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Abstract: In order to remedy the defects of single sensor in robustness, accuracy, and redundancy
of target detection, this paper proposed a method for detecting obstacles in farmland based on the
information fusion of a millimeter wave (mmWave) radar and a camera. Combining the advantages
of the mmWave radar in range and speed measurement and the camera in type identification and
lateral localization, a decision-level fusion algorithm was designed for the mmWave radar and camera
information, and the global nearest neighbor method was used for data association. Then, the effective
target sequences of the mmWave radar and the camera with successful data association were weighted
to output, and the output included more accurate target orientation, longitudinal speed, and category.
For the unassociated sequences, they were tracked as new targets by using the extended Kalman
filter algorithm and were processed and output during the effective life cycle. Lastly, an experimental
platform based on a tractor was built to verify the effectiveness of the proposed association detection
method. The obstacle detection test was conducted under the ROS environment after solving the
external parameters of the mmWave radar and the internal and external parameters of the camera.
The test results show that the correct detection rate of obstacles reaches 86.18%, which is higher than
that of a single camera with 62.47%. Furthermore, through the contrast experiment of the sensor
fusion algorithms, the detection accuracy of the decision level fusion algorithm was 95.19%, which
was higher than 4.38% and 6.63% compared with feature level and data level fusion, respectively.

Keywords: information fusion; millimeter wave radar; camera; farmland obstacle; target detection

1. Introduction

The unmanned technology of agricultural machinery is an important development
direction [1,2]. The unmanned agricultural machinery should have a certain perception
ability to carry out autonomous operation and behavior decision [3,4], because there are
inevitably some dynamic and static obstacles on their travel route, such as people, trees,
houses, sheep, wire poles, and other agricultural machinery. If these obstacles cannot
be detected and identified, it will cause serious losses once the unmanned agricultural
machinery collides with the obstacles.

In agricultural fields, single or multiple sensors such as LIDAR, vision sensors, struc-
tured light sensors, ultrasonic sensors are usually used for obstacle detection [5–8]. In [9],
the authors proposed an improved YOLOv5s algorithm for vision detection of farmland
obstacles, which can improve detection precision and speed up the real-time detection.
In [10], the author introduced data acquisition, processing technology and post-processing
technology to demonstrate the ability of detecting partially obscured targets from foliage
with mmWave radar. In fact, the information obtained by a single sensor is poorly reliable,
because it can lead to wrong or large error decisions for unmanned agriculture machinery
in case of sensor failure as well as mismeasurement in certain scenarios. Therefore, infor-
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mation fusion of multiple sensors such as Lidar, camera, and other sensors are generally
applied for a more comprehensive description of farmland obstacles [11–14].

In fact, the mmWave radar and monocular camera are inexpensive. In addition,
mmWave radar has better performance in range and speed measurement, while monocular
camera has greater advantages in lateral positioning and type recognition [15]. Therefore,
the combination of the two can fully exploit their strengths and complement each other’s
information to achieve maximum benefits in farmland obstacles detection.

The advantages of the information fusion between the mmWave radar and camera
are threefold.

(1) The range of perception is expanded. As shown in Figure 1, the mmWave radar
and the camera perform obstacle sensing separately, but after the decision-level fusion
processed in this paper, the unmatched targets (e.g., obstacles c and d in Figure 1) are
retained in the effective life cycle. Therefore, the detection advantages of both sensors in
both longitudinal and lateral directions are complementary.
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(2) The information integrity of the target is improved. The longitudinal velocity
information and target type information are added for successfully matched targets, and
the lateral and longitudinal distances are weighted to take full advantage of the camera at
the lateral direction and the mmWave radar at the longitudinal direction.

(3) The missing detection of the camera caused by occlusion is solved. As shown in
Figure 1, object b is blocked by object a and cannot be detected by the camera, while the
electromagnetic waves of the mmWave radar have penetrating properties and can detect
the blocked object.

