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Abstract: Slope instabilities caused by heavy rainfall, man-made activity or earthquakes can be char-
acterised by seismic events. To minimise mortality and infrastructure damage, a good understanding
of seismic signal properties characterising slope failures is therefore crucial to classify seismic events
recorded from continuous recordings effectively. However, there are limited contributions towards
understanding the importance of feature selection for the classification of seismic signals from continu-
ous noisy recordings from multiple channels/sensors. This paper first proposes a novel multi-channel
event-detection scheme based on Neyman–Pearson lemma and Multi-channel Coherency Migration
(MCM) on the stacked signal across multi-channels. Furthermore, this paper adapts graph-based
feature weight optimisation as feature selection, exploiting the signal’s physical characteristics, to im-
prove signal classification. Specifically, we alternatively optimise the feature weight and classification
label with graph smoothness and semidefinite programming (SDP). Experimental results show that
with expert interpretation, compared with the conventional short-time average/long-time average
(STA/LTA) detection approach, our detection method identified 614 more seismic events in five days.
Furthermore, feature selection, especially via graph-based feature weight optimisation, provides
more focused feature sets with less than half of the original number of features, at the same time
enhancing the classification performance; for example, with feature selection, the Graph Laplacian
Regularisation classifier (GLR) raised the rockfall and slide quake sensitivities to 92% and 88% from
89% and 85%, respectively.

Keywords: feature engineering; multi-channel seismic events detection; graph feature weight optimisation
and classification

1. Introduction

Slope instabilities and landslides caused by meltwater drainage or heavy rainfall,
as a result of climate change, is an increasing threat, especially around train tracks, main
roads and densely populated mountain areas [1]. Progressive damage of the rocky slope
is a precursor of slope instability, characterised by seismic events triggered by a rapid
release of energy. Therefore, continuous seismic monitoring through an array of surface or
near surface sensors, together with seismic analysis, comprising detection, classification,
and localisation, has been gaining traction recently, whether events are induced by volcanic
activity [2], landslides [3] or mining [4].

Many signal-processing and machine-learning approaches have been used for various
seismic signal analysis tasks. Deep learning (DL) has recently become a popular technique
in seismology. Indeed, many DL techniques based on Convolutional Neural Network [5],
Deep Recurrent Neural Network [6], Capsule Neural Network [7] and Autoencoder [8]
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have been proposed to detect and classify earthquakes, as well as other seismic signals
triggered by volcanoes and landslides. Though the aforementioned techniques can extract
important features from the input data for detection and classification, it is not clear how
this extraction is performed or how effective the extracted features are. Therefore, DL
approaches are considered black-box models, which lack interpretability. Furthermore,
in contrast to automatic feature learning offered by DL, handcrafted feature engineering can
potentially lead to new insights and improved understanding of seismic signal patterns in
temporal, spatial and frequency domains. Therefore, this work focuses on handcrafted fea-
ture engineering paired with traditional interpretable classification algorithms for seismic
signals at an ongoing landslide site.

In seismic analysis, efficient and highly accurate seismic detection plays a crucial
role. This is often accomplished by manually detecting signals of interest from continu-
ous seismic recordings using expert knowledge, which is a time-consuming, laborious,
and subjective process. As a result, algorithms that can automatically detect seismic signals
have been developed. STA/LTA is a commonly used approach, but it suffers from inaccu-
rate initialisation of parameters and leads to several false alarms [9]. Akaike information
criterion (AIC), template matching, and thresholding algorithms are also used to detect
seismic signals [9]. A one-step detection and classification approach is proposed in [3]
to detect and classify seismic events by first sliding a window of predefined length on a
continuous data stream from seismic sensor arrays, constructing 55 handcrafted features
from each window to classify the window with Random Forest (RF) classifier. However,
this one-step approach suffers from cumbersome feature construction, which is unsuitable
for real-time applications. Additionally, the significance of the features associated with the
whole waveform of the signal is not analysed because [3] only used the portions of the
event’s waveform that appear in the sliding window. Since, the main challenge for seismic
signal detection is very low signal-to-noise ratio (SNR) of the recorded signals and varying
noise intensity and distribution [3,10], to enhance the quality of recorded multi-channel
seismic signals, previous works employed stacked absolute values across different channels
or the absolute value of the product of the amplitudes from different channels as the input
for detection approaches. But the performance is still affected by the presence of strong
noise in any of the recording channels [10]. To address this issue, this paper adapts the
Multi-channel Coherency Migration (MCM) together with Neyman–Pearson lemma on
landslide-induced signal detection and obtains convincing results even for the signals with
small amplitudes.

With the detected signals from continuous multi-channel recordings, it is necessary to
develop interpretable and effective feature engineering for event classification. The main
challenges in classifying seismic signals are: (1) lack of open access annotated datasets [11];
(2) imbalanced catalog of labeled events, caused by the sparsity of events of interest [11];
(3) high similarities between unknown natural and anthropogenic “interfering” signals and
events of interest in time and/or frequency domain [12]. Feature engineering is a key step
towards efficient signal classification as a large set of features with redundant information
could easily increase the processing time and cause classifier overfitting, multicollinearity,
and suboptimal feature ranking at the selection stage [2]. Feature construction for seismic
events was discussed in detail in [11], where temporal, spectral and cepstral features
and combinations thereof are derived from the raw denoised measurements. Feature
extraction [4] and selection [2] are commonly used for dimensionality reduction of the
feature space, thus decreasing required storage requirements, and testing and training
times of the classifier.

As the most popular feature extraction (and dimensionality reduction) method, Prin-
cipal Component Analysis (PCA) has been consistently shown to be effective for a range
of seismic detection and classification tasks, e.g., in [4] for microseismic event and quarry
blast classification with Artificial Neural Networks (ANN), and [13] observed that PCA
extracted features resulted in better classification accuracy for seismic events with linear
and Radial basis function kernel Support Vector Machine (SVM) classifiers (like the one
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used for benchmarking in this paper). Although PCA is hampered by the high computa-
tional complexity of singular value decomposition, further calculated principle components
cannot reliably identify the variables that are most crucial for information preservation
and interpretability.

Feature selection methods are often categorised as filter-based (most popular for
seismic analysis), wrapper-based, embedded, hybrid, and ensemble approaches. Filter-
based methods, based on evaluating and selecting the features with various statistical tests,
are model-agnostic, i.e., they can be applied to any learning algorithm to exclude irrelevant
and redundant features, and are of lower complexity [14]. Thus, these methods have been
widely used in various seismic analyses. For example, (i) [2] used Information Gain, One
Rule, Relief, Chi2 Discretization, and uFilter filter feature selection approaches with a
Gaussian Mixture Model classifier to classify volcano-seismic signals, (ii) [15] proposed the
Relief filter approach and SVM for classifying levee passive seismic signals in the earth
dam, (iii) [16] used filter (mutual information and statistical dependence) methods and
embedded (cross-validation and pruning) methods to classify volcano-seismic signals with
k-Nearest Neighbors and Decision-Trees, (iv) [17] employed Information Gain filter method
with ANN to predict earthquakes. Although the aforementioned studies demonstrated that
filter-based feature selection is successful at enhancing categorisation outcomes in a variety
of seismic signals, filter methods are often unable to identify the discriminate features,
such as those associated with long tail distribution. Additionally, the filter methods do
not eliminate multicollinearity (a statistical concept where several independent variables
in a model are correlated), which could result in the selected features being suboptimal
for signal discrimination. Recently, wrapper methods were also employed to enhance
volcano-seismic signals classification [18,19], based on the inferences from the classification
model, and the performance surpasses the filter-based methods, while usually confined to
a high level of computational complexity and subjects the model to overfitting.

