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Abstract: This article addresses the problem of estimating the spectral correlation function (SCF),
which provides quantitative characterization in the frequency domain of wide-sense cyclostationary
properties of random processes which are considered to be the theoretical models of observed time
series or discrete-time signals. The theoretical framework behind the SCF estimation is briefly
reviewed so that an important difference between the width of the resolution cell in bifrequency plane
and the step between the centers of neighboring cells is highlighted. The outline of the proposed
double-number fast Fourier transform algorithm (2N-FFT) is described in the paper as a sequence
of steps directly leading to a digital signal processing technique. The 2N-FFT algorithm is derived
from the time-smoothing approach to cyclic periodogram estimation where the spectral interpolation
based on doubling the FFT base is employed. This guarantees that no cyclic frequency is left out of the
coverage grid so that at least one resolution element intersects it. A numerical simulation involving
two processes, a harmonic amplitude modulated by stationary noise and a binary-pulse amplitude-
modulated train, demonstrated that their cyclic frequencies are estimated with a high accuracy,
reaching the size of step between resolution cells. In addition, the SCF components estimated by
the proposed algorithm are shown to be similar to the curves provided by the theoretical models of
the observed processes. The comparison between the proposed algorithm and the well-known FFT
accumulation method in terms of computational complexity and required memory size reveals the
cases where the 2N-FFT algorithm offers a reasonable trade-off.

Keywords: cyclostationarity; cyclostationary random process; spectral correlation function; spectral
correlation density; cyclic spectrum; spectral correlation analysis; spectrum estimation; fast Fourier
transform (FFT)

1. Introduction

The signal processing methods exploited in the majority of modern telecommunication
and radar systems are typically based on the assumption that signals under processing can
be modeled as realizations of some random processes [1]. The simplest assumption about
the property of those processes is their wide-sense stationarity (WSS). The relative simplicity
of the way that WSS processes can be described in time and frequency domain determines
its extreme popularity among researchers dealing with any sort of signal processing in the
fields related to electrical and electronic science, and far beyond it. Furthermore, the general
theoretical frameworks aiming at solving typical problems such as signal detection [2]
and estimation of their parameters [3] have been basically established on the conjecture
that signals of interest and interfering noise belong to either the class of WSS random
processes or deterministic waveforms with possibly unknown parameters. However, a lot
of research in signal processing conducted so far [4] and some that is going on [5] declares
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that there is inevitable loss in the information about important features of the natural and
artificial processes producing many types of observable signals if the models chosen for
their description are narrowed down to stationary ones. That information being extracted
in a proper way could fruitfully be used for gaining an increase in the accuracy of various
techniques developed for signal detection, parameter estimation, classification, source
localization, etc.

Second-order cyclostationarity, or wide-sense cyclostationarity, appears to be the in-
trinsic property exhibited by processes generating signals belonging to different classes.
Thus, there are plenty of examples where it was reasonably taken into account in many
research fields and engineering applications, including communication signals with var-
ious modulation schemes [6], radio signals used in passive radars [7,8], electromagnetic
measurements with near-field probes [9,10], spectral sensing in cognitive radio [11], me-
chanical vibration of rotary machines [12,13], radio astronomy [14,15], power analysis of
electric circuits [16], generalized detection [17,18] under conditions of the least certainty,
electromagnetic compatibility [19,20], detection of vital signs in radar response [21,22],
drone navigation signals [23] and others.

The first function that is traditionally introduced for the quantitative characteriza-
tion of the wide-sense cyclostationarity exhibiting by random process x(t) is its cyclic
autocorrelation function (CACF) [1]. CACF can be defined as follows:

Rα
x(τ) = E



 lim

B→∞

1
B

B/2∫

−B/2

x(t + τ/2 )x∗(t− τ/2 ) exp(−j2παt)dt



, (1)

where the superscript ∗ denotes the complex conjugation, E stands for the probabilistic
expectation operator, α is a cyclic frequency, or a cycle, which is the key parameter of the
transformation. The signal is eventually said to exhibit ordinary wide-sense cyclostationary
properties if its CACF is nonzero for cyclic frequencies α taking their values out of some
countable set A (capital Greek alpha letter). If this set consists of a single element, A = {0},
the process x(t) is typically called wide-sense stationary, which can be considered as a
particular case of the more general class of cyclostationary processes. In addition, it is
worth noting that set A is generally assumed not to have any finite accumulation points [24].
Otherwise, it will lead to models involving the concept of generalized cyclostatioraity [25],
which stands beyond the scope of the current paper.

Each componentRα
x(τ) contributing to CACF (1) is basically a function depending on

the argument τ, which can be interpreted as the time shift while the parameter α remains
fixed during the transformation. It allows one to apply the Fourier transform to τ in order
to obtain the counterpart of CACF related to an appropriate frequency domain denoted by
f . The result is known as the spectral correlation function (SCF) of the random process and
can be formally introduced as:

Sα
x ( f ) =

∞∫

−∞

Rα
x(τ) exp(−j2π f τ)dτ, (2)

where the integration is supposed to be made either in Riemann’s or in the generalized
sense depending on what class of functions Rα

x(τ) belongs to. Thus, if the CACF is not
absolutely integrable, the attempt at integration in the sense of distribution [26] may still
remain a preferable option.