Therefore, the motivation of this paper is to propose a method for detecting obstacles
in farmland based on fusion of information from the mmWave radar and monocular
camera. The method combines the advantages of the mmWave radar in range and speed
measurement and the camera in type identification and lateral localization and uses the
decision-level fusion algorithm of information and global nearest neighbor method for data
association. The effective target sequence of the mmWave radar and the effective target
sequence of camera with successful data association will be weighted and output, and
the output information includes more accurate target orientation, longitudinal speed, and
category. For the unassociated sequence, it is used as a new target and tracked by using
the extended Kalman filter algorithm, and thus is processed and output according to the
effective life cycle.
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The rest of the structure of this paper is as follows: Section 2 shows the related
work about the fusion of the mmWave radar sensor and vision sensor for object detection.
Section 3 introduces the materials and methods of this study, including the sensor space-
time alignment and the fusion processing of the sensor information. Section 4 shows the
experimental results of this study. Finally, the conclusions are drawn in Section 5.

2. Related Work

The fusion of the mmWave radar sensor and vision sensor is often used for road
target detection. Huang et al. [16] proposed a simple method to fuse radar and vision
sensor data to detect and track moving objects. The mmWave radar provided location
information, while the vision sensor provided candidate regions in images. The invalid
radar points were then filtered according to the speed information, which reduced the
impact of stationary targets such as trees and bridges on the mmWave radar. Moreover,
Wang et al. [17] presented a simple and feasible system scheme for road obstacle detection by
using an mmWave radar and a monocular vision sensor. After radar-vision point alignment
and region searching for potential target detection, obstacle detection was performed based
on the adaptive threshold algorithm, and edge detection was used to assist in determining
the boundary of the obstacles.

The above researches are based on data level fusion of millimeter wave radar and
camera, and the fusion method used is relatively simple. However, some researches have
developed in-depth data fusion algorithms. For example, Long et al. [18] proposed a sensor
fusion system combining an RGB depth vision sensor and an mmWave radar sensor to real-
ize obstacle detection for blind navigation. The position of obstacles was obtained by using
the RGB depth sensor based on contour extraction and the MeanShift algorithm. The data
fusion algorithm based on particle filter was used to fuse the RGB depth data and mmWave
radar data to achieve accurate state estimation, while a collaborative fusion method be-
tween the mmWave radar and a monocular camera was proposed by Wang et al. [19] to
achieve the balance between vehicle detection accuracy and computational efficiency. The
mmWave radar detected the vehicles on the road and transmitted the position and size of
the region of interest (ROI) to the image sequence from the monocular camera. Then, the
visual processing module generated a square boundary in the image frame according to
the transmitted ROI information and used the active contour method to detect vehicles
within the square boundary. In addition, ref. [20] proposed a CameraRadarFusion-Net
architecture by using the BlackIn training strategy to fuse the camera and radar sensor data
of road vehicles.

Data layer fusion can retain the information in the original data to the maximum extent,
but because the number of original data are generally large and there are many noises, the
amount of calculation is huge during fusion processing. Therefore, some other researchers
use the complementarity on the features of the targets from the mmWave radar and camera.
For example, Guo et al. [21] presented a method to detect pedestrians and obtain their
dynamic information based on the fusion of the mmWave radar information and camera
image information. First, the effective target signal was extracted from the original radar
data through the intra frame clustering algorithm and the inter frame tracking algorithm.
Then, the region of interest generation strategy and the improved fast target estimation
algorithm were used to obtain more accurate potential target regions. Finally, the gradient
histogram features of the potential area were extracted, and the support vector machine
was used to judge whether it was a pedestrian. Moreover, a new spatial attention fusion
obstacle detection method based on the mmWave radar and vision sensor was proposed for
autonomous driving by Change et al. [22]. The proposed fusion method was embedded in
the feature extraction stage, which leverages the features of the mmWave radar and vision
sensor effectively.

The feature layer fusion method is essentially a hypothesis verification method, mainly
based on camera information, supplemented by the mmWave radar information. The
mmWave radar information is used to quickly filter most of the target free areas to improve
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the detection efficiency. To ensure this advantage, it requires the high detection accuracy of
the mmWave radar.

Compared with those resent studies, the main advantages of this paper are summa-
rized as follows:

(1) The fusion is used for obstacle detection of the multiple farmland targets, while it
is mainly used for target detection in non-agricultural fields in the existing literature.

(2) Decision level data fusion is designed after the effective target detection of the
mmWave radar and camera, which gives play to their respective advantages and improves
the reliability and robustness of detection. The improved YOLOv5s algorithm is used for
vision detection of farmland obstacles, as shown in [9].

