frame [6–10].
State-of-the-art seismometers, such as the Streckeisen STS-2 and the Nanometrics

Inc. Trillium Compact, employ a symmetric Galperin configuration [11–14]. Recently, a
microseismometer with a Galperin configuration has been proposed for Lunar deploy-
ment [15]. Despite the ubiquity of the Galperin configuration, there are some advantages
to the traditional cardinal X, Y, and Z configurations. The Streckeisen STS-1 seismometer,
which is one of the most sensitive seismometers deployed on Earth [16], employs the
cardinal configuration [5]. A new optical-based seismometer is in development and will
use the cardinal configuration [17]. A disadvantage of the cardinal configuration is that the
vertical sensor must be designed separately from the horizontal sensors as it experiences
an additional force from the local gravity. In contrast, the symmetric triaxial seismometer is
created with three (ideally) identical sensors, providing manufacturing, calibration, and
control benefits [9].

While the Galperin configuration has primarily been used for triaxial symmetric
seismometers, the Insight Seismic Experiment for Interior Structure Very Broad Band (SEIS-
VBB) seismometer deployed on Mars [18] uses a symmetric triaxial configuration that is
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not strictly Galperin, with a tilt angle α of approximately 30◦ [19]. While the treatment of
coordinate conversion is well established for the Galperin configuration [8–10,13] there
has been less attention on the possible benefits of employing a non-Galperin tilt angle. In
this work, we derive the analytical transformation matrix from test mass displacement in
the UVW coordinate to ground displacement in the XYZ coordinates and evaluate how
self-noise, which equally affects each of the U, V, and W sensors, translates into X, Y, and
Z noise.
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Figure 1. (a) The configuration of the triaxial seismometer used in the derivation. The UVW vectors
are normal to the boom planes. The UVW axes are orthogonal only when the angle α is at the Galperin
tilt angle, 35.26 deg. (b) The simplified top view of the UVW seismometer.

One limitation of the Galperin transformation matrix is that it was derived with the
assumption of a point mass on a massless boom, while in practice, masses are distributed
along the boom. Another limitation is its applicability at lower frequencies. At lower
frequencies, the displacements perpendicular to the booms contains the resonance structure
of the rotational mass-spring oscillator. A strict application of the Galperin transformation
matrix would lead to an absurd result that the displacements on the ground also have this
resonance structure. Both of these limitations do not affect the operations of seismometers
when they use the torque feedback technique, which works at all frequencies and does not
depend on how masses are distributed along the boom. Nonetheless, given the ubiquitous
applications of the Galperin triaxial seismometers, it is useful to have a deeper understand-
ing of how such seismometers would behave in the absence of torque feedback. This is
particularly true in the commissioning phase of these seismometers, where torque feedback
may be disabled to measure parameters needed to establish the noise model. Therefore,
we have extended the transformation matrix to cover the case of distributed masses on the
boom, and the case of lower frequency operations.

Since torque feedback is ubiquitously used, the most useful transformation matrix is
one that transforms the feedback torque to ground acceleration. We derive such a transfor-
mation matrix using an extension of the equation of motion by Huang and Saulson [20] to
include external torques resulting from ground acceleration.

To keep the discussion easy to understand, we assumed that the component seismometers
are oriented symmetrically with 120◦ separations and that they are identical. After the main
idea is presented in the main text, the more laborious cases of non-symmetrical orientation
and non-identical component seismometers are presented in Appendices B and C.

Although we have discussed the Brownian noise and noise due to temperature sensi-
tivity, it is not the main focus of this paper to treat all noise issues of seismometers. We used
Brownian noise and temperature sensitivity noise to discuss how un-correlated noise and
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correlated noise propagate through the Galperin transformation. The expression for both
of these noises, in the vertical direction, had already been published by Erwin et al. [21].
In the current paper, we illustrate how the Galperin transformation can be used to get the
noise in the horizontal directions. For more in-depth discussions of other sources of noise
in a seismometer, we refer the readers to a publication by Mimoun et al. [22].

2. Extension of the Transformation Matrices to Treat Arbitrary Values of α

Figure 1 depicts the configuration of the symmetric triaxial seismometer. The Galperin
transformation transforms the test mass displacements u, v, and w (as viewed from the
ground) in the U, V, and W direction into ground displacement X, Y, and Z in the X, Y,
and Z direction. As already mentioned, there is an implicit assumption that the ground
is moving at frequencies much higher than the resonance frequencies of the rotational
mass-spring oscillator. At such higher frequencies, the test mass does not move when
viewed from an inertial reference frame. Only the ground moves.

In this section, we derive the individual contributions of X, Y, and Z ground dis-
placements on the test mass displacements u, v, and w as viewed from the ground. The
individual contributions can then be summed, from which we can ultimately obtain a
transformation matrix from u, v, and w to X, Y, and Z.

2.1. Boom Displacement Due to Vertical Ground Motion

Consider that the ground moves upward by a displacement Z, as depicted in Figure 2
for the W component seismometer. We can decompose the upward Z ground displacement
into a component Z2 parallel to the boom, and a component Z1 perpendicular to it, as
shown in red in Figure 2. The component Z2 does not cause the angle α to change, while
the component Z1 causes α to increase by an angle given by θ = Z1

r = Z sin α
r . Since w = rθ,

we have the result
wz = Z sin α, (1)

where wz is the displacement w caused by ground motion in the vertical direction. Similarly,
for the U and V sensors, we find that the contributions due to ground motion in the Z
direction are

uz = Z sin α (2)

vz = Z sin α. (3)
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Figure 2. The W component seismometer is in its plane of motion, with the ground, drawn as a
horizontal line, moving upward by a displacement of z.