Although the CACF can be considered as a set of functions Sα
x ( f ), α ∈ A, it is possible

to introduce another bifrequency characteristic—spectral correlation density (SCD). The
components of SCF relating to the cyclic frequencies taken all together can straightforwardly
be used for writing SCD via explicit expression:

Sx( f , α) = ∑
ν∈A
Sα

x ( f )δ(α− ν). (3)
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As can be seen in (3), SCD is a bispectral function whose arguments are two continuous
frequency variables, in contrast to SCF Sα

x ( f ), which depends on discrete parameter α.
The term δ(α− ν) designating a generalized function in (3) actually defines the so-called
delta-fence. Roughly speaking, it can be simply described or visualized as a distribution
whose support is a straight line parallel to the f -axis, and its width is infinitesimal along
the α-axis.

Although both CACF and SCF contain the same information about the process,
since they match a signal-spectrum Fourier pair, SCF can be preferred to CACF in many
cases of applied spectral analysis, since both its variables, α and f , share the same fre-
quency domain. It allows performing the further processing, e.g., axis rotation in the
estimates, significantly easier, which can be important for processing some types of signals,
e.g., chirp-modulated ones [27,28]. In addition, the features revealing cyclostationary be-
havior of the signal appear to form patterns which are more concentrated in the frequency
domain than in time domain.

The components of SCF, as well as CACF, can be derived analytically for the known
theoretical models of random processes using the probabilistic approach, or ensemble
averaging [29]; a thorough example of the theoretical derivation can also be found in [30].
On the other hand, the researchers who typically encounter digital signals in practical
analysis may want to estimate SCF by processing only finite-length samples of a time-series
under observation. An estimator of SCF will indeed evaluate the sample SCD as a function
of frequency pair ( f , α), which, being properly scaled, can be considered as an estimate of
the model SCF [31]. At the first glance, the estimation of Sα

x ( f ) at a chosen point ( f , α) in
the bifrequency plane does not seem to be a difficult issue. It may simply be carried out
in two steps. The first one consists of computing the values of Rα

x(τ) at the points of an
appropriate grid {τn} in the dimension of τ argument while the chosen value of α remains
fixed. This can be done immediately utilizing (1), where the limiting and expectation
operators are both omitted. The second step is evaluating the Fourier-transform integral (2)
at the chosen point in frequency f domain using those values of SCFRα

x(τn).
In many practical cases, a researcher will be interested in estimating SCF at many

points simultaneously. Such an observation of SCF in a wide area of the bifrequency plane
becomes especially crucial if the actual values of α depicting a signal are not known a
priory, or if the cyclic frequency is one of the signal parameters to be estimated. The blunt
approach where the SCF is estimated separately at many points has a serious drawback:
extremely poor computational performance. Thus, the estimation of SCF in a wide range of
frequency f and cyclic frequency α values remains an emerging topic in practical analysis
of hidden periodicity in the signals which are assumed to be modeled as the realizations of
cyclostationary random processes.

The estimators evaluating the SCF in a wide range of frequencies can generally be
divided into two groups with respect to the fact whether the averaging is conducted in
time or frequency domain [32]. It should not be a surprise that the greater attention has
been focused on the estimators implementing the time-smoothing approach; they seem
to be more valuable for at least three reasons. First, the time smoothing methods can be
described as a generalization of the well-known Welch’s averaged periodogram method [33].
From this point of view, a typical SCF estimate will contain Welch’s periodogram as its
natural part, which is the slice at zero cyclic frequency. That makes understanding of
cyclic characteristics easier by expanding an analogy of the stationary characteristic to the
cyclostationary ones. Second, the time smoothing methods allow processing the input
samples at the rate they arrive at the input of the estimator, in contrast to the estimators
realizing the frequency smoothing method. The latter require the full information about
the estimated spectrum of the processed signal, which means a demand for all samples to
be stored before the main processing starts. This feature of time-smoothing methods also
allows designing a tracking cyclic estimator useful in the case of cyclic features changing
slowly over a long observation. Finally, the computational process in the time-smoothing
methods can be organized as a parallel or multithread execution in modern systems whose
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architecture may be based on multicore central processing units, graphic processing units
or VLSI circuits [34].

One of the most widely known methods for cyclostationary characteristics estimation
is the FFT accumulation method (FAM) [35], which was developed in the late 1980s.
Their authors’ aim seemed to be the design of a memory-saving algorithm that would
efficiently exploit the fast Fourier transform (FFT), which is rather a computationally
effective method in digital signal processing. Despite the fact that the FAM is rather scalable
and computationally effective, its possesses a disadvantage that makes its application
unreliable in many cases. Thus, the SCF estimate computed by means of FAM cannot
provide complete coverage of the bifrequency plane (α, f ) due to the inevitable regular
degradation of the resolution cells. That shrinkage results in almost the half of the bispectral
plane turning out to be hardly tiled with the cells, providing sufficient width as a resolution
element. Another algorithm proposed by the authors of FAM is the spectral strip correlation
algorithm (SSCA) [36]. In contrast to FAM, SSCA covers the bispectral plane completely, but
the underlying grid, i.e., the set of nodes where the resolution elements are evaluated, ceases
to be rectangular. This makes further extraction of the slices along the frequency or cyclic
frequency axis quite difficult, since it is no longer possible to take the appropriate row or
column of the resulting rectangular matrix related to a requested frequency value. In order
to obtain such slices, one would have to employ a complex interpolation technique that
would in turn bring its own errors and negative performance effects. Another disadvantage
of SSCA is that the averaged fragments of the input sequence can be separated by no more
than one sampling period. That requirement significantly reduces the overall performance
and increases the amount of memory required by the algorithm’s implementation compared
to the methods where larger steps well retain the algorithm efficiency.