(3) The global nearest neighbor method is used for data association during fusion.
The uncorrelated sequence is tra cked as a new target using the extended Kalman filter
algorithm, and then is processed and output during the effective life cycle.

3. Materials and Methods
3.1. Space-Time Reference Alignment of Sensors
3.1.1. Time Reference Alignment

Here the data acquisition synchronization thread was used to achieve time reference
alignment. To achieve time synchronization, the camera thread, the mmWave radar thread,
and the data synchronization thread were created in the program, as shown in Figure 2.
The camera thread was used to receive and process the camera data C1, . . . , Cn, and the
mmWave radar thread was used to receive and process the radar data M1, . . . , Mm. When
the data synchronization thread was triggered, the camera data and the mmWave radar
data at the same moment were output from the data buffer pool for future data fusion
processing.
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Figure 2. Process of time reference alignment between camera and mmWave radar.

3.1.2. Transformation between mmWave Radar Coordinate System and Pixel
Coordinate System

Here, the space reference alignment was realized through the transformation between
the mmWave radar coordinate system and the pixel coordinate system. The transformation
needed the assistance of some intermediate coordinate system, as shown in Figure 3.
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According to the actual installation position of the mmWave radar and the camera,
the relationship between the mmWave radar coordinate system, the world coordinate
system, and the camera coordinate system is shown in Figure 4. The XW-axis of the world
coordinate system is consistent with the driving direction of the tractor, the ZW-axis is
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perpendicular to the ground upward, and the YW-axis is perpendicular to the XWOWZW-
plane; the ZM-axis of the radar coordinate system and the ZC-axis of the camera coordinate
system are perpendicular to the ground upward, the XMOMYM-plane and the XCOCYC-
plane are parallel to the ground, and the XM-axis and the XC-axis are consistent with the
driving direction of the tractor.
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In the world coordinate system, the coordinates of the mmWave radar target were
expressed by Equation (1). 

XW
YW
ZW
1

 =


XM
YM
ZM
1

−


0
Ly
LZ
1

 (1)

where Ly and Lz are the distances between the mmWave radar coordinate origin and the
world coordinate system coordinate origin on the Y- and Z- axes, respectively.

The transformation from the world coordinate system to the pixel coordinate system
goes through the camera coordinate system and the image coordinate system, and the
relationship between them is shown in Figure 5. The point P(XW, YW, ZW) in the world
coordinate system corresponds to the point p(x, y) in the image coordinate system. The
ZC-axis of the camera coordinate system coincides with the z-axis of the image coordinate
system, and the intersection O of the ZC-axis of the camera coordinate system and the
imaging plane is used as the coordinate origin of the image coordinate system, and the
plane formed by the x- and y-axes of the image coordinate system is parallel to the XCOCYC-
plane of the camera. The origin O0 of the pixel coordinate system uO0v is the upper left
vertex of the imaging plane, the u-axis is parallel to the x-axis of the image coordinate
system xOy, and the v-axis is parallel to the y-axis of the image coordinate system.
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where dx is the dimension of each pixel point in the x-direction in the image coordinate
system; dy is the dimension of each pixel point in the y-direction in the image coordinate
system; u0 is the deviation from the camera optical axis to the center of the imaging plane in
the x-direction; v0 is the deviation from the camera optical axis to the center of the imaging
plane in the y-direction; f is the camera focal length; R is the rotation matrix; T is the
translation matrix; 0T is the zero vector; M2 is the internal parameter matrix of the camera;
M1 is the external parameter matrix of the camera.

3.2. Fusion Processing of Sensor Information
3.2.1. Introduction to Obstacle Detection Algorithm

For the visual inspection module, this paper adopted improved YOLOv5s [9], au-
tomatically generated the anchor frame scale through the K-Means algorithm to speed
up the convergence speed, and used the CIoU loss function to reduce false detection and
missing detection to improve the accuracy. For the mmWave radar detection module, in
order to reduce the amount of data during fusion input, a three-step filtering algorithm
including empty target filtering, false target filtering, and non-threat target filtering was
adopted, which was mainly realized through relative distance, effective target life cycle,
and horizontal and vertical coordinate threshold.