Compared to supervised learning with aforementioned feature selection, semi-supervised
learning only requires a small quantity of labeled event data, which could reduce the effects
of human error due to labeling uncertainty, while obtaining relatively high accuracy [20].
Motivated by recent successes of graph-based semi-supervised learning, mainly focused on
2D and 3D image data [21,22], we focus on graph-based semi-supervised learning, due to
its ability to handle classes with arbitrary signal distribution generating a smooth feature
subspace. Graph learning refers to finding a signal representation via a graph, relying
on either statistical methods or spectral graph methods, based on data observations to
represent the signal in a low-dimensional subspace [23]. Graph spectral-based feature
weight learning of [21] assigns a feature importance score to each feature assuming fea-
ture independence. In [21] constructed/extracted feature vectors are embedded onto a
representation graph, where the distances between detected signals are assessed with the
feature vectors and a critical parameter known as graph kernel bandwidth, which is usually
manually set. Appropriate estimation of graph kernel bandwidth is essential for graph
signal representation but challenging. Some recent studies on optimising graph kernel
bandwidth, reported in [22,24,25], are either tied to a specific problem or might be affected
by the randomness of feature pair selection. In [26], an iterative, alternating feature learning
and classification approach was proposed for characterising slide quakes, earthquakes,
tremors and calibration shots from a relatively less noisy dataset and considering only
one channel.

This paper goes beyond [26] by proposing a comprehensive and integrated seismic
monitoring workflow for the continuous multi-channel recorded signal at an ongoing
landslide, which consists of multi-channel event detection with linear coherency analysis
via MCM, graph-based feature weight optimisation and classification. Specifically, with the
continuous recordings from multiple sensors in an array, the proposed system first detects
potential events with the coherence analysis (i.e., MCM) of the multi-channels, and identi-
fies the strongest signal components for feature construction. Then, we design graph-based
feature weight optimisation for landslide-induced event classification, comprising, in addi-



Sensors 2023, 23, 243 4 of 23

tion to earthquakes, endogenous events such as rockfalls and seismic sources related to
landslide processes (e.g., fissure formation) thereafter referred to as slide quakes, using the
same terminology of [12]. These types of events tend to be localised, channel stations are
relatively close for such studies and therefore time difference in signal arrival at different
events is negligible for the purpose of multi-channel event detection and classification.
Technically, we enhance the iterative, alternating feature weight optimisation and classifica-
tion approach of [21] (see also [26]) with a new dual problem to reduce the computational
complexity of the algorithm.

Briefly, the contributions of this paper can be summarised as follows:

1. To mitigate the impact of variable background noise from the multi-channel record-
ings, we propose a detection scheme that combines MCM coherence analysis and
Neyman–Pearson lemma (see Section 2.1 and Algorithm 1), so that the seismic events
recorded by a portion of the channels are readily identifiable, which is more in line
with practical application scenarios as well;

2. We adapted the graph-based feature weight optimisation approach of [21] for seismic
signal classification and proposed a new graph kernel bandwidth optimisation method
to learn the best representation graph (Section 2.2);

3. We assess the proposed detection scheme and graph-based feature weight optimi-
sation, respectively, on the cataloged event as in [12] and the continuous recordings
(24–28/November/2014), manually labeled by a skilled expert; the results outper-
formed STA/LTA algorithm applied in the frequency domain, as in [12], showing the
potential of the proposed detector (Section 3.2)

4. We explore in detail the impact of feature engineering (filter, wrapper, embedded-
based feature selection approaches, feature extraction with PCA, and adapted graph-
based feature weight optimisation) on landslide-induced signal classification (Section 2.2
and Algorithm 2), and conclude that with graph smoothness, the features high-
lighted with adapted graph-based feature weight optimisation are more discrim-
inative (Sections 3.3 and 3.4);

5. Finally, following graph-based feature weight optimisation, we contribute a feature
recommendation list of rockfall, slide quake, earthquake, and natural and anthro-
pogenic noise occurrences, which summarise the most distinct characteristics of each
of the aforementioned signal classes (Section 4).

The rest of this paper is structured as follows. Section 2 discusses the proposed
methodology, which includes multi-channel detection and graph-based feature weight
optimisation and classification. In Section 3, an overview of the experimental design and the
outcomes achieved with the seismic dataset recorded at the Super-Sauze active landslide
site are given. Section 4 discusses feature recommendations for particular types of seismic
signals together with the geological interpretation. Section 5 contains the conclusion and
future works. Finally, the appendix provides a complete table of generated features.

2. Methodology

In this section, we describe our methodology. The workflow of the proposed system is
shown in Figure 1. In the following, we describe each block of the system, one by one.

Predicted label
Multi-channel 
recorded data

Graph based feature 
weight optimisation and 

classification 
(Algorithm 2)

Detection with MCM + 
Neyman-Pearson 

lemma (Algorithm 1)

Feature 
construction
(Table A1) 

Figure 1. Workflow of the proposed system. The proposed Algorithms 1 and 2 are in bold.
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2.1. Multi-Channel Detection

Seismic monitoring is regularly performed with multiple sensors deployed over the
area of interest to continuously record the activities over vast distances of the order of
kilometers. However, depending on the relative distance of the source to sensors, some
sensors may not record a particular event at a sufficiently large SNR to be identifiable.
Combining the readings from multiple sensors has been shown to improve event detection,
e.g., by stacking signals from multiple channels as in [27].

For the detection stage, we only consider the multi-channel recorded signals X ∈
RC×N , where C and N, respectively, represent the number of vertical channels and signal
samples in that channel. During preprocessing, we normalise and filter the recorded signal
to minimise the effect of signal attenuation and measurement noise. As the first step
of detection, we fragment the recorded data X into non-overlapped length-l windows
W ∈

{
W1, ..., WI

}
, Wi ∈ RC×l , where the total number of windows is I = N

l . Then, we
analyse the linear coherence across each vertical channel c ∈

{
1, ..., C

}
(i.e., traces from

different deployed stations) within window Wi using MCM to form stacked signal ri.
Next, similar to [11], Neyman–Pearson lemma removes the stacked signals ri that most

likely contain only background noise with low SNR. After concatenating the remaining
consecutive windows, we form new windows W̃j. For example, suppose that W1, W2, W3,
W5, and W6 are the remaining windows after Neyman–Pearson lemma. W̃1 is formed by
concatenating W1, W2, W3 and W̃2 is formed by concatenating W5 and W6. Let w̃j

c denote
the channel c’s samples of W̃j. In the final step, we automatically select the best channel

segments w̃j
c∗ (i.e., the ones that maximise SNR among all channels within each W̃j) as

the detected events to feed to the feature construction step (see Figure 1). The proposed
multi-channel detection is summarised in Algorithm 1.

Algorithm 1 Multi-channel detection

Require: Recorded multi-channel data X, Window length l, No. of channels C
Ensure: Detected events

1: Preprocessing: Filter X with a (5–100 Hz) bandpass filter; and split it into non-
overlapping windows Wi of length l

2: For each Wi, use MCM [27] to obtain ri
3: Set threshold Γ← using Equation (10) of [11]
4: Keep windows Wi for which ri > Γ, and concatenate all such consecutive windows,

to form new window W̃j with w̃j
c denoting its c-channel

5: for each window W̃j do

6: Identify channel c∗ that maximises SNR across all w̃j
c, c ∈

{
1, ..., C

}
[11]

7: return The detected events w̃j
c∗ .

The choice of time window length l should consider the trade-off between noise
suppression and time resolution [27]. In our case, the duration of the target signals vary
from 0.5–100 s, while the majority are within the range 1–2 s, thus l = 0.2 s is chosen
as length of all windows Wi. MCM [27] is then used on Wi to obtain a stacked signal ri
(Step 2), where we set the number of channels for signal linear coherency analysis to 3,
as in [27]. If the stacked signal amplitude ri exceeds the calculated threshold Γ (Step 3)
with Neyman–Pearson lemma, the windows are kept and concatenated to form W̃j (Step

4). Finally, for each W̃j, the detected segments w̃j
c∗ are obtained from a channel c∗ that

maximises the SNR over all C channels [11].