Another example of an out-of-the-box algorithm that implements a SCF estimator
performing in wide frequency range can be found in [37], Chapter 5. The solution proposed
there was developed into ready-to-use MATLAB code which invokes some standard
functions delivered in its Signal Processing library. Those functions are conventionally
used for estimating a complex-valued cross periodogram of two sampled signals but had
been properly adapted for performing a cyclic correlation estimation according to its direct
definition in the theory of spectral correlation [38].

The overview of the foundation lying in the basement of the majority of existing
techniques leading to SCF estimators can be found in [31], where the common issues of
choosing more suitable window and tapering functions as well as their influences on the
sizes of the resolution cells are addressed. Further research of those authors in this field led
to some reliable solutions [39], which are expected to be suitable in many practical cases.
Finally, they came up with an implementation of a faster algorithm [40] where some sort of
approximation is exploited.

An example of SCF estimator based on an alternative approach is given in [41], where
such a two-dimensional window function that cannot be expressed as a product of two
one-dimensional functions is applied to the outer product of two correlating signals. That
led to the algorithm directly utilizing a two-dimensional Fourier transform [42], which
determines its relatively high computational efficiency.

In spite of the fact that there exist SCF estimators performing in wide frequency ranges,
we suppose that there is still room for yet another estimator if it is able to show a sufficient
computational effectiveness while minimizing the drawbacks, such as the degradation of
the resolution of the cells or an uneven grid of the nodes in the bifrequency plane where
the estimates are evaluated. Although this algorithm was developed by the authors as
early as in 2014, it remained unavailable for a wider community for several years, until it
was reported at conference© 2021 IEEE [43]. Since the format of that conference paper did
not let to provide all the details of the method, the current paper is aimed at eliminating
this gap by giving a thorough description of the algorithm, accompanied by graphical
illustrations explaining some of its essential operations. Compared to [43], this paper
contains a completely new example involving a pulse-amplitude modulation (PAM) and
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a section containing a comparison of computational complexity between FAM and the
proposed algorithm. All simulation examples are now provided with all necessary spectral
and cyclic sample characteristics. The latter are also shown in figures with more close
zooms, where the selective property of cyclic component is evident.

The rest of the paper is organized as follows. Section 2 narrates a brief overview of
the cyclic periodogram time-smoothing approach to the estimation of SCF; the spectral
resolution issue is pointed out in particular. In Section 3, the suggested double-number
FFT (2N-FFT) algorithm is described in the form ready for immediate implementation as
a signal-processing procedure. The simulation results are shown in Section 4, where the
2N-FFT algorithm was utilized for estimating SCF for the realizations of two signals which
are famous for exhibiting strong cyclostationary behavior. The comparison between the
proposed algorithm and FAM is given in Section 5. The paper ends with conclusions in
Section 6.

2. Time-Smoothing SCF Estimator

The estimated spectral correlation function (SCF) can be generally considered to be
a complex-valued function depending on two variables: the frequency f and the cyclic
frequency α. The estimation of SCF based on time-smoothing approach [32] consists of
processing continuous time signal x(t) of the finite-length T in this way:

Ŝx( f , α) =
1
K

K−1

∑
k=0

XTW

(
tk, f +

α

2

)
X∗TW

(
tk, f − α

2

)
, (4)

where K is the total number of generally overlapping fragments, tk denotes the starting
point of the kth fragment and the current spectrum XTW (tk, f ) is obtained via Fourier
transform of the signal fragments of the length TW :

XT(tk, f ) =
1√
TW

tk+TW∫

tk

x(t) exp(−j2π f t)dt. (5)

In the vast majority of practical cases, the procedure of SCF estimation is assumed
to be based on specific processing the input sequence of digital samples x[n] of the finite
length N obtained by sampling the continuous-time signal x(t) with the sampling period
Ts within total observation time Tx = NTs. The unique region of the principal support
for the SCF of discrete-time signal x[n] is the area of the bispectral plane ( f , α) within the
following bounds:

|α|+ 2| f | ≤ Fs, (6)

where Fs = 1/T is the sampling frequency.
As is shown in Figure 1a, the region of support is a diamond, or rhombus, placed

at the origin of the bifrequency plane. The main diagonals of the rhombus completely
match the axes. They have different lengths. The length of the one along the frequency f
axis is the sampling frequency Fs, and the length of the other one, which is along cyclic
frequency α, turns out to be twice the size: 2Fs. However, when it comes to processing the
discrete-time signal x[n] = x(nTs), or time series, SCF has a particular structure beyond
the principal rhombus. Thus, SCF turns into a function which is periodic with respect to
both its arguments:

ŜDT( f , α) = Ŝ( f − (p− q)Fs/2 , α− (p + q)Fs) (7)

where p and q are integers: (p, q) ∈ Z2. This pair of indices can be thought as auxiliary
axes p and q, respectively, which are shown in Figure 1a. That makes it easy to reveal how
each diamond tile can uniquely be translated into the principal support at the origin, since
each tile contains the copy of the same information about SCF but corresponds to its own
unique index pair, (p, q).
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In order to perform the averaging, K generally overlapping fragments of the length of
W samples each, indexed by k, are extracted from the input time series x[n], 0 ≤ k ≤ K− 1:

xk[n] = x[n + kR], 0 ≤ n ≤W − 1, (8)

where R is the distance measured in samples between the starting points of two consequent
fragments: 1 ≤ R ≤W, as is depicted in Figure 2. This fragmentation can be equivalently
described as applying the rectangular window of length TW = WTs moving over the input
signal x(t) with the step R. After the signal is multiplied by the samples of the window in
particular position, only those samples remain non-zero which happen to be covered by
the non-zero elements of the window.

(a) (b)
Figure 1. Structure of the “frequency–cyclic frequency” plane: general (a) Tiling of the “frequency–
cyclic frequency” plane (The principal rhombus centered at the origin is drawn in pink) and detailed
(b) SCF resolution cell in the bispectral plane and the covering grid consisting of the nodes where
SCF is to be evaluated.

x[0] x[1] x[2] ... ... x[N]

N

R W

xk−1[n] xk+1[n]

xk [n]

Figure 2. Sequence fragmentation.

The important characteristics of any SCF estimator are the shape and size of its
resolution cells [32,35]. The resolution cell describes the area which is integrally associated
with the point estimates described by ( f , α). The resolution cell of rectangular shape is
shown in Figure 1b. The width of the resolution cell ∆ f alongside the frequency axis f is
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determined by the natural length of the fragment xk(t) or the length of its related sampled
version xk[n] measured in samples:

∆ f =
1

TW
=

Fs

W
. (9)

In contrast, the width of the resolution cell ∆α alongside cyclic frequency axis α is the
reciprocal of the total observation time Tx:

∆α =
1
Tx

=
Fs

N
. (10)

In order to avoid potential missing of any significant parts of SCF during its estimation,
the whole area of the support region (6) in the bispectral plane should be fully covered with
resolution cells. A simple yet reasonable scheme may consist of covering the support region
of SCF by the resolution cells of the same width, regardless of their position in the plane.
The cell can overlap some of its neighboring cells, but no gaps are allowed. As is shown in
Figure 1b, the resolution cells generally turn out to be wide alongside the frequency axis f ,
whereas they are much narrower alongside the cyclic frequency axis α:

∆ f
∆α

=
Tx

T
=

N
W
� 1. (11)

A higher resolution in the dimension of cyclic frequency α allows one to solve more
effectively a wide class of problems, including signal detection and signal selection, since
the methods can be based on the cyclostationary features of the processed signals which do
not appear in the domain of frequency f .

The practical digital signal processing leading to further SCF processing implies the
estimation of its samples at the nodes of a rectangular grid of equidistantly distributed
points. Each node of the grid corresponds to the center of the related resolution cell shown
in Figure 1b. The steps alongside the dimensions of the frequency f and cyclic frequency
α axes, denoted as δ f and δα correspondingly, can generally be chosen as different. The
evaluated matrix containing SCF samples can be therefore treated as a function depending
on integer indices l and m. The relation between those sampled values and the continuous-
time SCF estimation (4) can be established via a direct sampling formula:

Ŝ[m, l] = Ŝ(mδ f , lδα). (12)

Since the full representation of the estimated SCF can be achieved within the region of
its support defined by (6), it becomes sufficient to calculate only those samples of the SCF
which are in the positions enumerated by pairs (l, m) satisfying the following condition:

δα|l|+ 2δ f |m| ≤ Fs. (13)

At least two reasonable suggestions should be taking into consideration in order to
achieve higher performance of time-smoothing SCF estimator. The first consists of the
usage of FFT for spectrum estimation whenever it is possible. The second is utilizing as
few samples of the estimated spectra as possible to perform all the necessary operation to
obtain the SCF estimate evaluated at a given point Ŝ[m, l].

3. 2N-FFT Algorithm

The quick look at the bispectral plane shown in Figure 1b could help one to come up
with the basic idea that, in order to avoid gaps in the cyclic frequency α, the related step δα
in covering grid should not exceed the width of the resolution cell ∆α (10). Thus, let the
step be chosen as the minimal value, which means it will be: δα = ∆α. In order to calculate
SCF estimation in each node of the grid, the step in the frequency f dimension must be
equal exactly to the half δ f = δα/2 for the following reason. The estimation at a given
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point Ŝx( f , ∆α) can be evaluated using two spectral samples as long as the values of the
spectrum XTW ( f ) at f ± ∆α/2 are known. In turn, that requires that grid of nodes is dense
enough to allow the immediate multiplication without additional interpolation. Thus, the
size of the step alongside axes f should be chosen as

δ f =
δα

2
=

∆α

2
=

1
2Tx

=
Fs

2N
. (14)

The total number of points is the same 2N for both axes f and α despite the fact that
thy cover different frequency ranges—they are Fs and 2Fs, respectively. The name 2N-FFT
for this algorithm was proposed based on that fact.