3.2.2. Decision-Level Fusion of Sensor Information

The fusion framework divided into the mmWave radar module, the camera module,
and the fusion module, as shown in Figure 6. In the mmWave radar module and the
camera module, the mmWave radar and the camera performed target detection and output
a sequence (x, y, vx) of a valid radar target and a sequence (x, y, type) of a valid visual target,
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respectively, where x and y were the values of the valid target in the world coordinate
system, respectively, and vx and type were used as complementary information.
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Then, the valid targets detected by both sensors were output into the fusion module.
The matching of the observations of the two sensors was first performed to determine
which two observations were heterogeneous observations belonging to the same target.
Using the state prediction value of the output sequence as a reference in this paper, the two
heterogeneous observations that were most similar to this reference value were selected. If
the two heterogeneous observations were similar to the reference value, data association
was performed. Otherwise, the unmatched observations were initialized into a new target.
The associated data were synthesized by the fusion algorithm, and thus the final target
fusion sequence was output, which contained important information such as the target
longitudinal coordinates, lateral coordinates, type, and velocity.

3.2.3. Data Association Based on Global Nearest Neighbor Method

For the data association methods, there is mainly the global nearest neighbor (GNN)
method, the probability data association (PDA) method, the joint probability data as-
sociation (JPDA) method, and the multiple hypothesis tracking (MHT) method. Their
advantages and disadvantages are shown in Table 1. Compared with the road environment,
the farmland environment is an occasion with low target density, and generally the spacing
between targets is large and the possibility of matching confusion is low. Therefore, the
global nearest neighbor method was chosen due to less calculation and convenience in this
paper. The method selected the association with the smallest total association distance,
which effectively reduced the errors generated by the local nearest neighbor method during
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association. Figure 7 shows the steps of association between the camera observations and
the mmWave radar observations.

Table 1. Advantages and disadvantages of data association methods.

Methods Advantages Disadvantages Degree of
Difficulty Scope of Application

GNN Calculation is small and simple When the target density is large,
association errors are likely to occur Easily Target density is small

PDA Applicable to target tracking in
clutter environment

Difficult to meet real-time
requirements Difficult Target tracking in

clutter environment

JPDA Better adapt to target tracking
in dense environment

Phenomenon of combined explosion
of calculated load may occur Easily Tracking of dense

maneuvering targets

MHT Better adapt to target tracking
in dense environment

Too much prior knowledge depending
on target and clutter Difficult Tracking of dense

maneuvering targets
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(1) Establishment of association gate

The purpose is to remove some observations that are far from the target, and to match
only those within the association gate, which can reduce the computation of the subsequent
association. The established association gate (Figure 8) integrated the longitudinal distance
measurement error of the mmWave radar with the lateral distance measurement error of
the camera.
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In Figure 8, A1 (X1, Y1) is the predicted value of the target at the previous moment,
with three nearby measurements Z1, Z2 and Z3. Assuming that the normalized distance of
the observed values after the space–time calibration is defined as

D2 = ATS−1 A (3)

where A is the observation error matrix; S is the error covariance matrix.
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The equation of the elliptic association gate is shown in the following equation:

(X− X1)
2

(kσx)
2 +

(Y−Y1)
2

(kσv)
2 = 1 (4)

where σx, σy are the error covariances; k is a constant.

(2) Determination of threshold value Gi and threshold filtering

D2 is a normalized random variable, and when the error between the observed and
predicted values satisfies the normal distribution, D2 = x obeys the χ2 distribution with the
degree of freedom M. Whether the observed values fall into the association gate becomes a
statistical test problem. If D2 is less than the critical value χα

2, the statistical test is deemed
to be accepted, as the following equation:

f (x) =
x

1
2 M−1

2
1
2 MΓ

(
1
2 M
) exp

(
−1

2
x
)

(5)

where M is the dimension of observations and set M = 2 in this paper.
Then the probability of the observation falling into the association gate is calculated

by the following equation:

P =
∫ χ2

α

0
f (x)dx (6)

The bound of the association gate corresponds to χ2 and the size of the association
gate is related to the error covariance. Therefore, the gate value Gi was checked by the χ2

distribution table according to the degrees of freedom as well as the fall-in probability P.