2.2. Graph-Based Feature Weight Optimisation and Classification

After events are detected from multi-channel recorded data, as discussed in previous
subsection, we construct K = 119 features as shown in Table A1, in Appendix A, for each
detected event w̃j

c∗ . The signal temporal, spectral, cepstrum, and acoustic features are
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calculated, and the polarity attributes are calculated independently on the three-component
seismometers. Then we embed the constructed features into a connected, “representation”
graph, G = (V , A), where V is the set of vertices and A is the graph adjacency matrix [11].
Each vertex in the graph ν ∈ V corresponds to one of the detected events and is charac-
terised by the corresponding K-dimensional feature vector. The graph needs to represent
well the relationships between the events, and is learnt based on the importance of the
features, as described next.

Let fk(i) represent the k-th feature of event i assigned to vertex νi. Then, we set the
(i, j) entry in A, ai,j, i.e., the weight of the edge between nodes i and j, as:

ai,j = exp

{
−

K

∑
k=1

Fk(i, j)
2σ2

k

}
, (1)

where σk represents the graph kernel bandwidth for the k-th feature (i.e., 1
2σk

2 is the weight

of feature k), and Fk(i, j) = ( fk(i)− fk(j))2 is the squared Euclidean distance of feature k
between events (nodes) i and j.

We assign to each node, a discrete graph signal s that carries the class label of the
corresponding event in the training set and zero for nodes corresponding to test set,
as below:

si =


+1, if Event i belongs to the target Class and i ≤ n
−1, otherwise, and i ≤ n
0, for n < i ≤ N

, (2)

where n is the number of events in the training dataset. Please note that we are using
multiple binary classifiers—one for each class. Therefore above, si corresponding to the
training set can take only two values +1 (indicating class membership) and −1 (indicating
not class membership).

This way, if graph G captures well correlation between the events, then the nodes with
the same label will be connected by high-weight edges, i.e., the N-length graph signal s
will be piecewise smooth with respect to G and we can extrapolate the missing labels (that
are initialised to zero), e.g., via GLR, by finding the smoothest graph signal that fits the
training data [26].

We provide an illustration (a toy example) in Figure 2 to further clarify the graph-based
feature weight optimisation and classification approach, where we build a fully connected
graph with six nodes that correspond to the detected events. Specifically, in Figure 2,
four nodes are used for training, i.e., s1, s2 = 1, s3, s4 = −1, denoting that the first two
nodes correspond to Class 1 (blue circles) and the third and fourth nodes do not belong
to Class 1 (red circles) events while nodes five and six (yellow) are used for testing and
are initialised to s5, s6 = 0. As illustrated in Figure 2, the whole workflow consists of two
steps: (1) Graph-based feature weight optimisation (shown as a solid line in Figure 2) based
on feature vector set F ∈

{
f (1), ..., f (N)

}
, where f (i) = [ f1(i), ..., fK(i)]; here we consider

the optimisation problem as in Equation (3) to determine the feature weight 1
2σk

2 and then
the graph edge weights are obtained with Equation (1) (a thicker edge indicates that the
connected events have higher correlation), (2) graph-based classification, (dashed line in
Figure 2), with the optimised edge weights; the labels of the testing events s5 and s6 are
obtained with Equation (4). The above two steps alternatively and iteratively update the
feature weights and event labels until the stopping criteria. These two steps are described
next in more detail.
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s1 = 1

s2 = 1   

s6 = 0

s4 =       
1

s5 = 0

Update feature weight  
(affecting the edge weights)

 with label s (Equation (3)) s1 = 1

s2 = 1
s3 = 
-1

s6 = 0

s4 = 
-1

s5 = 0

s1 = 1

s2 = 1
s3 = 
-1

s6 = 
-0.1

s4 = 
-1

s5 = 
-0.1

s1 = 1

s2 = 1
s3 = 
-1

s6 = 
0.1

s4 = 
-1

s5 = 
0.1

s1 = 1

s2 = 1
s3 = 
-1

s6 =  
0.3

s4 = 
-1

s5 = 
0.7

Multi iterations

Update label s                      
    with feature weight            (Equation (4))

Update feature weight  
(affecting the edge weights)

 with label s (Equation (3)) 

s3 =       
1

s4 =       
1

s3 =       
1

s4 =       
1

s3 =       
1

s4 =       
1

s4 =       
1

s3 =       
1

s3 =       
1

s5 = 
0.1

s6 = 
0.1

Update label s                      
    with feature weight            (Equation (4))

Figure 2. Graph-based feature weight optimisation and classification (schematic diagram), where the
solid line represents Graph-based feature weight optimisation, and dashed line represents Graph-
based classification.

2.2.1. Graph-Based Feature Weight Optimisation

In this subsection, we provide a detailed description of the adapted graph feature
weight optimisation (the solid line step in Figure 2), which was first proposed in [21].
Specifically, the algorithm, shown as Algorithm 2, represents the iterative alternating binary
classification via (Normalised) Graph Laplacian Regularisation classifier ((norm)GLR) [26]
or with Graph Total Variation (GTV) [23], and graph-based feature weight optimisation via:

arg min
σk

∑
i,j

exp

{
−

K

∑
k=1

Fk(i, j)
2σ2

k

}
ei,j + U(σ), (3)

where ei,j = (s̃i− s̃j)
2, s̃i, s̃j are the predicted graph signal, and U(σ) is an indicator function

that returns 0 if all elements of σ = [σ1 . . . σK] are in the range (0, 1], or ∞, otherwise. The
algorithm is initialised to σk = 0.7 (Step 2) and then adapts the graph, i.e., σk, via feature
selection and prioritisation by minimising Equation (3) using gradient descent (Steps 7 and
10). The optimisation problem Equation (3) subjects to ∑k σk ∈ (0, γ].
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Algorithm 2 Alternative Graph-based Feature Weight Optimisation and Classification

Require: Constructed feature set F
Initial graph signal s, tolerance µ, ε, constant γ, step size θ

Ensure: The predicted label s̃, feature weight 1
2σ̃2

1: Initialization: t = ε;
2: Initialise Graph kernel bandwidth σk
3: while t > µ do
4: A← Equation (1) by feeding F ; updateH
5: s̃n+1:N ← Equation (6); t̂ = ε
6: m = s̃>Hs̃
7: ∇ ← via gradient descent Equation (3) [21]; j = 0
8: while t̂ > µ do
9: if j > 0 then

10: ∇ ← via gradient descent Equation (3) [21]
11: ∀k, σ̃k = σk − θ ×∇; j = j + 1
12: q = s̃>Hs̃
13: update A← Equation (1) using F and σ̃; updateH
14: q̂ = s̃>Hs̃
15: t̂ = q̂− q
16: s̃n+1:N ← Equation (6) with updatedH
17: m̂ = s̃>Hs̃
18: t = m̂−m
19: return The predicted label s̃ and feature weight 1

2σ̃2

Feature selection is performed iteratively between feature weight update (Step 11)
and classification (Steps 12 and 14). The definition ofH in Algorithm 2 (Step 4) depends
on the classifier used. Specifically,H represents the combinatorial graph Laplacian matrix
for GLR classifier defined as L = D− A (D is the diagonal matrix, given by di,i = Σjai,j);
its normalised form, Lnorm = D(−1/2)LD(−1/2) for the normGLR classifier, or for the GTV
classifier Ã = (I − A)H(I − A) (I is the identity matrix, and H represents the Hermitian
operator). The hyperparameter γ = 119, the tolerance µ = 0.0001, and ε = 10000 are
heuristically set; additionaly, the step size θ set as the one over the Lipschitz constant.
Please note that σk ≥ 0 represents the feature weight given to feature k, where smaller
σk indicates that k-th feature is more important. Thus, the algorithm inherently performs
feature selection.