2.2. Boom Displacement Due to Horizontal Ground Motion

Now consider that the ground moves by a horizontal displacement Hh in the plane of
rotation of the W component boom as depicted in Figure 3. The displacement Hh can be
decomposed into a component Hh2 along the direction of the boom, and a component Hh1
perpendicular to it, as shown in red in Figure 3. The component Hh2 does not cause the angle



Sensors 2023, 23, 26 4 of 19

α to change, while the component Hh1 causes α to decrease. Therefore, θ = −Hh1
r = − h cos α

r .
Since w = rθ, we find that

wh = −Hh cos α. (4)
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Figure 3. The W component seismometer in its plane of motion, with the ground moving sideward
by a displacement of Hh inside this plane.

This horizontal motion has both an x and y-axis component. To see how this translates
onto the UVW sensors, we consider the case where the ground moves by a displacement in
the X and Y directions separately.

Horizontal Motion in the X direction. If the horizontal motion is in the X direction, the
ground displacement X can be decomposed into a component X2 along the plane of motion
of the W component seismometer, and a component X1 perpendicular to this plane, as
shown by the red arrows in Figure 1b. The component X1 cannot cause the angle α to
change, while the component X2 can be identified as the displacement Hh in Equation (4).
Therefore, Equation (4) becomes

wx = −X2 cos α = −X cos α sin β = −X cos α

2
, (5)

where β = 30◦. Following a similar process for the V component seismometer, we have

vx = −X cos α

2
. (6)

For the U component seismometer, one can change w in Equation (4) to u and identify
h as −X to obtain

ux = X cos α. (7)

Horizontal Motion in the Y direction. Consider the case where the ground moves hori-
zontally by a displacement Y along the y-axis. Since the motion is perpendicular to the
plane of motion of the U component seismometer, it has no effect on the displacement
u, hence

uy = 0. (8)

Applying the same process as discussed for motion in the X direction for the W
component sensor, we obtain

wy = −Y cos α cos β = −
√

3
2

Y cos α, (9)

vy = Y cos α cos β =

√
3

2
Y cos α. (10)
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2.3. Symmetric Triaxial Transformation Matrices

Since the displacement of a test mass is the sum of its displacements resulting from
ground motion in the X, Y, and Z directions, we have u = ux + uy + uz, v = vx + vy + vz,
and w = wx + wy + wz. Arranging these three formulas in matrix notation, we arrive at the
transformation matrix from XYZ to UVW signalsu

v
w

 =

 cos α 0 sin α

− cos α
2

√
3

2 cos α sin α

− cos α
2 −

√
3

2 cos α sin α


X

Y
Z

. (11)

In Appendix B, we present a more general form of this matrix with arbitrary angles.
Inverting this matrix, we obtain the conversion from UVW to XYZ

X
Y
Z

 =


2

3 cos α − 1
3 cos α − 1

3 cos α

0 1√
3 cos α

− 1√
3 cos α

1
3 sin α

1
3 sin α

1
3 sin α


u

v
w

. (12)

The transformation matrices in Equations (11) and (12) are valid for any tilt angle
α. One should note that the transformation matrix may differ slightly in the signs of its
elements depending on how the UVW axis and the XYZ axis are arranged with respect to
one another.

As a check on our matrices, we substitute for the Galperin configuration, α = tan−1 1√
2

,
into Equations (11) and (12). Making this substitution, we obtain the Galperin transforma-
tion matrices generally cited in the literature [8,9], whereu

v
w

 =


√

2/3 0 1/
√

3
−1/
√

6 1/
√

2 1/
√

3
−1/
√

6 −1/
√

2 1/
√

3

X
Y
Z

, (13)

and X
Y
Z

 =


√

2/3 −1/
√

6 −1/
√

6
0 1/

√
2 −1/

√
2

1/
√

3 1/
√

3 1/
√

3

u
v
w

. (14)

We acknowledge that Equation (11) is the same as the one presented by Peng, Xue,
and Yang [10]. However, in their analysis, they used numerical transformation instead of
the analytical form given by Equation (12).

3. Noise Conversions from UVW to XYZ Coordinates

In this section, we use the preceding transformation matrix to study how to instrument
noise from the seismometer’s U, V, and W sensors propagate into ground displacement
noise in the X, Y, and Z directions. We pay particular attention to how uncorrelated noises
propagate as opposed to those of correlated noises. From Equation (12), we find that

X =
1

3 cos α
(2u− v− w), (15)

Y =
1√

3 cos α
(v− w), (16)

Z =
1

3 sin α
(u + v + w). (17)

3.1. Uncorrelated Noise Sources

We use the notation σu to represent the root mean square value of u. We consider
instrument noise that affects each sensor equally, i.e., σu = σv = σw. We first assume that
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the noise in u, v, and w are not correlated. Uncorrelated noises include Brownian noise
and electronic noises from the displacement capacitance sensors. Applying the rule for the
propagation of uncorrelated noise to Equations (15)–(17), we obtained

σX =

√
4σ2

u + σ2
v + σ2

w
3 cos α

=

√
2
3

σu

cos α
, (18)

σY =

√
σ2

v + σ2
w√

3 cos α
=

√
2
3

σu

cos α
, (19)

σZ =

√
σ2

u + σ2
v + σ2

w
3 sin α

=
σu√

3 sin α
. (20)

It is interesting to consider the cases where Equations (18)–(20) diverge and converge.
For the case where the boom is aligned with the vertical axis (α = 0), all three component
seismometers have no sensitivity to vertical ground motion; Equation (20) diverges while
Equations (18) and (19) converge to σu

√
2/3. On the other hand, when all three booms are

horizontal (α = π/2), all three component seismometers have no sensitivity to horizontal
ground motion; Equations (18) and (19) diverge whereas Equation (20) converges to σu/

√
3.