(3) Similarity measurement

This step is used to measure the similarity between the observed and predicted values.
In this paper, the distance between the observed and predicted values was calculated by us-
ing the Mahalanobis distance. The calculation of the Mahalanobis distance is shown below:

dM =
√
(Zi − Zk/k−1)

TS−1
k (Zi − Zk/k−1) (7)

where Sk
−1 the covariance matrix between the observed and predicted values.

(4) Establishment of the association matrix

Each different observation value and different predicted value were combined in pairs
to calculate the Mahalanobis distance, and the calculated results were stored in a matrix,
which was the association matrix.

(5) Determination of association criteria and formation of association pairs

In this paper, the global nearest neighbor method was used, whose core idea was to
minimize the total association cost:

min

{
n

∑
i=1

n

∑
j=1

Cijxij

}
(8)

where xij is a binary variable, zero means no association and 1 means association; Cij is the
distance between measurement i and target j. When generating the matrix, each row and
column only have one 1.

3.2.4. Weighted Output of Observations

Since a valid target only outputs a sequence containing its own information, the
two observations needed to be weighted to output when the mmWave radar data were
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successfully associated with the camera data. Considering that the errors of distance
detection of the mmWave radar was large in the lateral direction, while the errors of
distance detection were large in the longitudinal directions, the respective errors of both
sensors were suppressed through the weights by using the following equation:{

x = xmµcx
µmx+µcx

+ xcµmx
µmx+µcx

y =
ymµcy

µmv+µcv
+

ycµmy
µmv+µcv

(9)

where, xm, ym are the observed values of the mmWave radar; xc, yc are the observed values
of the camera; µmx, µmy are the errors of the mmWave radar in x-axis and y-axis directions,
respectively; µcx, µcy are the errors of camera in x-axis and y-axis directions, respectively.

The errors of the mmWave radar and the camera in the x-axis and y-axis directions
satisfied the following conditions: {

µmx < µcx
µcy < µmy

(10)

3.2.5. Target Tracking Based on Extended Kalman Filter

Here, the extended Kalman filter (EKF) method was used for target tracking [23].
The state equation and the observation equation of the EKF are shown by the follow-
ing equation: {

Xk = f (Xk−1) + Wk
Zk = h(Xk) + Vk

(11)

where Xk, Xk−1 are the state vectors of the target at moments k, k − 1; Zk is the observed
vector of the target at moment k; f, h is the nonlinear state transfer matrix; Wk is the process
noise; Vk is the observed noise.

Thus, the time update equation of the EKF is as follows:{
X̂k|k−1 = f (X̂k−1|k−1)

P̂k|k−1 = Fk−1Pk−1|k−1FT
k−1 + Q

(12)

where, X̂k|k−1 is the state prediction value; P̂k|k−1 is the prediction error covariance; Q is the
covariance matrix of the process noise; Pk−1|k−1 is the estimation error covariance; F is the
Jacobi matrix of the state transfer matrix f.

The observation update equation for the EKF is as follows:
Kk = P̂k|k−1HT

k

[
Hk P̂k|k−1HT

k + R
]−1

X̂k|k = X̂k|k−1 + Kk[Zk − h(X̂k|k−1)]

P̂k|k = (I − Kk Hk)P̂k|k−1

(13)

where Kk is the Kalman gain; R is the covariance matrix of the observed noise; H is the
Jacobi matrix of the state transfer matrix h; X̂k|k is the updated target state estimation vector;
P̂k|k is the updated error covariance; and I is the unit matrix.

Under the discrete state model, the state vector and state transfer matrix of the fused
target of this work were described as:

x =
[

x vx y vy
]T (14)

f =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 (15)
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where x, y are the lateral and longitudinal coordinates of the target; vx, vy are the lateral
and longitudinal velocities of the target.

The observed vector and the relative state transfer matrix are described as:

z =
[

x y
]T (16)

h =

[
1 0 1 0
0 0 0 0

]
(17)

After the above series of calculations, the state vector evaluation of the target was
obtained from the fused sequence that were output at the previous moment. Then the
observation association was performed, and when some observations were not successfully
matched, it was initialized to a new target that was tracked again by using the EKF. The life
cycle theory was used to manage the valid target pool, that is, when the target appeared for
three or more consecutive times, the target was output as a valid target; when the target
was lost for five consecutive times, the target was removed.