2.2.2. Graph-Based Classification

The graph classification problem, i.e., finding the smoothest graph that spans training
and testing nodes and fits the training labels, can be solved via quadratic formulation
as in [11], which is fast but with poor worst-case errors and requires finding a pseudo-
inverse of potentially large Laplacian matrix. Alternatively, NP-hard quadratic constrained
quadratic relaxation and semi-definition relaxation (SDR) are known to provide good
error-bounded approximations [21]. Therefore, we use graph-based classifiers with SDR,
and following the idea of [21], the three graph-based classifiers can be solved by SDR with
a general formation:

min
S,s

tr(HS),

s.t. Si,i = 1, i ∈
{

1, ..., N
}

,[
S s

s> 1

]
� 0, si = ŝi, i ∈

{
1, ..., n

}
,

(4)
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where tr(·) is the trace operator, ŝi denotes the label of the i-th event in the training set,
with n < N denoting the size of the training set.

Optimisation problem (4) is of polynomial complexity, thus we convert (4) to its dual
problem [21], defined as:

λ∗ = max
λ
− 1>λ

s.t. H+ diag(λ) � 0,
(5)

where λ is the Lagrange multiplier. With the obtained optimised λ∗, the optimised solution
of (4) is equivalent to finding the infimum of Lagrange function La(s, λ∗):

La(s, λ∗)

= s>(H+ diag(λ∗))s− λ∗1

= s>H∗s− λ∗1

=
[
s1 s2

][H11
∗ H12

∗

H21
∗ H22

∗

][
s1
s2

]
− λ∗1

= s>1 H11
∗s1 + (b> + c)s2 + s>2 H22

∗s2 − λ∗1,

(6)

where s1 = s1:n, s2 = sn+1:N , H∗ = H + diag(λ∗), b = H12
∗>s1 and c = s1

>H12
∗.

By setting the first-order derivative of the Lagrange function La to zeros, we obtain the

solution s2
∗ = −H22

−1(b+c>)
2 .

3. Experimental Setup and Results
3.1. Dataset

We used the publicly available raw seismic recordings accessed on 8 January 2022
(https://seismology.resif.fr/networks/#/MT), sampled at Fs = 250 Hz, in the periods 11
October–19 November 2013, 10–30 November 2014, and 9 June–15 August 2015, from the
permanent tripartite array SZC, with 40m layout, of the French Landslide Observatory
OMIV (Observatoire Multi-disciplinaire des Instabilités de Versants). Since there were
no missing data during the aforementioned period, the recordings on array SZC met the
criteria for analysis of continuously recorded data in this study. The array comprises one
3-component center site and three vertical 1-component sites organised as an equilateral
triangle. Algorithm 1 takes as input the continuous signals from the 4 vertical channels.
A catalog of manually verified events, detected with spectrogram analysis, from [12],
for this period, was used for labeling. We used the same labels for the 4 classes in the
catalog, and removed duplicate events. This results in 401 “Rockfall”, 234 “Slide Quake”,
388 “Earthquake”, and 351 “Natural/Anthropogenic noise”, totalling 1374 events, which
are all considered in this paper.

3.2. Multi-Channel Detection

Raw recorded data from the vertical channels are fed into Algorithm 1 that selects
the optimum channel segments that are least affected by noise and removes the segments
with low signal activity, where noise is predominant. An example of Algorithm 1 output
is shown in Figure 3 for four bandpass filtered vertical channels for the same window.
With threshold Γ = 800 nm3/s3, two stacks at times 05:05:13 and 05:06:59 are deemed of
interest. These are highlighted in blue rectangular box (kept windows) in Figure 3, where
the amplitude of each channel is scaled to [−1,1]. Step 6 identified the optimal channel (the
one with highest SNR) c∗ is ch5 for both windows W̃5742 and W̃5743, thus, red segments
w̃5742

5 and w̃5743
5 are selected.

https://seismology.resif.fr/networks/#/MT
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Figure 3. Example of the kept W̃5742&5743 (blue rectangular box) and w̃5742&5743
5 (red rectangular box)

as given in Algorithm 1 (Period: 03/November/2013 (05:05:00–05:07:30)).

3.2.1. Detection on Cataloged Events

To demonstrate the effectiveness of Algorithm 1, we benchmark its performance
against the single channel detection approach of [11] using cataloged events [12]. As shown
in Table 1, compared to [11], Algorithm 1 detected more cataloged events (shown as True
positives), missed fewer cataloged events (shown as false negatives) and detected fewer
additional events (shown as false positives) that were not present in the catalog. The
23 events missed by Algorithm 1 comprised 2 rockfalls, 3 slide quakes, 1 earthquake, and
17 noise events. The 28,555 detected events that were not cataloged are not necessarily non-
endogenous or non-seismic events, and could have been missed during manual labeling at
cataloging stage. Therefore, Algorithm 1 is effective in maximising detection of cataloged
events, missing fewer events, and minimising detection of uncataloged events.

Table 1. Detection on cataloged events for entire period.

True Positives False Negatives False Positives

Detection [11] 978 396 108,288

Proposed detection (Algorithm 1) 1351 23 28,555

3.2.2. Detection on Continuous Data Recorded between 24 and 28/November/2014

To further validate the performance of the proposed multi-channel detection, we asked
an expert to manually identify the seismic events on multi-channel continuous recorded
data between 24/November/2014 and 28/November/2014. The period of time was chosen
because, according to the catalog of [12], all four events are present in this time period
(65 rockfalls, 18 slide quakes, 23 earthquakes and 14 noise), which were detected with an
STA/LTA algorithm applied in the frequency domain.

As illustrated in Table 2, 1006 events are newly identified by the expert, which was
missed with STA/LTA algorithm applied in the frequency domain [12]. A total of 614 of
these 1006 events have been detected using proposed Algorithm 1, and these include 6 rock-
falls, 3 slide quakes, 2 earthquakes and 603 noise events that were missed by STA/LTA
in [12]. This further demonstrates the effectiveness of our detection technique. Addi-
tionally, the majority of the 392 (392 = 1006 − 614) missed occurrences by our proposed
multi-channel detection were 295 noise events, and only 45 rockfalls, 48 slide quakes and
4 earthquakes. The difficulty of recognising rockfall and earthquake events arises since
they are regarded as endogenous landslide seismicities with varying SNR. The limitations
of the proposed detection approach and future work will be discussed later.
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Table 2. Continuous detection result verification for the selected period.

Catalog Not Cataloged

Detection [12] 120 0

Manual expert detection 120 1006

Proposed detection (Algorithm 1) 119 614

3.3. Feature Engineering

In this section, we compare the output of conventional feature extraction and selection,
as discussed in Section 1, to that of the adapted graph feature weight optimisation, described
in Section 2.2. For each detected event segment from Algorithm 1, K = 119 features are
constructed, as listed in Table A1 in the Appendix A. During feature extraction via PCA,
we select the top 95% of the principal components, amounting to, on average, 44 principal
components per class, which are then used by the benchmarked SVM and RF classifiers.

We evaluate the filter, wrapper, and embedded feature selection methods from fea-
ture selection library FsLib accessed on 8 January 2022 (https://www.mathworks.com/
matlabcentral/fileexchange/56937-feature-selection-library) [28]. For each class of signals,
a sorted feature vector (high to low rank) is generated by each FsLib feature selection
approach. The optimal feature space subset o and |o| ∈ [1, ..., K] is selected using 10-fold
cross-validation at the classification training stage. The optimal o, for each of five used clas-
sifiers (RF, SVM, GLR, normGLR and GTV), is the one that results in the highest validation
accuracy for each classifier. If the highest accuracy score corresponds to several different
feature subsets, then the optimal subset is chosen as the one with the minimum dimension.
The feature selection result via FsLib shows the optimal feature selection approaches, which
are embedded fsv (|o| = 45 for rockfall, and |o| = 21 for earthquake, i.e., 45 and 21 features
are selected for these two classes, respectively), filter mutinfffs (|o| = 38 for slide quake,
and |o| = 53 for noise) and o is common to all 5 classifiers. Similarly, for the graph-based
feature weight optimisation (GLR, normGLR and GTV), we adapt 10-fold cross-validation
with training data to tune the parameters in Algorithm 2, and the optimal feature weight

1
2̃σ

2
k

is the one which results in the best classification accuracy. Since the optimal feature

weight is observed to be similar for all three classifiers, we use the average over 10 folds
from all three classifiers.