The evaluation of the spectrum (2) was carried out by means of FFT. However, if FFT
is taken on the input fragment xk[n] of length W, it will compute values of the spectrum
only related to W frequency points that are multiples of 1/TW = Fs/W. Therefore, in
order to obtain values over a more dense grid, at frequencies which are multiples of
δ f = ∆α/2 = 1/(2Tx), an interpolation procedure should be conducted. Here, we chose
the well-known technique [44] carried out in spectrum interpolation using the same FFT
algorithm only. It consists of enlarging the FFT base by padding the sequence xk[n] in time
with 2N −W zero samples. In other words, it makes the total number of samples in each
fragment equal to the desired length 2N:

x̂k[n] =

{
xk[n], 0 ≤ n ≤W − 1;
0, otherwise.

(15)

Then FFT is applied to the augmented series yielding the spectrum samples of the kth
fragment X̃k( f ) at points m/(2Tx) indexed by m = 0, 1, . . . , 2N − 1:

X̃k

(
mFs

2N

)
= X̃k[m] =

2N√
W

FFT{x̃k[n]} =
1√
W

W−1

∑
n=0

x̃k[n]e−j πmn
N , (16)

where FFT stands for the forward version of the fast Fourier transform [45] with a
1/2N multiplier.

The above-described interpolation procedure allows getting the samples of the spec-
trum (2) distributed with even density well enough for evaluating the partial SCF of the
k-th signal fragment. However, the effective width alongside frequency axis f of each
resolution element shown in Figure 1b has not changed and remains 1/TW .

The spectrum of each fragment X̃k[m] is computed as if the starting point of the
fragment is zero. Therefore, the actual staring point of the kth fragment should be taken
into account in order to provide the coherence between the spectra of the fragments. Since
the latter is the key point of the SCF accumulation in (4), the phase correction has to be
conducted. This important step consists of returning the starting time of the k-th signal
fragment to the spectrum calculated using FFT directly as if this fragment started at t = 0.
The corrected spectrum X̃C

k [m] is computed according to time shifting property in the
frequency domain:

X̃C
k [m] = X̃k[m]× exp

(
−j

πmkR
N

)
. (17)

The next step of the 2N-FFT algorithm is building up two square matrices denoted as
XR(k) and XL(k). They both are of size 2N× 2N. The first row of the XR(k) matrix matches
the row vector of the spectrum (17). Then, each matrix row, starting from the second, is
obtained via the circular shift in the previous row by one element to the right. The structure
of this matrix is shown in Figure 3. The rows of the matrix XL(k) are calculated in the
similar way but with the direction of the circular shifts reversed. It can be noticed that the
matrices XR(k) and XL(k) have the specific structures known as cirulant and anticirculant
matrices [46], respectively.
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(a) (b)

Figure 3. The structures of the matrices: (a) circulant matrix XR(k) and (b) anticirculant matrix XL(k).

The final step of 2N-FFT consists of averaging the cross-spectra obtained for all the
fragments, similarly to how it can be done during continuous time processing (4). Thus,
the resultant matrix SM is calculated via averaging of the product of two matrices, XR(k)
and XL(k):

SM =
1
K

K−1

∑
k=0

XL(k) ◦ XR∗(k), (18)

where ◦ stands for element-wise matrix multiplication, or Hadamard product, and ∗ applied
to a matrix means the complex conjugation of its elements without the transposition of the
matrix itself.

The computed elements in the resultant matrix SM are the SCF values estimated at
the centers of resolution cells in accordance with the previously defined node grid with
steps δ f and δα:

Ŝ
(

mFs

2N
,

lFs

N

)
= Ŝ[m, l] = SMl+1,m+1. (19)

The elements contained in matrix SM correspond to the estimated values of the SCF
lying within the rectangle in the bifrequency plane: ( f , α) ∈ [0, Fs)× [0, 2Fs). That area of
the bispectral plane is shown in Figure 1a by the dashed rectangle. The diamond in its center
corresponds to the index pair (p, q) = (1, 0) according to (7). In order to find the principal
support region, that is, the diamond-shaped region at (p, q) = (0, 0), the periodic property
(7) of the SCF is used. For instance, the center point Ŝ[0, 0] translates to the point Ŝ[N, N] in
the center of the estimated rectangle. This change is equivalent to the mapping the rectangle
covered by the evaluated matrix to the centered one ( f , α) ∈ [−Fs/2 , Fs/2 )× [−Fs, Fs).
Actually, there is no transformation to be conducted on the elements of SM.