4. Results and Discussion
4.1. Introduction to the Experimental Platform

An MY250 tractor was chosen as the experimental platform, and a ARS408-21 mmWave
radar and an MCD-1073 HD camera were installed in front of it. A DELL lns15-7501 laptop
computer was used to receive and process the radar information transmitted via a PCAN-
USB and the camera information transmitted via Ethernet. The experimental configuration
is shown in Figure 9.
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Figure 9. Experimental configuration.

4.2. Sensor Calibration

The sensor calibration mainly included the internal and external parameters of the
camera and the external parameters of the mmWave radar. The ultimate goal was to map
the mmWave radar data points to the image through the space–time reference alignment.
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4.2.1. Internal Parameter of Camera

Here Zhang’s calibration method was used to solve the internal parameters of the
camera [24]. A checkerboard calibration board with 12 × 9 square grids was selected, with
a single square size of 30 mm × 30 mm. The camera position was fixed and 20 images of
the checkerboard with different angles and distances were taken, as shown in Figure 10.
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Figure 10. Checkerboard diagram from different perspectives.

The toolbox toolbox_calib based on MATLAB was used to solve the internal parameters
of the camera. The above 20 images were input and the calibration tool automatically
extracted the checkerboard grid corner points of the selected area. The final internal
parameter matrix of the camera was obtained as:

M2 =

1977.54 0 1033.62 0
0 2011.78 700.10 0
0 0 1 0

 (18)

4.2.2. External Parameters of mmWave Radar and Camera

The external parameters of the mmWave radar and the camera are related to their
installation position, which mainly includes the translation and rotation vectors. The
installation plane of the mmWave radar and the camera is perpendicular to the ground
and in the same installation plane (see Figure 9). The vertical distance between the cam-
era’s coordinate origin and the ground is 1.33 m, so the camera’s translation vector is
T = [0 0 1.33], and the vertical distance between the coordinate origin of the mmWave radar
and the ground is 1.24 m, so Lz = 1.24. In addition, the mmWave radar and the camera are
mounted on the centerline of the tractor, so Ly = 0.

4.2.3. Solving of Pixel Value-Vertical Distance Relationship Function

At the beginning, the calibration plate was placed 4.8 m directly in front of the tractor,
and the calibration was moved every 2.4 m and photographed. A total of 22 images were
taken in total to fit distances in the range from 4.8 to 55.2 m. Some of the images are shown
in Figure 11 below.
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Figure 11. Calibration plate position.

By using the curve fitting toolbox of MATLAB, three group of curves with good fitting
effects, such as power function, rational function, and exponential function, were obtained
by using different fitting functions for 22 sets of data, as shown in Figure 12.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 19 
 

 

4.2.2. External Parameters of mmWave Radar and Camera 
The external parameters of the mmWave radar and the camera are related to their 

installation position, which mainly includes the translation and rotation vectors. The in-
stallation plane of the mmWave radar and the camera is perpendicular to the ground and 
in the same installation plane (see Figure 9). The vertical distance between the camera’s 
coordinate origin and the ground is 1.33 m, so the camera’s translation vector is T= [0 0 
1.33], and the vertical distance between the coordinate origin of the mmWave radar and 
the ground is 1.24 m, so Lz = 1.24. In addition, the mmWave radar and the camera are 
mounted on the centerline of the tractor, so Ly = 0. 

4.2.3. Solving of Pixel Value-Vertical Distance Relationship Function  
At the beginning, the calibration plate was placed 4.8 m directly in front of the tractor, 

and the calibration was moved every 2.4 m and photographed. A total of 22 images were 
taken in total to fit distances in the range from 4.8 to 55.2 m. Some of the images are shown 
in Figure 11 below.  

 
Figure 11. Calibration plate position. 

By using the curve fitting toolbox of MATLAB, three group of curves with good fit-
ting effects, such as power function, rational function, and exponential function, were ob-
tained by using different fitting functions for 22 sets of data, as shown in Figure 12.  