3.2. Correlated Noise Sources

There are noise sources that are correlated. Noise induces by random temperature
variation typically affects all three component seismometers together. For completely
correlated noises, Equations (15)–(17) predict that

σX = σY = 0, (21)

σz =
σu

sin α
. (22)

It is interesting to note that the Galperin transformation has the effect of suppressing
correlated noise in the X and Y directions.

3.3. Noise Factor

In this subsection, we define a metric for evaluating how uncorrelated horizontal
and vertical ground noise vary as a function of tilt angle. We define a horizontal noise
factor as NH = Nx = Ny = σx/σu, and a vertical noise factor as NV = σz/σu. From
Equations (18) and (20), we have

NH =

√
2
3

1
cos α

, (23)

NV =
1√

3 sin α
. (24)

In Figure 4, both noise factors are plotted as a function of tilt angle. For the Galperin
configuration (α = tan−1 1/

√
2), both noise factors are 1. For the Very Broadband Seis-

mometer of the Insight mission to Mars, α ≈ 29.5◦ and the noise factor is 1.15 in the vertical,
which is exactly what Lognonné et al. (2019) reported.
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4. The Concept of Null Point

In the preceding derivation, the seismometer is assumed to be a point mass on a
massless boom, while in any real seismometer, the mass is distributed along the boom, in
which case there is no clear location along the boom where the displacements u, v, and w
should be evaluated. If it is not evaluated at the correct location, the transformation matrix
will give the wrong answer for ground displacements. Conventional wisdom may lead us
to use the location of the center of mass for the evaluation. Nevertheless, we will give an
example to show that this is wrong.

In the preceding derivation, we assume that the ground moves at a frequency much
higher than that of the resonance frequency of the mass-spring oscillator. In such a case,
relative to an inertial frame, the test mass does not move, only the ground moves. For
distributed mass on a boom, we expect that there is also a point on the boom which does
not move, while the rest of the boom, as well as the ground move. We call this point
the Null Point. The Null Point is the location where the displacement of a component
seismometer should be evaluated because it will give a well-defined angular deflection of
the boom when the ground moves up and down. If the ground moves up and down by a
displacement Z, then the angle of deflection increases and decreases by

θ = Z sin α/Dn, (25)

where Dn is the distance between the Null Point and the pivot. To an observer on the
ground (which is an accelerating frame), the Null Point would move up and down by the
same displacement Z, and the angle α would increase and decrease by the same θ. This is
the same θ(t) that should be used in the equation of motion of the system. The link between
the equation of motion and the transformation matrix is therefore

u = Dnθ. (26)
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Now, consider the example shown in Figure 5, where there are two bodies of the same
mass m1 on a massless boom. This is the simplest example of distributed masses on a boom.
One body is always at the end of the boom of length r1, while the other can be placed
anywhere along the boom. We assume a variable distance r2 between the center of mass of
the movable body and the pivot. When the movable body is also at the end of the boom,
the Null Point will also be at the end of the boom, such as in the case discussed before with
point mass. However, when the movable body is moved all the way to the pivot, it will
move up and down with the pivot, which is attached to the ground. It will not contribute
to the deflection of the boom. In this case, the Null point will also be at the end of the boom,
and not at the location of the center of mass of the combined two bodies.
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Figure 5. (a) Two identical bodies on a massless boom. When the ground moves up and down at
high frequencies, there is a location on the boom that does not move. We call this location the Null
Point. (b) When the movable mass is placed at or near the location of the pivot, it moves up and
down with the ground and does not contribute to changing the angle θ. In this case, the Null Point
moves back to the end of the boom.

5. Extension of the Equation of Motion to Include Ground Acceleration

To derive a formula for Dn, we follow the derivation of Erwin et al. [21] for the torque
on the boom due to vertical ground acceleration. The static torque on the boom is

Γ = mgDg sin α, (27)

where g is the local gravitational acceleration, m and Dg are the suspended mass and its
center of mass respectively. An observer on an accelerating platform (the ground) with
an upward acceleration of

..
Z would feel an additional downward acceleration of the same

value, as though the local gravity had increased. Therefore, the torque due to vertical
ground acceleration is

δΓz = mDg sin αδg = mDg sin α
..
Z. (28)

Similarly, if the ground accelerated horizontally to the right along a direction h in the
plane of motion of the boom, and if the horizontal acceleration is

..
Hh, the masses on the

boom would feel an equivalent gravitational pull of
..
−Hh on it. The additional torque on

the boom would be
δΓh = −mDg cos α

..
Hh. (29)

The derivations of Equations (28) and (29) are based on Einstein’s equivalence princi-
ple, which states that an observer on an enclosed accelerating platform cannot tell if he is on
the acceleration platform or is being pulled by gravity on a stationary platform. This implies
that the acceleration of the platform can be treated as an equivalent additional gravitational
acceleration by an observer on the platform. Adding these torques as additional torques
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to the equation of motion of a rotational mass-spring oscillator as given by Huang and
Saulson (1994), we obtain

J
..
θ +

[
Ks(1 + iφ)−mgDg cos α

]
θ + B

.
θ = mDg sin α

..
Z−mDg cos α

..
Hh, (30)

where J is the moment of inertia, Ks is the rotational spring rate, φ is the loss angle of spring
material, and B is the viscous damping coefficient. The imaginary unit i is used to represent
losses in the equation.