The resulting set o for both FsLib feature selection and graph-based feature weight
optimisation for each class is shown in Figure 4, in red and blue, respectively. The feature
weights are normalised [0, 1]. We observe a good mix of temporal, spectral and cepstral
features selected for all classes. FsLib tends to discard the less discriminative features,
unlike graph-based feature weight optimisation which does not discard features but tends
to give a much higher weight to the discriminative features, with the highest feature weight
at 1 and the least discriminative feature weight around 0.1. The selected feature set o for
FsLib and graph-based feature weight optimisation are very similar.

Next, the feature selection performance is evaluated via the permutation feature
importance method, by looking at how fast the prediction error increases after permuting
the features. The larger the gradient, the higher the importance of the permuted features.
Figure 5 shows the results with the normGLR classifier. We consider random permutation
of 5 and 10 most important features (as per Figure 4) that correspond to numbers 5 and 10,
in the horizontal axis. Specifically, (1) with the highlighted optimal subset of features o both
FsLib and graph-based feature weight optimisation, the top h (h = 5 or 10) features are
permuted randomly forming a new feature set; (2) then, classification is performed with
the newly formed feature sets, resulting in sensitivity score seh; finally, (3) the prediction
error is calculated as ∆seh = se0 − seh, where se0 denotes the sensitive score without
any permutation. The values ∆seh are then plotted in Figure 5 against the number of
permuted features h. Since the processing involves random permutations, seh is obtained
after averaging the result of 10 runs.

https://www.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library
https://www.mathworks.com/matlabcentral/fileexchange/56937-feature-selection-library
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Figure 4. Normalised feature weights from the resulting set o for all 4 classes. Features of high
importance include temporal (T), Spectral (F), Cepstrum (C), Acoustic (A), Polarity (P). (a) Feature
weight for rockfall. (b) Feature weight for slide quake. (c) Feature weight for earthquake. (d) Feature
weight for noise.
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Figure 5. Permutation Feature Importance. The horizontal axis denotes the feature number starting
from the most important feature for each of the four classes. The vertical axis is the decrease in
sensitivity measure ∆seh.

As shown in Figure 5, permuting the selected features by both FsLib and graph-based
feature weight optimisation results in an increase in ∆seh, especially for slide quake, which
indicates the effectiveness of the feature selection process. Furthermore, comparing graph-
based feature weight optimisation and FsLib, it can be concluded that the highly ranked
features by graph-based feature weight optimisation are more discriminative because
they generally correspond to higher prediction errors due to the removal of these highly
ranked features.

3.4. Classification

We first evaluate the effect of aforementioned feature engineering approaches (ex-
traction via PCA, selection via FsLib and graph-based feature weight optimisation) on
classification performance for the five classifiers of interest, considering only cataloged
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events. Afterwards, we present the classification results for the proposed workflow, as il-
lustrated in Figure 1 for continuous data.

3.4.1. Effect of Feature Engineering on Classification Performance

Using only cataloged event segments, we adopt the one-against-all classification
strategy with 10-fold cross-validation. For each class, we randomly split the training and
testing set with a 70:30 ratio. The test is carried out 50 times under identical conditions
to ensure repeatability of results, and the mean and standard deviation of the Sensitivity
measure are shown in Table 3.

As in [12], we present classification performance with the sensitivity measure, equiva-
lent to Recall, that is the ratio of correct events predicted over total number of cataloged
events for each class. We present the confusion matrix to explain misclassification, as shown
in Tables 4 and 5 for the feature construction only and for feature construction with feature
selection steps, respectively.

Table 3. Sensitivity (mean and standard deviation).

Classifier Rockfall Slide Quake Earthquake Noise

RF (PCA) 0.84 (0.04) 0.76 (0.05) 0.95 (0.02) 0.80 (0.03)
SVM (PCA) 0.85 (0.04) 0.86 (0.04) 0.96 (0.02) 0.80 (0.03)

Constructed feature set (see Table A1)

RF 0.89 (0.03) 0.84 (0.04) 0.96 (0.02) 0.83 (0.03)
SVM 0.87 (0.03) 0.86 (0.04) 0.96 (0.03) 0.82 (0.03)
GLR 0.89 (0.02) 0.85 (0.03) 0.96 (0.01) 0.70 (0.03)

normGLR 0.88 (0.02) 0.84 (0.02) 0.96 (0.01) 0.75 (0.02)
GTV 0.89 (0.01) 0.85 (0.03) 0.96 (0.01) 0.69 (0.03)

Feature selection via FsLib

classifier Rockfall Slide Quake Earthquake Noise

RF 0.88 (0.03) 0.84 (0.04) 0.96 (0.02) 0.83 (0.03)
SVM 0.89 (0.03) 0.86 (0.04) 0.96 (0.02) 0.80 (0.04)
GLR 0.91 (0.01) 0.85 (0.03) 0.97 (0.01) 0.72 (0.02)

normGLR 0.92 (0.02) 0.88 (0.02) 0.97 (0.01) 0.79 (0.02)
GTV 0.84 (0.05) 0.84 (0.04) 0.96 (0.01) 0.75 (0.02)

Feature selection via graph-based feature weight optimisation (see Algorithm 2)

classifier Rockfall Slide Quake Earthquake Noise

GLR 0.92 (0.01) 0.88 (0.02) 0.96 (0.01) 0.76 (0.02)
normGLR 0.91 (0.01) 0.88 (0.02) 0.97 (0.01) 0.80 (0.02)

GTV 0.92 (0.01) 0.87 (0.02) 0.96 (0.01) 0.75 (0.02)

Table 4. Mean Confusion Matrix (sensitivity score) for 50 runs (feature construction only) a.

Classifier Pred.Rockfall Pred.Slide Quake Pred.EQ Pred.Noise

RF
(PCA)

Ref.Rockfall 0.84 0.02 0.01 0.13
Ref.Slide Quake 0.11 0.76 0.00 0.13

Ref.EQ 0.02 0.01 0.95 0.02
Ref.Noise 0.11 0.07 0.02 0.80

SVM
(PCA)

Ref.Rockfall 0.85 0.02 0.00 0.13
Ref.Slide Quake 0.05 0.86 0.01 0.08

Ref.EQ 0.02 0.01 0.96 0.02
Ref.Noise 0.10 0.08 0.02 0.80



Sensors 2023, 23, 243 14 of 23

Table 4. Cont.

Classifier Pred.Rockfall Pred.Slide Quake Pred.EQ Pred.Noise

RF

Ref.Rockfall 0.89 0.01 0.01 0.09
Ref.Slide Quake 0.06 0.84 0.00 0.09

Ref.EQ 0.02 0.02 0.96 0.01
Ref.Noise 0.10 0.07 0.01 0.83

SVM

Ref.Rockfall 0.87 0.02 0.00 0.11
Ref.Slide Quake 0.05 0.86 0.00 0.09

Ref.EQ 0.01 0.02 0.96 0.01
Ref.Noise 0.09 0.07 0.01 0.82

GLR

Ref.Rockfall 0.89 0.02 0.01 0.08
Ref.Slide Quake 0.06 0.85 0.02 0.07

Ref.EQ 0.02 0.01 0.96 0.02
Ref.Noise 0.17 0.11 0.03 0.70

normGLR

Ref.Rockfall 0.88 0.02 0.01 0.09
Ref.Slide Quake 0.06 0.84 0.01 0.09

Ref.EQ 0.01 0.05 0.96 0.02
Ref.Noise 0.15 0.09 0.02 0.75

GTV

Ref.Rockfall 0.89 0.02 0.02 0.07
Ref.Slide Quake 0.06 0.85 0.03 0.07

Ref.EQ 0.02 0.01 0.96 0.02
Ref.Noise 0.15 0.10 0.05 0.69

a The predicted (Pred.) events are represented with respect to the events of the reference cataloged (Ref.), EQ
stands for earthquake.