  
(a) (b) 

800 850 900 950
5

10

15

20

25

Pixel

R
ea

l d
is

ta
nc

e/
m

800 850 900 950
5

10

15

20

25

Pixel

R
ea

l d
is

ta
nc

e/
m

Sensors 2023, 23, x FOR PEER REVIEW 14 of 19 
 

 

 
(c)  

Figure 12. Fitting curves. (a) Power function; (b) Rational function; (c) Exponential function. 

The performance of the fitted curves was evaluated by three parameters, such as the 
sum of squared errors (SSE), root mean squared error (RMSE), and coefficient of determi-
nation (R-square). The closer the SSE is to 0, the closer the RMSE is to 0, and the closer the 
R-square is to 1, the better the selected curve fits the data. The three evaluation parameters 
of the above three fitted curves are shown in Table 2. 

Table 2. The performance comparison of the three fitting curves. 

 SSE R-Square RMSE 
Power function 209.4915 0.9589 3.2364 

Rational functions 33.9776 0.9933 1.3034 
Exponential functions 227.8865 0.9553 3.3755 

From Table 2, all three parameters of the rational function are optimal; therefore, the 
rational function is chosen as a function of the pixel value versus the distance, as shown 
in the following equation: 

998.6
747.2

d
v

=
+

 (19)

where d is the distance between the target and the camera; v is the longitudinal pixel co-
ordinate value of the midpoint of the bottom edge of the target bounding box.  
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Figure 12. Fitting curves. (a) Power function; (b) Rational function; (c) Exponential function.

The performance of the fitted curves was evaluated by three parameters, such as
the sum of squared errors (SSE), root mean squared error (RMSE), and coefficient of
determination (R-square). The closer the SSE is to 0, the closer the RMSE is to 0, and the
closer the R-square is to 1, the better the selected curve fits the data. The three evaluation
parameters of the above three fitted curves are shown in Table 2.
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Table 2. The performance comparison of the three fitting curves.

SSE R-Square RMSE

Power function 209.4915 0.9589 3.2364
Rational functions 33.9776 0.9933 1.3034

Exponential functions 227.8865 0.9553 3.3755

From Table 2, all three parameters of the rational function are optimal; therefore, the
rational function is chosen as a function of the pixel value versus the distance, as shown in
the following equation:

d =
998.6

v + 747.2
(19)

where d is the distance between the target and the camera; v is the longitudinal pixel
coordinate value of the midpoint of the bottom edge of the target bounding box.

4.3. mmWave Radar and Camera Information Fusion Test

The methods mentioned in this paper were implemented in the ROS environment of
Ubuntu 16.04. During the tests, the radar data frames and image frames were captured
every 120 ms for information fusion, and the radar data were visualized using the Rviz 3D
platform based on ROS.

Firstly, the effect of the information fusion of the mmWave radar and the camera
was tested in a non-agricultural environment, as shown in Figure 13. In Figure 13a, three
obstacle targets such as people, houses, and trees were detected with the camera only, by
using the improved YOLOv5s algorithm in the literature [9]. But after the data fusion,
8 targets sequences including position, longitudinal speed, and category were output:
(−9.84, 13.21, 0.00, house), (−7.96, 17.57, 0.00, tree), (−5.32, 14.63, 0.00, house), (−0.21, 4.30,
0.00, person), (4.36, 13.51, 0.00, tree), (−4.78, 17.08, 0.00, nan), (−4.85, 12.83, 0.00, nan), (5.64,
13.97, 0.00, nan), as shown in Figure 13b.
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In Figure 13, both the mmWave radar and the camera detected the people, houses,
and trees, but cars and electric motorcycle cars were not detected by the cameras because
they were not regarded as farmland obstacles trained in the dataset, while these targets
were detected by the mmWave radar and the output target sequences.

Then, we captured 500 images frames and the mmWave radar data frames at the same
sampling period in the farmland environment. There were 953 targets in the 500 images,
and the target categories and quantities are shown in Table 3, where the other obstacles
referred to those that would pose a threat to the farm machinery, but did not belong to
trees, people, tractors, haystacks, houses, wire poles, and sheep.
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Table 3. Target categories and quantities.