6. Using the Equation of Motion to Derive Dn

When the angular frequency ω is much higher than the angular resonance frequency
ωo, the

..
θ term dominates over the θ and

.
θ term because

∣∣∣ ..θ∣∣∣ = ω2|θ|, while the
.
θ is only

proportional to ω. If we also neglect horizontal acceleration, the equation of motion
simplifies to

J
..
θ = mDg sin α

..
Z, (31)

or by integrating twice,
θ = Z sin α/D1, (32)

where D1 = J
mDg

.
Comparing Equation (32) to Equation (25), we found that D1 = Dn. Therefore,

Dn =
J

mDg
. (33)

For example, as shown in Figure 5, Dn =
r2

1+r2
2

r1+r2
. A plot of Dn vs. r2 is shown in Figure 6

for r1 = 1. The behavior of Dn is consistent with our intuitive discussion that the Null
Point should be at the end of the boom when the movable body is moved all the way to the
location of the pivot.
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7. Extension of the Transformation Matrices for Operations at All Frequencies

The transformation matrices given in Equations (11) and (12) are valid only when
ω � ωo. With the help of the concept of a Null Point, we can extend the transformation to
cover operations at all frequencies. In the frequency domain, the equation of motion given
by Equation (30) becomes

Hr(ω)θω = −ω2(mDg/J
)
(sin αZω − cos αHh_ω), (34)
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where the transfer function Hr(ω) = −ω2 +
(
Ks −mgDg cos α

)
/J + i

(
ω2

s φ + ωB/J
)
, or

Hr(ω) =
(

ω2
o −ω2

)
+ i
(

ω2
s φ + ωB/J

)
, (35)

where the reduced angular spring constant is Ko = Ks − mgDg cos α, and the angular
resonance frequencies are ωo =

√
Ko/J, ωs =

√
Ks/J and we have used the notation that a

subscript of ω on a quantity represents the normalized Fourier transform of that quantity.
In this notation, the power spectral density of θ is |θω |2, where θω is normalized in a way
that the Parseval theorem is obeyed i.e., θ2

rms =
∫ ∞

0 |θω |2dω. We apply Equation (34) to
the W component seismometer by using w = Dnθ from Equation (26). We then multiply
Equation (34) by Dn/Hr(ω), and apply Dn = J/

(
mDg

)
from Equation (32) we obtain

wω =
−ω2

Hr(ω)
(sin αZω − cos αHh_ω), (36)

For a triaxial seismometer, one can decompose the displacement in each of the U, V,
and W seismometers as a result of ground acceleration in the X, Y, and Z directions. For
example, if wωz is the displacement in the W seismometer due to ground acceleration in
the Z direction, then from Equation (36)

wzω =
−ω2

Hr(ω)
sin αZω. (37)

Similarly, from Equation (36) the displacement in the W seismometer due to ground
acceleration in the horizontal direction in the plane of rotation is

whω =
ω2

Hr(ω)
cos αHh_ω. (38)

Comparing Equation (37) to Equation (1), one notices that if one replaces wz and Z in
Equation (1) with wzω and −ω2

Hr(ω)
Zω respectively, Equation (1) will turn into Equation (37).

Similarly, if one replaces wh and Hh in Equation (4) with wzω and −ω2

Hr(ω)
Hh_ω respectively,

Equation (4) will turn into Equation (38). Due to the one-to-one correspondence, one can
write the frequency domain transformation for any frequency asuω

vω

wω

 = − ω2

Hr(ω)

 cos α 0 sin α

− cos α
2

√
3

2 cos α sin α

− cos α
2 −

√
3

2 cos α sin α


Xω

Yω

Zω

, (39)

where the measured displacement in the U seismometer is uω = uxω + uyω + uzω . Similarly,
vω = vxω + vyω + vzω, and wω = wxω + wyω + wzω. Inverting this, we obtain

Xω

Yω

Zω

 = −Hr(ω)

ω2


2

3 cos α − 1
3 cos α − 1

3 cos α

0 1√
3 cos α

− 1√
3 cos α

1
3 sin α

1
3 sin α

1
3 sin α


uω

vω

wω

. (40)

At high frequencies, Hr(ω)→ ω2 , Equations (39) and (40) becomes Equations (11) and (12).
In Equations (39) and (40), the displacement u, v and w are evaluated at the Null Point.

However, one can easily evaluate the displacement at the sensor position by replacing u, v
and w in Equations (39) and (40) with u′Dn/Dc, v′Dn/Dc and w′Dn/Dc respectively where
u′, v′ and w′ are the displacement measured at the motion sensor and Dc is the distance
from the motion sensor to the pivot.