Table 5. Mean Confusion Matrix (sensitivity score) averaged over 50 runs (FsLib and graph-based
feature weight optimisation) a.

Feature Selection via FsLib

Classifier Pred.Rockfall Pred.Slide Quake Pred.EQ Pred.Noise

RF

Ref.Rockfall 0.88 0.01 0.01 0.09
Ref.Slide Quake 0.07 0.84 0.00 0.09

Ref.EQ 0.02 0.01 0.96 0.01
Ref.Noise 0.09 0.08 0.00 0.83

SVM

Ref.Rockfall 0.89 0.01 0.01 0.09
Ref.Slide Quake 0.04 0.86 0.01 0.09

Ref.EQ 0.01 0.01 0.96 0.01
Ref.Noise 0.10 0.08 0.01 0.80

GLR

Ref.Rockfall 0.91 0.02 0.01 0.07
Ref.Slide Quake 0.05 0.85 0.01 0.10

Ref.EQ 0.01 0.01 0.97 0.01
Ref.Noise 0.14 0.13 0.01 0.72

normGLR

Ref.Rockfall 0.92 0.01 0.00 0.06
Ref.Slide Quake 0.04 0.88 0.00 0.07

Ref.EQ 0.01 0.01 0.97 0.01
Ref.Noise 0.11 0.10 0.01 0.79

GTV

Ref.Rockfall 0.84 0.02 0.06 0.08
Ref.Slide Quake 0.05 0.84 0.04 0.07

Ref.EQ 0.01 0.02 0.96 0.01
Ref.Noise 0.11 0.10 0.05 0.75
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Table 5. Cont.

Feature Selection via Graph-Based Feature Weight Optimisation

Classifier Pred.Rockfall Pred.Slide Quake Pred.EQ Pred.Noise

GLR

Ref.Rockfall 0.92 0.01 0.00 0.06
Ref.Slide Quake 0.07 0.88 0.00 0.05

Ref.EQ 0.03 0.01 0.96 0.01
Ref.Noise 0.14 0.09 0.01 0.76

normGLR

Ref.Rockfall 0.91 0.01 0.00 0.08
Ref.Slide Quake 0.06 0.88 0.00 0.06

Ref.EQ 0.01 0.01 0.97 0.01
Ref.Noise 0.11 0.08 0.01 0.80

GTV

Ref.Rockfall 0.92 0.01 0.00 0.07
Ref.Slide Quake 0.08 0.87 0.01 0.04

Ref.EQ 0.03 0.01 0.96 0.01
Ref.Noise 0.15 0.08 0.02 0.75

a The predicted (Pred.) events are represented with respect to the events of the reference cataloged (Ref.), EQ
stands for earthquake.

An RF classifier (tree bagger version similar to the one used in this paper) with feature
construction and selection was used with the same cataloged dataset in [12]. Sensitivity
results in [12] (rockfall 0.94, slide quake 0.93, earthquake 0.94, and noise 0.92) were provided
for a balanced testing set comprising 70 events per class, while our dataset is unbalanced,
comprising 30% of the cataloged classes, which is a more realistic scenario. The 71 con-
structed features used for classification included nine network geometry attributes, such as
the station with the highest SNR, which we did not consider since it lacks generalisation.
It is noted that the mean sensitivity over all classes falls to 0.9 without these network
geometry attributes, ranging from 0.86 to 0.94. Our replicated RF results, as observed on
the RF with FsLib selected features in Table 3, are in agreement.

As shown in Tables 3 and 4, there is no performance benefit performing PCA for
either RF or SVM classifier compared to using constructed features. The only benefit is
lower complexity due to dimensionality reduction: 119 features vs around 44 principal
components, fed to the classifier. Indeed, with only constructed features fed to the classifier,
all classifiers have similar performance. However, although we do not observe performance
improvement for RF or SVM with the additional FsLib feature selection step, we do observe
significant performance improvement for graph-based classifiers. The benefit of feature
selection for SVM and RF is dimensionality reduction by more than 50% of the feature set
per class from 119 to |o| = 45 for rockfall, 38 for slide quake, 21 for earthquake and 58
for noise. As expected, we also observe even better performance improvement for feature
selection via the proposed graph-based feature weight optimisation for the graph-based
classifiers. Thus, feature selection is considered a beneficial step for classification, both
for performance improvement and complexity reduction. The performance improvement
due to proposed Algorithm 2 can be explained via the confusion matrix shown in Table 5.
Compared to Table 4, for rockfall, the more discriminate feature selection shows that
rockfalls and slide quakes are not confused with earthquakes anymore.

The cataloged nature/anthropogenic noise events are miscellaneous, caused by human-
made activities including footsteps to environmental conditions such as storms, with rel-
atively not-very-distinct features compared to the other 3 classes, as shown in Figure 4.
Thus, the noise class has the worst sensitivity, but even noise performance is improved with
graph-based feature weight optimisation since noise signals are less likely to be confused
with rockfalls. Earthquakes usually have high SNR, with distinct P and S wave arrivals,
which make them less likely to be confused with any other class, resulting in around
0.96 sensitivity for all classifiers, with or without, feature selection. As stated in [12], and as
observed in Table 5, it is sometimes difficult to distinguish slide quakes from small-volume
rockfalls, rockfalls as footsteps (noise).
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3.4.2. Performance Comparison of the Graph-Based Classifiers against Benchmarks

The performance of graph-based classifiers (norm)GLR and GTV are highly dependent
on the graph kernel bandwidth σk in Equation (1). A too-small value of the bandwidth
would lead to a poor representation of the local structures; conversely, a considerable high
value could result in a coarse description of the data. As illustrated in Table 3, with con-
structed features, graph-based classifiers have similar performance to RF and SVM for
rockfalls, slide quakes, and earthquakes, when graph kernel bandwidth is set as in [22].
However, with optimised feature weights obtained with benchmarked feature selection and
graph-based feature weight optimisation, the potential of graph-based classifiers is max-
imised (the classification sensitivity increases by about 3% for rockfalls and slide quakes).
For instance, the classification sensitivity for rockfalls with GLR classifiers reaches 92%
(graph-based feature weight optimisation), 91% (benchmarked feature selection FsLib) com-
pared to 89% (constructed feature only). In conclusion, graph-based classifiers outperform
RF and SVM with appropriate graph kernel bandwidth (feature weight).

3.4.3. Classification with Multi-Channel Detection (Algorithm 1) on Continuous Data
Recorded between 24 and 28/November/2014

Here, we look at the more realistic scenario of classifying events from the continuous
(vs. only cataloged) dataset which includes detection misses and uncataloged events as
discussed in Section 3.2. We focus on the period 24–28/November/2014, which contained
the most cataloged events, with 65 rockfalls, 18 slide quakes, 23 earthquakes and 14 noise.
After detection, as per the proposed workflow of Figure 1, we missed only 1 noise event and
detected 614 uncataloged events. With the 119 features constructed as shown in Table A1
for each event detected by Algorithm 1, the classification training set is formed as described
in Section 3.4.1, without the cataloged event in the selected period. Specifically, we used the
feature weight obtained by the graph-based feature weight optimisation to distinguish the
cataloged events with normGLR classifier, resulting in classification performance indicated
as a confusion matrix in Table 6. Performance is similar to that observed in Table 5.

Table 6. Classification results of the cataloged events in [12] from continuous data a.

Pred.Rockfall Pred.Slide Quake Pred.EQ Pred.Noise

Ref.Rockfall (65) 60 (0.92) 0 0 5

Ref.Slide Quake (18) 1 15 (0.83) 0 2

Ref.EQ (23) 0 0 23 (1.00) 0

Ref.Noise (13) 1 1 0 11 (0.79)
a The predicted (Pred.) events are represented with respect to the events of the reference cataloged (Ref.). EQ stands
for earthquake. The bold numbers represent the amount of correctly classified events and the sensitivity/recall of
the corresponding class.