The final step that is aimed at improving the visualization of the SCF as a two-
dimensional function is extracting the principal rhombus, which is shown centered at
the origin in Figure 1a. In order to carve the diamond out of the averaged matrix SM, an
appropriate mask ought to be applied:

SM� = SM ◦ J, (20)

where SM� denotes the rhombus-shaped matrix containing meaningful elements in the
diamond concentrated in its central part, and J is the mask matrix of size 2N × 2N whose
elements are defined as follows:

Jl,m =

{
1, |l − N − 1|+ |m− N − 1/2| < N;
NaN, otherwise.

(21)

The NaN is acronym for “not a number”. This special value, predefined in many
software systems and packages of applied mathematics, allows one to mark the variable for
special purposes, e.g., as containing a missing value or a result of an uncertain mathematical
operation, such as “0/0”. The advanced software will treat this value in a proper way,
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clearly distinguishing it from an ordinary zero value. For instance, NaN can be painted
with a special color in an intensity diagram. If the software does not support NaN, it should
simply be replaced with 0 in (21). However, this may require an additional attention to
correct processing the values laying out of the principal rhombus.

4. Simulation Results

For the purpose of demonstrating the proposed interpolating 2N-FFT algorithm, two
well-known examples [29] made of the signals exhibiting strong second-order stationarity
were chosen.

The first example was an amplitude-modulated (AM) signal x(t), which was a sinusoidal-
wave carrier modulated by a baseband wide-sense stationary Gaussian random process:

x(t) = [s(t) ? h(t)] cos(2πF0t + ϕ0), (22)

where s(t) is the white Gaussian noise; h(t) is the impulse response of a low pass filter
(LPF) whose cutoff frequency is Fmax; F0 stands for the central frequency of the carrier; φ0
is the carrier’s initial phase, a nuisance parameter here; ? denotes the linear convolution
here. In the considered example, the carrier frequency was set to F0 = 6 MHz, the LPF
cutoff frequency Fmax = 1 MHz, the carrier’s initial phase was random, the sampling
period Ts = 44 ns and the total length of the sampled sequence to be processed was set as
N = 8192.

The typical realization of the process in the time domain is in Figure 4a, and the
module of its sample spectral density is shown in The typical realization of the process in
the time domain is in Figure 4b. The spectrum occupies the frequency band of 2 MHz full
width centered at F0 = 6 MHz exhibiting the behavior of a typical wide-band radio signal
in both time and frequency domains.
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Figure 4. Fragment of the first example—amplitude-modulated signal x(t) in the time domain
(a) and in the frequency domain (b). Dashed vertical line in the frequency domain corresponds to the
value of the carrier frequency.

As long as the SCF is a complex-valued two-dimensional function dependent on ( f , α),
a «frequency–cyclic frequency» pair, a possible way to visualize it will be drawing a surface
three-dimensional plot or colored diagram, where the color will show the absolute value of
the function taken at the point. The cyclic features usually reveal there as thin lines oriented
along the dimension of frequency f axis in the SCF plane [47]. Therefore, one may well rely
on some criterion to distinguish it from the additive noise [48] or other components of the
signal [49], which can produce a significant value at a local points due to the randomness
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of the estimate. The simple yet quite effective criterion can be based on the pseudo-power
accumulated over the whole slice alongside frequency f axis, which was introduced in [50]
and further applied in [51]:

P̃(α) = ∑
m

∣∣∣∣Ŝx

(
mFs

2N
,

lFs

N

)∣∣∣∣, (23)

where the summation by m is carried out within the support region of the SCF demarked
in (13). If zero cyclic frequency is considered, i.e., α = 0, or l = 0, this integral characteristic
relates to the total power of the process, and power spectral density (PSD) S0

x( f ) can be
thought as the distribution of this power in the frequency f domain. In a similar manner,
the scalars concentrated at other cyclic frequencies α 6= 0 can be treated as power-like
quantities. In contrast, since the cyclic representation (1) does not provide the orthogonal
decomposition of the signal x(t) itself, there is no sense in the alternative averaging over
cyclic frequency dimensions for the fixed frequency f .

The absolute value of the SCF evaluated for the signal x(t) (22) and its corresponding
integral characteristic P̃(α) are shown in Figure 5, where the principal rhombus at the origin
is shown with the mask (21) applied. Four wide stripes whose crossings generate four
diamonds of the high intensity can be easily recognized in the figure. The centers of two of
them lay down in the vicinity of ±F0 and on the line of zero cyclic frequency. Two others
are at zero value of frequency f and in the vicinity of the cycles α equal to double carrier
frequency ±2F0. Those diamonds highlight the areas of where the spectral correlation takes
relatively higher values. The zoomed-in part of the diagram is shown in Figure 6, although
the exact value of the cycle responsible for the hidden periodic features is not clear. That is
exactly the issue which is going to be solved with the integral characteristic (23). Its plot is
shown attached on the right-hand side so as to to share the vertical axis α with the color
two-dimensional diagram of the SCF. The narrow—literally from one-sample—spikes at
−2F0, 0, 2F0, sharply point out the cyclic frequencies exhibited by the AM signal which are
expected to be zero and double the carrier frequencies according to theory the model [6].
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Figure 5. Estimated spectral correlation density of the AM signal.
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Figure 6. Estimated spectral correlation density of the AM signal.