The time domain transformation from u(t), v(t), and w(t) to
..
X(t),

..
Y(t), and

..
Z(t) is

more complicated. It is discussed in Appendix E.



Sensors 2023, 23, 26 11 of 19

8. Extension of the Transformation Matrices for Torque Feedback Operations

Generally, the triaxial seismometers are operated in a torque feedback mode, which
gives valid results for all frequencies.

In the presence of externally applied torque, the equation of motion (Equation (30)) becomes

Γext = J
..
θ +

[
Ks(1 + iφi)−mgDg cos α

]
θ + B

.
θ, (41)

where the externally applied torque Γext includes the Brownian noise torque ΓB, the feed-
back torque ΓFB, and the torque due to ground motion ΓG, i.e., Γext = ΓB + ΓFB + ΓG, and
ΓG = mDg sin α

..
Z−mDg cos α

..
Hh. Consider the case where torque feedback is used to keep

θ close to zero, and Brownian torque is negligible. In this case, for a single-component
seismometer, the equation of motion (Equation (41)) becomes

ΓFB = −ΓG = −mDg sin α
..
Z + mDg cos α

..
Hh (42)

For a triaxial seismometer, one can decompose ΓFB into component torques in each of
the U, V, and W seismometers as a result of ground acceleration in X, Y, and Z directions.
For example, if Γwz is the feedback torque in the W seismometer due to ground acceleration
in the Z direction, then from Equation (42)

Γwz = −mDg sin α
..
Z. (43)

Similarly, Γuz = Γvz = −mDg sin α
..
Z. Similarly, the feedback torque in the W seis-

mometer due to ground acceleration in the horizontal direction in the plane of rotation is

Γwh = mDg cos α
..
Hh. (44)

Using the same argument of one-to-one correspondence of equations to those in
Equation (1) through Equation (10), we found that

Γu
Γv
Γw

 = −mDg

 cos α 0 sin α

− cos α
2

√
3

2 cos α sin α

− cos α
2 −

√
3

2 cos α sin α




..
X
..
Y
..
Z

, (45)

where the measured feedback torque in the U seismometer is Γu = Γux + Γuy + Γuz. Simi-
larly, Γv = Γvx + Γvy + Γvz, and Γw = Γwx + Γwy + Γwz.

Inverting the matrix, we obtain the conversion matrix from measuring feedback
torques to ground accelerations as.

..
X
..
Y
..
Z

 = − 1
mDg


2

3 cos α − 1
3 cos α − 1

3 cos α

0 1√
3 cos α

− 1√
3 cos α

1
3 sin α

1
3 sin α

1
3 sin α


Γu

Γv
Γw

. (46)

In Appendix D, we generalize this matrix to cover the case of non-identical component
seismometers that are not separated 120◦ appart.

Notice that the concept of Null Point is not needed in this derivation. Since the torque
feedback technique is most frequently used, the necessity of the concept of the Null Point
was never realized.

9. Brownian Noise

As an example of how to use our transformation matrices, we demonstrate how the
Brownian noise in the vertical direction presented by Erwin et al. [21] can be extended to



Sensors 2023, 23, 26 12 of 19

give Brownian noise in the x and y directions. The seismometer output noise in the vertical
direction due to Brownian motion is given by Erwin et al. [21] as

|AB_z_ω | =
|ΓB_ω |√

3mDg sin α
, (47)

where the Brownian torque noise spectral density is

|ΓB_ω | =

√
4kBT

(
Ksφ

ω
+ B

)
, (48)

and B is the viscous damping coefficient. This Brownian torque noise is a translation from
the Brownian force noise in a linear mass-spring oscillator presented by Erwin et al. [23].

In the following, we shall define A as the acceleration output of the triaxial seismome-
ter, AB as the Brownian noise component of this output.

If the torque due to ground acceleration is substantially smaller than Brownian torque
noise, the measured feedback torque would be predominantly the Brownian torque. Since
the seismometer would make use of Equation (46) to calculate ground acceleration in the
X, Y, and Z directions. It would misinterpret this Brownian torque as ground acceleration.
The seismometer’s acceleration output in the time domain would therefore be

AB_x
AB_y
AB_z

 =
1

mDg


2

3 cos α − 1
3 cos α − 1

3 cos α

0 1√
3 cos α

− 1√
3 cos α

1
3 sin α

1
3 sin α

1
3 sin α


ΓBu

ΓBv
ΓBw

, (49)

where ΓBu is the Brownian torque in the U seismometer. In the frequency domain, ΓBuω ,
ΓBvω and ΓBwω are uncorrelated with a magnitude given by Equation (48). We use the rule
for error propagation for uncorrelated signals and obtained the Brownian noise spectrum
in the X and Y directions as

|AB_x_ω | =
∣∣AB_y_ω

∣∣ = √2/3|ΓB_ω |
mDg cos α

, (50)

and the same |AB_z_ω | as given by Erwin et al. [21] and shown in Equation (47).
One should also note that for a single-component seismometer, the output Brownian

noise in the vertical and horizontal directions are |ΓB_ω |
mDg sin α and |ΓB_ω |

mDg cos α respectively. One
should also note that these two noises are completely correlated because the rotational
mass-spring oscillator has only one degree of thermodynamic freedom. These two noises
must originate from the same degree of freedom and therefore must be correlated.