Tree Human Tractor Haystack House Wire Poles Sheep Other

Number 175 154 203 62 166 94 57 42

The 953 targets were tested in the two methods: the camera-only detection and
the fusion detection. Sometimes farmland obstacles were missed by the camera-only
detection due to occlusion or implicit features, but the number of undetected obstacles
were significantly reduced by using the fusion detection, as shown in Figure 14. The
test results are shown in Table 4. From Table 4, the fusion detection method has better
detection with the average accuracy rate of a target detection of 86.18%, which is higher
than that of the camera-only detection method with 62.47%. The average missing rate
by adding the mmWave radar is reduced by 13.71% compared to that of the camera-only
detection method.
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Table 4. Results of the comparison of camera-only detection and fusion detection.

Method Average Rate of Accuracy
Detection (%)

Average Rate of Missing
Detection (%)

Camera-only detection 62.47 27.51
Fusion detection 86.18 13.80

The results of the camera-only detection and fusion detection for various types of ob-
stacles are shown in Table 5. Compared with the camera-only detection method, the fusion
detection method improves the accuracy of different obstacles, especially the detection
accuracy of human and tractor obstacles is increased by 12.12% and 23.81%, respectively.
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Table 5. Comparison of single sensor and multi-sensor detection results on all kinds of obstacles.

Category Accuracy of Camera-Only
Detection (%)

Accuracy of Fusion
Detection (%)

Human 83.07 95.19
Tractors 73.09 96.90
Sheep 55.60 61.06

Haystack 51.66 66.32
Wire poles 60.01 73.11

House 42.24 53.78
Trees 40.81 48.02
Other 0.00 40.00

4.4. Comparison between This Study and Other Sensor Fusion Algorithms

At present, there are three kinds of sensors fusion algorithms: data level, feature level
and decision level. Therefore, a contrast experiment was set based on the same obstacle
(person) in the same environment. The experimental results are shown in Table 6. From
Table 6, the detection accuracy of the decision level fusion algorithm used in this paper
reaches 95.19%, which was superior to 90.81% of the feature level fusion and 88.56% of the
data level fusion. The detection accuracy of all three was relatively high due to the relative
simplicity of the obstacles used in the contrast test. However, the decision level fusion
method used in this paper had the highest accuracy because the program had processed
the data of each sensor before the fusion detection, which reduces the human impact.

Table 6. Comparison of sensor fusion algorithms.

Integration Mode Accuracy (%)

Data level fusion 88.56
Feature level fusion 90.81

Decision level fusion (in this paper) 95.19

5. Conclusions

A method for detecting obstacles in farmland based on the information fusion of
a mmWave radar and a camera was proposed to remedy the defects of single sensor in
robustness, accuracy, and redundancy of target detection. The method combined the
advantages of the mmWave radar in range and speed measurements and the camera in
type identification and lateral localization and used decision-level fusion as well as the
global nearest neighbor method for data association. The valid target sequences from the
mmWave radar and the camera were weighted to output after successful data association,
and the output information included more target orientation, longitudinal velocity, and
category. For the unassociated sequences, they were tracked as new targets using the EKF
algorithm and were processed and output during the effective life cycle of the targets.

To verify the effectiveness of the proposed method, an experimental platform was built
based on a tractor, and then the external parameters of the mmWave radar and the internal
and external parameters of the camera were solved. The experiments were conducted in
the ROS environment for real farmland obstacle detection. The results of the experiments
show that the proposed method has better detection with the average accuracy rate of
target detection of 86.18%, which was higher than the average accuracy rate of target
detection of 62.47% for the camera-only detection method. The average missing rate by
adding the mmWave radar was reduced by 13.71% compared to that of the camera-only
detection method. Moreover, the accuracy rate by using the fusion detection increased for
the different obstacles compared with the camera-only detection method. Furthermore,
through the contrast experiment of the sensor fusion algorithms, the detection accuracy of
the decision level fusion algorithm used reaches 95.19%, which was superior to 90.81% of
the feature level fusion and 88.56% of the data level fusion. This will lay a solid foundation
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for the follow-up research on obstacle avoidance of unmanned agricultural machinery. In
addition, due to the insufficient dataset and relatively simple experimental environment
in this paper, future studies will need to focus on expanding the dataset and conducting
experiments in rainy days or strong light conditions.
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