Figure 7a shows the plot where integral characteristic alone indicates a clear peak at α
near −12 MHz which is close to the model value α0 = −2F0. The error is less than 0.1%.
Figure 7b shows the slice of the SCF at that frequency S−2F0

x ( f ).
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Figure 7. Area of interest in integral characteristics plot (a); the slice (absolute value) of the estimated
SCF at the estimated characteristic cyclic frequency (b).

The pulse–amplitude modulation (PAM) signal y(t) has been chosen as the second
example possessing strong cyclostationarity for the evaluating of the capability of the
proposed 2N-FFT algorithm:

y(t) =
M−1

∑
n=0

Cn rect
(

t− nT
τ

)
, (24)

where T denotes the period, τ is the width of each pulse, M is number of the pulses in
the train, {Cn} is a sequence of transmitted binary codes being modeled as a sequence
of independent, identically distributed binary random variables taking values {−1, 1}
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with the equal probability of 0.5. The waveform of a single pulse shaping the sequence is
rectangular and can be formally written as

rect(v) =





1, |v| < 0.5;
0.5, |v| = 0.5;
0, otherwise.

(25)

For the numerical simulation, the pulse width was set to be equal to its period
τ = T = 704 ns. The sampling period: Ts = 44 ns. The total length of the sequence:
N = 8192. A typical realization of the process in the time domain is shown in Figure 8a, and
the module of its sample spectrum density in the frequency domain is shown in Figure 8b.
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Figure 8. Fragment of the second example—PAM signal x(t) in the time domain (a) and in the
frequency domain (b).

The absolute value of the estimated SCF for the signal y(t) is shown in Figure 9,
together with the its integral characteristic. The spectral correlation plot there is more
complicated than the one exhibiting properties of the AM signal in Figure 5. Nevertheless,
surrounding the origin there can be seen an area of stronger correlation, which is actu-
ally formed as the intersection of two vast stripes—their width is about 2 MHz, which
is approximately the reciprocal of 1/τ. The integral characteristic will help again to dis-
close the set of cyclic frequencies α exhibiting the second-order periodicity. Those cycles
are multiples of 1/T combined together with zero frequency. A zoomed-in version of
the area of interest is shown in Figure 10, where the thin horizontal lines can also be
clearly identified.

Those slices of the estimated SCF which correspond α = n/T, n ∈ Z may be visually
compared to the SCF components provided by theoretical probabilistic model [1,30] with
the assumption of the everlasting pulse train [1], or where the finite limits 1 and M in (24)
are replaced by −∞ and +∞, respectively. Figure 11a shows the plot of the computed
integral characteristic, where the peaks clearly stand out and are painted in different colors.
Figure 11b shows theoretical and estimated curves drawn in dashed and solid lines so
that the curves related to the same cyclic frequency are shown with the same color. The
pair-wise comparison allows us to conclude that curves in the pairs are similar to each
other, which proves the efficacy of the proposed estimation technique.
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Figure 9. Estimated spectral correlation density of the PAM signal.
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Figure 10. Estimated spectral correlation density of the PAM signal (zoomed version).
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Figure 11. Area of interest in integral characteristics plot (a); SCF slice at estimated characteristic
cyclic frequency (b): the theoretical curves are dashed lines, the estimated ones are solid.
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5. Algorithmic Complexity

The FFT accumulation method (FAM) is a well-known method that produces a large
number of point-wise estimates of a spectral correlation function. It is used in this paper
as a reference for the qualitative comparison of the algorithmic complexity. Therefore, the
basic steps of FAM are briefly described in terms of computational complexity and memory
costs. Afterwards, a similar analysis is presented for the algorithm proposed in this paper.

The basic steps in implementing the FAM algorithm in software typically consist of
the following [52]:

• Sub-block matrix extraction is shaping the input signal of length N of complex values
into a sub-block matrix of size W × P, where P = N/L, which is filled by sliding a
window of size W with stride L. That operation will require memory allocation for
PW complex values.

• Application of a data-tapering window consists of multiplying each column of the
previously constructed matrix by a window function of the same length W that
requires PW multiplications with no additional memory costs, since the old elements
of the matrix may safely be discarded; thus, multiplication can be done in-place.

• The first Fourier transform is then applied to each of the matrix columns. That
requires P times the FFT of size W; again, the previous data in the matrix may safely
be discarded.

• Phase correction is required for taking into account the relative delays that are be-
tween the starting point related to each column in the matrix, since any information
about the delays happens to be lost once FFT is applied to the column vectors. The
corresponding coefficients are explicitly calculated, and then the correction requires
PW multiplications.

• The second Fourier transform is then applied to the products of each matrix row
with a complex conjugate of another row. That transformation is the key step of
accumulation that reveals the hidden second-order periodicity intrinsically embedded
in the signal. That operation is carried out W2 times in total, and each time requires
W multiplications to compute an element-wise row product. Then, a FFT of size P is
applied to the product. Thus, there are in total W3 multiplications and W rounds of
FFT (size P), and a buffer of size PW2 is to be reserved for storing the estimates.