In Appendix F, we present another way to derive the Brownian noise in the vertical
direction and show that it is consistent with Equation (47) only if the Null Point distance
Dn is used. If other distances such as the location of the displacement sensor were used, it
would lead to an inconsistent result. This illustrates the importance of the concept of the
Null Point in making the physics of the rotational mass-spring oscillator consistent.

10. Temperature Sensitivity

The usefulness of our transformation matrix can also be illustrated by extending the
temperature sensitivity in the vertical direction as derived by Erwin et al. [21] to cover
the temperature sensitivities in the X and Y directions. Erwin et al. [21] showed that the
temperature sensitivity in the vertical direction is

dAz

dT
= g

[
αCTE − βo + cot α

(
dαo

dT

)
ωo

+
Ko

mDgg sin α

(
dαo

dT

)
ωo

]
, (51)
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where the relative coefficient of thermal expansion of the boom is αCTE = 1
Dg

dDg
dT , and

βo = 1
Ks

dKs
dT is the relative thermoelastic coefficient of the spring, αo is the angle between

the boom and the vertical in the absence of gravity, and Ko is the angular spring rate when
the frequency of the oscillator is reduced by mechanical or electrostatic means. Following
the derivation of Erwin et al. [21], we obtained the temperature sensitivity in the horizontal
direction in the plane of rotation as

dAh
dT

= g

[
tan α(αCTE − βo) +

(
dαo

dT

)
ωo

+
Ko

mDgg cos α

(
dαo

dT

)
ωo

]
. (52)

Since the U, V, and W component seismometers are constructed the same way, they are
likely to have close to the same temperature sensitivity. Assuming that their temperature
sensitivities are the same and that the temperature differences between them are small com-
pared to the temperature excursion, then the error signal due to temperature changes would
be largely correlated. Assuming perfect correlation, Equation (46) or Equation (21) gives

dAx

dT
=

dAy

dT
= 0, (53)

and dAz
dT is the same as that of a single-component seismometer given by Equation (51). It is

rather surprising to find that the ideal symmetric triaxial seismometer’s output in the X and
Y direction is not sensitive to temperature change under ideal conditions. In practice, the
assumptions stated are not met to a certain extent. The thermal sensitivities of the U, V, and
W seismometer components are not identical. The temperature perturbations experienced
by U, V, and W are not identical. For example, solar radiation hits the seismometer from
one side which leads to lateral temperature gradients. Inhomogeneity of the thermal
insulation and inhomogeneity of the thermal properties of the sensor and the soil on which
it rests, all lead to non-identical temperature noise at the three component seismometers.
However, based on the results from the ideal case, one should expect a significant reduction
in temperature sensitivity compared to that of a single-component seismometer in the
horizontal direction (see Equation (52)). The zero sensitivity in the ideal case should also
motivate developers of the next-generation seismometers to minimize non-ideal effects
that cause the temperature sensitivity to be non-zero in the X and Y directions.

11. Discussion

When considering the seismometer self-noise, the noise formulas predict infinite noise
for the case where a seismometer is tilted at such an angle that it cannot measure motion
in the desired direction. The concept of infinite noise requires some explanation. We start
by considering α→ 0 then, σz → ∞ . To show that this is correct, one can hypothetically
consider the opposite case, where the noise is finite when α approaches zero. What it
would mean is that such a seismometer, with the boom pointing upward, would be able
to measure z component ground displacement to within some degree of uncertainty. This
would contradict our intuition that such a seismometer would not be able to measure
ground motion in the vertical direction at all.

In the literature, the transformation matrix is not usually presented analytically, and
instead is given numerically [8,9]. In the work of Graizer (2009) the matrix is given
analytically, but if we used the same approach to consider noise, the matrix would lead us
to find that when α→ 0 then, σz → 0 (see Appendix A), which goes against our intuition.
The matrix in Graizer was likely derived by taking the transpose of Equation (11), which is
valid for the Galperin configuration in which UVW leads to an orthogonal matrix, but no
longer holds for non-Galperin angles.

The triaxial seismometer considered here was evaluated for the idealized case in
which each sensor had an identical tilt angle and equal spacing in the horizontal, as is
standard in the literature (Graizer, 2009; Wielandt, 2002; Townsend, 2014). In practice, due
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to manufacturing tolerance and levelling capabilities, each sensor has a unique tilt angle
(see Lognonné et al., 2019). This requires the data scientist to account for the individuality of
each sensor. In the appendices, we present a general transformation matrix, which accounts
for misalignments of the various angles in the system, as well as component seismometers
that are not identical.