As described in Section 3.2.2, after detecting signals from continuously recorded data,
the result is manually evaluated by the expert. Here we assess the performance of the
adapted graph-based feature weight optimisation and classification with expert verifica-
tion over the selected period. The results are shown in Table 7, where we have another
class which is considered not to belong to the four initial types of events. The adapted
feature weight and classification workflow are resilient to rockfalls and slide quakes with
only a minor reduction in classification sensitivity, according to Table 7. Additionally, it
comes as no surprise that the classification results for earthquakes are unaffected; however,
the situation is different for noise-type occurrences, which could be compensated with
classification post-processing.



Sensors 2023, 23, 243 17 of 23

Table 7. Classification results of the additional manually expert-verified events from continuous data a.

Pred.Rockfall Pred.Slide Quake Pred.EQ Pred.Noise Pred.Others

Ref.Rockfall (71) 60 (0.85) 0 0 10 1

Ref.Slide Quake (21) 1 15 (0.71) 0 4 1

Ref.EQ (25) 0 0 24 (0.96) 1 0

Ref.Noise (616) 32 2 65 257 (0.42) 260
a The predicted (Pred.) events are represented with respect to the events of the reference cataloged (Ref.). EQ stands
for earthquake. The bold numbers represent the amount of correctly classified events and the sensitivity/recall of
the corresponding class.

4. Feature Recommendation

Following the comprehensive classification performance evaluation, we observed that
feature selection, rather than feature extraction via PCA, led to effective dimensionality
reduction of the constructed feature set and performance improvement for different classes
and classifiers. Here, we discuss which handcrafted optimised feature sets characterise
slope failure endogenous events, including rockfalls, slide quakes, as well as earthquakes.
In the following content, we list the common highlighted features observed by both recent
research and our proposed graph-based feature weight optimisation in bold.

Using an RF classification of the same dataset on cataloged events, ref. [12] identified
the following distinguishing attributes or features for our four classes of interest (without
distinguishing unique features per class): Duration (T1), Ratio between ascending and
descending time (T8&9), Energy in the first third part of the autocorrelation function (T38),
Energy of the signal filtered in 50–100 Hz (T31), Mean and max of the DFT (F1&2), Central
frequency of the 2nd quartile (F4), Energy in ([0, 1/4 ], [1/4, 1/2])*Fs (F12&13), Frequency at
the max (F27), No. peaks in the curve showing the temporal evolution of the DFTs max, mean
and median (F20&30, F31), Ratio between F20 and F31 (F33), No. peaks in the curve of the
temporal evolution of the DFTs central frequency (F34) and Polarization azimuth (P3).

In their attempt to perform classification of slope failures, earthquakes, and noise on
continuous data via an RF classifier, ref. [3] highlighted only the following eight most
distinct features (without distinguishing unique features per class): Spectral gyration radius
(F28), Spectral centroid (F8), Central frequency of the first quartile (F3), Variance of the
normalised DFT (F10), Frequency at the maximum of the DFT (F27), Frequency at spectrum
centroid (F29), Energy of the last two thirds of the autocorrelation function (T39) and Energy
of the seismic signal in the frequency band of 1–3 Hz (T28).

Furthermore, for similar terrain and slope failures, through visual observation without
automated feature selection and classification, ref. [29] characterised qualitatively the dis-
tinguishing features for each of our four classes of interest. Next, we list the distinguishing
attributes identified by [29] and attempt to map them into the equivalent notation used
in Table A1. Rockfalls: the falling block impacts produce spikes or jolts in the waveforms,
which are visible both in the signal waveform as cigar shapes (final impact) (T15, T18,
T33, and T34) and in the power spectral density function for most of the events (T17).
Slide Quakes: short-duration (T1) (last less than 5 s) earthquake-like signals, with clearly
discernable, trackable wave packets, emergent first arrivals, and undistinguishable P and S
waves (T2, T15, T22, T33–36, and T37). Earthquakes: well-studied and potential landslide
triggers that produce medium to long-duration signals (T1, T9&10, T38&39, and T41&42)
with distinct P and S wave high impact arrivals. Natural/Anthropogenic noise: high-frequency
range (>50 Hz) (F12, F13&14, F16) characteristics due to shallow installation of seismome-
ters in clayey materials; duration, phase, and velocities of noise signals are not identifiable;
furthermore, the noise waveform amplitude attenuation patterns are incoherent.

Although the discriminative features identified for landslide-induced events and
earthquakes in [3,12,29] are not the same, they all show that temporal and spectral attributes
are the most important for RF classifiers. More importantly, the aforementioned features
that we also observe via our learning algorithms are highlighted in bold above. Additionally,
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we observed more discriminative features that improve the classification performance of
RF, SVM and graph-based classifiers, highlighted in Figure 4 that we list next, per class.

Feature Weight Analysis for Target Signals

Rockfall: the highly ranked features observed via FsLib and graph-based feature
weight optimisation are: cross correlation-based features (T19–20, T25–27, T40, T47–51,
T53–60, F39–48 (graph-based feature weight optimisation)), Energy of the signal filtered
in 10–50 Hz (T29), dominant frequency (F7 FsLib), duration (T1 FsLib) No. of peaks in
the curve showing the temporal evolution of the DFTs mean/median (F30&31 FsLib),
waveform amplitude attenuation patterns (T4–7, T12&13 (graph-based feature weight
optimisation)). The waveforms of rockfalls are variable due to the loose material saltation
and flow combined with the moving character of the source.

Slide quakes: FsLib highlights the Optimum point of separation (T4), the max value of cross
correlation with template earthquake (T16), the ratio between mean and median envelope
signal (T23), and the max value of enveloped power density function (F5); while graph-based
feature weight optimisation provided a high rank for the max value of cross correlation with
template slide quake, rockfall, earthquake, (T12&13, T16), spectral features max envelope
power density function (F5) and No. of peaks of the autocorrelation ac( f (v)) (F11).

Earthquakes: here, both FsLib and graph-based feature weight optimisation approaches
provide more focused additional importance features: Dominant frequency (F7), cross
correlation-based features (T53–60, (graph-based feature weight optimisation)), No. of
peaks in the curve of the temporal evolution of the DFTs central and maximum frequency
(F34&35 graph-based feature weight optimisation), cross correlation-based features (F39–48
(graph-based feature weight optimisation)) to capture the typical triangular-shaped sono-
gram pattern for earthquakes.

Natural/Anthropogenic noise: due to variability of the source of noise events |o| = 53
for FsLib, with abundant complex spectral features such as F17–44, while graph-based
feature weight optimisation results in highly ranking temporal features T1–10 and cross
correlation-based features (T47–60).

Additionally, the following features are highly ranked for all four classes: Cepstral
features C1 (standard deviation) and C3 (kurtosis); Acoustic feature A1 (No. of peaks linear
prediction filter coefficient); Polarity features P2–5 (incidence angle, polarization azimuth,
degree of linear polarization, degree of plane polarization).

We summarise the most distinguishing features, defined as those with normalised
feature weight > 0.8 (from Figure 4), in Figure 6.