12. Summary

We have filled in several gaps in our understanding of the Galperin triaxial seismome-
ters. (1) We extended the Galperin transformation matrix to cover arbitrary values of the
angle α. (2) We extended the Galperin transformation matrix to cover the more realistic
case where masses can be distributed along the boom. We introduced the concept of
Null Point to help with the understanding of how distributed masses should be treated.
(3) We presented an equation of motion for a rotational mass-spring oscillator under the
influence of ground acceleration in both the vertical and horizontal directions. (4) With this
equation of motion, we derived the formula for Dn—the distance between the pivot and
the Null Point. (5) With the help of this formula and our equation of motion, we extended
the Galperin transformation matrix to cover the case of lower-frequency signals. (6) Our
equation of motion also allows us to extend the transformation matrix to cover the case of
torque feedback, which is the mode of operation used by nearly all seismometers. (7) We
applied our transformation matrix to understand how uncorrelated noise propagates from
the sensors to the acceleration output of the seismometer. With this, we extended the
output noise of a triaxial seismometer in the vertical direction due to Brownian noise by
Erwin et al. [21], to cover output noises in the X and Y directions. (8) We also applied our
transformation matrix to understand how correlated noises propagate. Since the three com-
ponent seismometers are sitting on the same thermally isolated platform, we expect that
the temperature noise they experienced is largely correlated. Assuming the ideal case of
complete correlation and identical component seismometers, we found a surprising result
that these noises cancel out in the X and Y directions. In a more realistic case of incomplete
correlation, we still expect the temperature sensitivity in the X and Y directions of a triaxial
seismometer to be much smaller than the horizontal temperature sensitivity of a single
component seismometer. (9) We have also derived a formula for the horizontal temperature
sensitivity of a single-component seismometer. (10) In the appendices, we have further
extended these matrices to cover cases of non-symmetric and non-identical component
seismometers. Finally, a deeper understanding of the physics of this type of seismometer
will help in the development of more sensitive ones for future planetary exploration.
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Appendix A. Transformation Matrix Reported in the Literature

In the work of Graizer (2009), the following transformation matrix is provided from U,
V, and W components to X, Y, and Z coordinates:X

Y
Z

 =

− cos α cos α sin β cos α sin β
0 cos α cos β − cos α cos β

sin α sin α sin α

u
v
w

, (A1)

where β is 30◦ for the symmetric seismometer. For the Galperin configuration (which
was the type of arrangement Graizer considered), after accounting for discrepancies in
convention for the X and Y axes, Equation (A1) yields the same numerical values as in
Equation (14) and elsewhere in the literature [8,9] with the exception of some differences
in the positive and negative signs in the matrix elements. These sign differences are due
to two different conventions of how the X, Y, and Z axis are oriented relative to the u,
v, and w axis, as explained by Townsend [9]. The transformation is not valid though for
non-Galperin angles.

To illustrate this point, using Equation (A1) for the vertical direction

Z = (u + v + w) sin α (A2)

and so, the z-axis instrument noise for cases in which each axis experiences the same noise,
σu = σv = σw, is given by

σz =
√

3 sin ασu. (A3)

Now consider the goal of minimizing vertical instrument noise. Equation (A3) suggests
that to minimize instrument noise in the vertical direction α should be 0◦, but in this
situation, the boom is pointing directly upward, and such a seismometer cannot measure
Z-direction ground motion. On the other hand, equation (20) suggests that for α = 0◦

the z-axis noise will be infinite, in agreement with a sensor only sensitive to horizontal
ground motion.

Appendix B. Transformation Matrix with Misalignments in the Angles

In this appendix, we derive the Galperin transformation matrix with arbitrary angles.
Let αu, αv and αw be the angle between the boom and the vertical for the U, V, and
W component seismometer respectively. Figure A1 shows the top view of the triaxial
seismometer. Let the horizontal projection of the boom of the U seismometer be aligned
perfectly with the −x axis. The two dashed lines are at +120◦ and −120◦ angles from
the −x axis. They represent the perfect alignment locations of the W and V component
seismometers. However, due to imperfections in the construction, the horizontal projections
of the W and V seismometers deviate from the perfect alignment angle by angles of δw and
δv respectively. Let uz, vz, and wz be the u, v and w displacements due to a vertical ground
displacement of Z. Following the derivation of Equations (1), (2), and (3), we obtained

uz = Z sin αu, (A4)

vz = Z sin αv, (A5)

wz = Z sin αw. (A6)
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Figure A1. Top view of the triaxial seismometer where V and W component seismometer is not
aligned with the ideal symmetric orientations shown by the dashed lines but deviate from them by
angles of δv and δw respectively.

Following the same arguments for the derivation of Equations (4) and (5), we obtained

wh = −Hh cos αw, (A7)

wx = −X2 cos αw = −X cos αw sin(β + δw). (A8)

Following the same arguments for the derivation of the rest of the Galperin transfor-
mation matrix, we obtained

vx = −X2 cos αv = −X cos αv sin(β− δv), (A9)

ux = X cos αu, (A10)

uy = 0, (A11)

wy = −Y2 cos αw = −Y cos αw cos(β + δw), (A12)

vy = Y2 cos αy = Y cos αy cos(β− δw), (A13)

and u
v
w

 =

 cos αu 0 sin αu
− cos αv sin(β− δv) cos αy cos(β− δw) sin αv
− cos αw sin(β + δw) − cos αw cos(β + δw) sin αw

X
Y
Z

, (A14)

where u = ux + uy + uz, v = vx + vy + vz, and w = wx +wy +wz. While the analytical expres-
sion for the inverse of this matrix can be easily found with an analytical tool such as Mathematica
and MATLAB, it is more convenient in practice to perform the inversion numerically.