T9 T53

Earthquake

Slide quake

Noise

Rockfall

T12 F6

T8 T40

T49

A1

T13
T54

T55

C1 P3

P5

T2 T15

P1

T34

T56

T1 T14 T50

F8 F16 F17
F22 F23 F25 F27

F31 F41 C5

T5

T59

Figure 6. Features that best characterise rockfall, slide quake, earthquake, and environmen-
tal/anthropogenic noise. Graph-based feature weight optimisation features in bold, FsLib features in
italics, and common features learnt by both graph-based feature weight optimisation and FsLib in
bold italics.
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5. Conclusions

In this paper, we address the challenges in automatically and accurately detecting and
classifying slope failure endogenous events rockfall and slide quake (seismic sources related
to landslide processes) as well as external sourced earthquake and Natural/Anthropogenic
noise, through a novel automated workflow, which analyses large amounts of seismometer
recordings from multiple channels/sensors. First, the proposed detection scheme combines
MCM coherence analysis and Neyman–Pearson lemma to identify potential events and the
representative signal segments from multiple channels to tackle continuous data containing
interfering signals and low SNR slide quake events, without missing many cataloged events
and detecting fewer uncatalogued events than processing a single channel would. Second,
we evaluate graph-based feature weight optimisation and classification with a novel graph
kernel bandwidth optimisation technique for characterising all four events, which are robust
to lack of sufficient balanced data for training. Finally, after comprehensive experiments
to demonstrate the impact of feature engineering including multi-feature selection and
extraction approaches on classifiers depending on handcrafted features, we provide a
detailed list of key features to consider for each of the four types of events. Additionally, we
evaluate the proposed workflow on the raw continuous data recorded at the selected period
(24–28/November/2014), manually labeled by an expert, where detection and classification
with graph-based feature weight optimisation obtained very good results.

However, there are certain limitations in the proposed system that could be addressed
in future work. First, the effectiveness of the used thresholding strategy depends on the con-
sistency of the background noise distribution, hence certain low amplitude events are never-
theless missed by our detection scheme. Furthermore, due to their complicated and chang-
ing generating mechanism, the Natural/Anthropogenic noise categorisation findings need
to be enhanced. Future research will therefore focus on adaptive background noise removal
to increase SNR, identifying concealed microseismic activity, and using post-processing to
enhance the classification outcome, particularly for natural/anthropogenic noise.
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Appendix A

Table A1. List of features drawn from the literature: temporal s(t), power signal p(t), envelope e(t),
auto correlation function ac(t), spectral f(v), cepstrum domain ce(v), template rockfall r(t), slide
quake q(t), earthquake ea(t), noise n(t), and envelope es(t) with (5–10 Hz), (10–50 Hz), (5–70 Hz),
(50–100 Hz) and (5–100 Hz) passband. PMF refers to Probability Mass Function.

Parameter Description

Temporal Feature
T1 Duration [12,30–32]
T2 STD of e(t) [29,31–34]
T3 RMS between the decreasing signal and J(t) = Ymax − Ymax

N−tmax
t [12]

T4 Optimum point of separation [33]
T5–7 Max, Mean, Median of e(t) [12,29,33]
T8, 9 Rising Decreasing duration s(t) [32]
T10 Entropy of s(t) −∑ PMF(s(t)) log PMF(s(t)) [34–37]
T11 Zero Cross Rate of s(t) [29,34]
T12, 13, 16, 19 Max CrossCor (q(t), r(t), ea(t), n(t)) [33]

T14, 15 Skewness of p(t) & e(t) 1
N ∑N

i=1

(
x(ti)−x

σ

)3
[12,29,30,32,34]

T17, 18 Kurtosis of p(t) & e(t) 1
N ∑N

i=1

(
x(ti)−x

σ

)4
[12,29,30,32,34]

T20,21,25,26 2dNormCrossCorAb (q(t), r(t), ea(t), n(t)) [33]
T22 Rate of decay of e(t) [35]
T23 Ratio of Max and mean of e(t) T5

T6
[32]

T24 Ratio of Max and Median of e(t) T5
T7

[32]

T27,40,47,48 No.peaks 2dNormCrossCorAb (q(t),r(t),ea(t),n(t)) [33]
T28–T32 Energy of es(t) ∑N

i=1 es(ti)
2 [12,32]

T33-37 kurtosis of es(t) [12,29,30,32,34]

T38&39 Energy of (1:N/3) and (N/3:N) of ac(t) ∑
N
3

i=1 ac(ti)
2 ∑N

i= N
3

ac(ti)
2 [12]

T40 Int-ratio of ac(t) T38
T39

[12,32]

T41 No. of peaks of ac(t) ———– [12,32]
T42 duration of ac(t) max

t
(ac(t) < 0.2 max(ac(t)))/(T1) [12]

T43 Measure of location ∑N
i=1 ip(ti) [37]

T44 Measure of dispersion
√

∑N
i=1(i− T43)2p(ti) [37]

T45 Measure of asymmetry 1
T3

44
∑N

i=1(i− T43)
3p(ti) [37]

T46 Measure of concentration around single value 1
T4

44
∑N

i=1(i− T43)
4p(ti) [37]

T49–52 No.peaks 2dNormCrossCorReal (q(t), r(t), ea(t), n(t)) [33]
T53–56 2dCrossCorAb (q(t), r(t), ea(t), n(t)) [33]
T57–60 2dCrossCorReal (q(t), r(t), ea(t), n(t)) [33]
Spectral Features
F1–2 Absolute value of mean, max f(v) [12,30,32]
F3–4 Central frequency of the 1st and 2nd quartile [12]
F5 Max envelop of f(v) [12,33]
F6 No. of peaks >0.75 bandwidth f(v) [12,32]
F7 Dominate frequency [12,30,33]
F8 Spectral centroid [12,32–34,37]
F9–10 Median and variance of the normDFT [12,29,32–34]
F11 No. peaks of the autocorrelation ac(f(v)) [12,32]
F12,13,14,16 Energy of ([0,1/4],[1/4,1/2],[1/2,3/4],[3/4,1])*Fs [12]
F15 No. of peaks f(v) [12]
F17 Kurtosis of the Max of all DFTs [12]
F18,19 Mean ratio between the max and the mean and median of all DFTs [12]
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Table A1. Cont.

Parameter Description

Spectral Features
F20,30,31 No. peaks in the curve showing the temporal evolution of the DFTs max, mean and median [12]

F21 Gamma 1 ∑N
i=1 vif(vi)

2

∑N
i=1 f(vi)

2 [32]

F22 Gamma 2
√

∑N
i=1 v2

i f(vi)
2

∑N
i=1 f(vi)

2 [32]

F23 Gamma 3
√
| F212 − F222 | [32]

F24 Mean frequency ∑N
i=1 PSD(vi)vi

∑N
i=1 PSD(vi)

PSD is the power spectral density of f(v) [12]

F25 Frequency bandwidth 2
√

∑N
i=1 PSD(vi)vi

2

∑N
i=1 PSD(vi)

− F2
24 [12]

F26 Minimal frequency min
v

(PSD(v) < 0.2max(PSD(v))) [12]

F27 Maximal frequency max
v

(PSD(v) < 0.2max(PSD(v))) [12]

F28 Gyration radius
√

m3
m2

mi is the ith moment [12]

F29 Spectral centroid width
√

F8
2 − F28

2 [12,34]
F32-33 Ratio F20:F30, ratio F20:F31 [12]
F34, 35 No. peaks in the curve of the temporal evolution of the DFTs central and max frequency [12]
F36, 37 Mean distance between the curves of the temporal evolution of the DFTs max and mean or median frequency [12]

F38–40 Mean distance between (the 1st quartile and the median, the 3rd quartile and the median and the 3rd quartile and the 1st
quartile) of all DFTs w.r.t time [12]

F41–44 2dCrossCorAbDWT with q(t), r(t), ea(t), n(t) [33]
F45–48 2dCrossCorRealDWT with q(t), r(t), ea(t), n(t) [33]
Cepstrum Features
C1 STD ce(v) std(ce(v)) [35]

C2 Skewness of ce(v) 1
N ∑N

i=1

(
ce(vi)−ce

σ

)3
[35]

C3 Kurtosis of ce(v) 1
N ∑N

i=1

(
ce(vi)−ce

σ

)4
[35]

C4 Max value of ce(v) max(ce(v)) [35]
C5 Cepstrum No. peaks (echo) ce(v)
Acoustics [11]
A1 No. peaks Linear prediction filter coefficients
Polarity [12]
P1 Max eigenvalue of the covariance matrix
P2-3 Incidence angle, Polarization azimuth
P4-5 Degree of linear, Plane polarization
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