Appendix C. Low-Frequency Signals with Arbitrary Angles and
Un-Matched Seismometers

In this appendix, we present the most general form for the transformation matrix for sig-
nals of arbitrary frequencies with arbitrary angles and unmatched component seismometers.

uω

vω

wω

 = −ω2


cos αu

Hru(ω)
0 sin αu

Hru(ω)

− cos αv sin(β−δv)
Hrv(ω)

cos αy cos(β−δw)
Hrv(ω)

sin αv
Hrv(ω)

− cos αw sin(β+δw)
Hrw(ω)

− cos αw cos(β+δw)
Hrw(ω)

sin αw
Hrw(ω)


Xω

Yω

Zω

, (A15)
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where Hru(ω) =
(
ω2

ou −ω2) + i
(
ω2

suφu + ωBu/Ju
)
, where the subscribe u denotes the

quantities pertaining to the U component seismometer and is similarly defined for Hrv(ω)
and Hrw(ω). Again, we recommend using numerical inversion for the matrix rather than
the analytical form of the inverse matrix.

Appendix D. Torque Feedback with Arbitrary Angles and Un-Matched Seismometers

In this appendix, we present the most general form for the transformation matrix for
torque feedback operations with arbitrary angles and unmatched component seismometers.

 Γu/
(
muDgu

)
Γv/

(
mvDgv

)
Γw/

(
mwDgw

)
 =

 cos αu 0 sin αu
− cos αv sin(β− δv) cos αy cos(β− δw) sin αv
− cos αw sin(β + δw) − cos αw cos(β + δw) sin αw




..
X
..
Y
..
Z

, (A16)

where mu, mv and mw are the total suspended masses for the U, V, and W component
seismometers respectively, and Dgu, Dgv and Dgw are their center of masses respectively.
Again, the inversion of this matrix is best carried out numerically.

Appendix E. Time Domain Transformation in the Absence of Torque Feedback

When torque feedback is not used, this appendix shows how to process the data to
obtain ground motion. The equation of motion (Equation (30)) can be rewritten as

..
θ +

[
ω2

s φ(ω)

ω
+

B
J

]
.
θ + ω2

o θ =

(
mDg

J

)(
sin α

..
Z− cos α

..
Hh

)
. (A17)

The use of a frequency-dependent damping coefficient ω2
s φ(ω)/ω in the equation of mo-

tion [24] is equivalent to using an imaginary loss term. One should note that φ(ω) emphasizes
that φ is also frequency dependent [25]. Applying this to the W component seismometer

..
w +

[
ω2

swφw(ω)

ω
+

Bw

Jw

]
.

w + ω2
oww =

(
sin αw

..
Z− cos αw

..
Hh

)
. (A18)

Frequency-dependent damping implies that the measured w(t) must be expressed
in its Fourier components before one can use Equation (A18). Since Fourier transform
assumes that the signal being transformed is repetitive, w(t) must represent a time series
that starts before a seismic event begins and ends after it has subsided. One can further
simplify the calculation by choosing w(t) so that w = 0 at the first and last points of the
series. Let there be N data points in w(t). The Fourier representation of w(t) is

w(t) =
N

∑
i=1

awi sin(ωit). (A19)

One can define W(t) =
..
w +

[
ω2

swφw(ω)
ω + Bw

Jw

] .
w + ω2

oww. Therefore, one can compute

W(t) =
..
w +

(
Bw

Jw

)
.

w + ω2
oww + ω2

sw

N

∑
i=1

awiφw(ωi) cos(ωit). (A20)

One can similarly compute U(t) and V(t) from the measured values of u(t) and v(t).
Using the one-to-one mapping of equations, one can obtain the following transformation

U
V
W

 =

 cos αu 0 sin αu
− cos αv sin(β− δv) cos αy cos(β− δw) sin αv
− cos αw sin(β + δw) − cos αw cos(β + δw) sin αw




..
X
..
Y
..
Z

. (A21)

The inversion of this should be conducted numerically.
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One can see that without torque feedback, the process to recover ground acceleration is
numerically intensive. This is especially true when the seismometer operates in a vacuum,
where the internal friction in the spring is the dominant loss mechanism. On the Moon, the
recovery process is even more intensive due to the long duration of seismic events [26].

Appendix F. An Alternative Way to Derive the Brownian Noise as a Way to Illustrate
the Importance of the Concept of the Null Point

The Brownian torque noise given by Equation (48) is |ΓB_ω |. The angular acceleration
Brownian noise of a single rotational mass-spring oscillator is therefore

∣∣ ..θB_ω

∣∣ = |ΓB_ω |/J,
where J is the moment of inertia.

As discussed in Section 4, when the ground moves at a frequency higher than the
resonance frequency, to an observer on an inertial frame, the location on the boom at the
Null Point does not move. Only the ground moves up and down at an amplitude of
Z. However, to an observer on the ground, the ground does not move, the Null Point
moves up and down by the same displacement Z. Therefore, θ = Z sin α/Dn, as given
by Equation (25), can be used to compute the output Brownian noise of a seismometer as∣∣ ..
ZB_ω

∣∣ = Dn |ΓB_ω |
J sin α . Using our results of Dn = J

mDg
as given by Equation (33), we obtain∣∣ ..

ZB_ω

∣∣ = |ΓB_ω |
mDg sin α , which is consistent with the result of Erwin et al. [26] as shown in

Equation (47), except for the extra factor of 1/
√

3 which accounts for the noise reduction
due to the averaging of noise from three component seismometers in a Galperin triaxial
seismometer. If the location of the displacement sensor (or any other locations) were used
instead of the location of the Null point, it would lead to an inconsistent result. Therefore,
the concept of the Null Point is crucial in making the physics of the rotational mass-spring
oscillator consistent.
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