As soon as the bispectral plane is considered to be completely covered with the
estimates after the above-listed steps, the general result regarding FAM can be reached.
The discussion from this point of view may be carried out in a dual manner: for the values
of W and L being fixed and N varying, or for the values of N and L being fixed while W
varies. Both cases are summarized in Table 1.

Table 1. Memory cost and computational complexity of the main steps in the FAM algorithm.

Algorithm Step Memory Cost Computational Complexity

Sub-block matrix extraction PW
Data-tapering window appli-
cation PW

First Fourier transform P times of FFT of size W
Phase correction PW

Second Fourier transform PW2 W3 multiplications plus FFT
of size P times W2

Total if N varies O(N) O(N log N)
Total if W varies O(W2) O(W3)

In contrast to how it is performed by the FAM, the proposed 2N-FFT approach seeks
full bispectral coverage by explicitly widenin theg FFT base to 2N, which is expected
to demand somewhat more computational resources. The basics steps in implementing
2N-FFT are the following:
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• Allocating a buffer matrix of size 2N × 2N is carried out for accumulation of the
partial estimates, which requires 4N2 complex values. Here is the entrance to the main
algorithm loop that processes P = N/L data chunks.

• Obtaining the i-th data chunk and weighting it with a window function: a memory
buffer of W complex values is required accompanied by W multiplications, yielding a
total of PW multiplications as soon as the whole loop is considered.

• The Fourier transform of the i-th chunk that within a loop requires P rounds of FFT of
size 2N.

• The phase correction is necessary due to similar reasons for its being conducted for
the FAM, so this step costs PW mutiplications.

• The shifts are performed over the the resultant vector to build the circulant and anti-
circulant matrices. Then, the latter are conjugated, and the partial estimate is added to
the accumulation buffer. Within a loop, that requires three times 4N2 complex values
for matrices (if those values are not multiplied by P for the buffers in steps i− 1, they
may be reused in the i-th step) and P times 4N2 multiplications and additions.

The summary of computational costs described above is presented in Table 2.

Table 2. Memory cost and computational complexity of the main steps in the 2N-FFT algorithm.

Algorithm Step Memory Cost Computational Complexity

Initial buffer allocation 4N2

Data-tapering window appli-
cation W PW

Fourier transform P times of FFT of size 2N
Phase correction PW
Cirulant and anti-circulant ma-
trices processing 3× 4N2 P× 4N2 multiplications and

additions
Total if N varies O(N2) O(N3)
Total if W varies O(W) O(W)

The conducted comparison of both algorithms revealed that FAM is more computation-
ally efficient if the values of L and W are fixed, whereas 2N-FFT offers better performance in
regards to W. The total number of the points being estimated within the principal domain
of the bispectral plane is PW2 for FAM, and the value of P approaches N/L as N grows
while the stride L remains the same. In contrast, 2N-FFT yields 4N2 estimates, that is,
4NL/W2 times more estimates than FAM. Since the often used [53] relation between the
window size and stride is W = 4L, the number of points provided by 2N-FFT is N/W
times more than by FAM, which coincides with the ratio (11). In other words, 2N-FFT
provides the characteristics implicitly interpolated among the frequency f dimension, so
that δ f = δα. Nevertheless, the necessary depth of the full coverage of the bispectral plane
depends on resources available as well as on further processing stages where the estimates
are involved, which leaves enough room for a trade-off based on the user’s choice.

6. Conclusions

The 2N-FFT algorithm presented in the paper further develops the basic concepts of
the accumulation of sample cyclic periodogram in a time-averaging manner. The issue of
insufficient resolution in the dimension of the cyclic frequency is overcome by extending
the number of correlating points in the frequency domain. This is achieved with the
simple yet effective interpolation technique consisting of the increasing in the base of FFT
up to the double value of the total number of samples available in the processed time
series. One of the benefits of the proposed estimator is the fact that its estimates cover
the entire bispectral plane with the resolution cells of the same size uniformly placed at
the nodes of the rectangular grid. This make the estimated samples of SCF reliable and
convenient to further processing. The convenience here means that the estimates can be
easily used for further steps of processing via matrix operations involving elementary row
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and column manipulations. The authors believe that the proposed algorithm may well be
chosen as a clear reference for the verification of other faster SCF estimating algorithms.
This algorithm can also serve an educational example providing deeper insight about the
resolution problem specific to a cyclostationry signals subdomain.

The results of the numerical simulation performed with the examples of AM and
PAM signals indicate that the curves provided by 2N-FFT algorithm merely align with the
curves related to theoretical models of the simulated processes. Although the simulation
was carried out in the absence of noise, a noise-like floor was present due to the intrinsic
randomness of the process. It is also possible to notice some signs of the FFT leakage, where
the neighboring cyclic frequencies are affected by the strong component at the neighboring
cyclic frequencies.

One of the disadvantages of the 2N-FFT algorithm consists in its higher demand for
computer memory in comparison with such algorithms as FAM or SSCA. This issue arises
due to the necessity of processing complex-valued matrices of 2N × 2N size in order to
handle the full coverage of the SCF support region. The total amount of the memory
required to store the data cannot be less than 8N2 floating-point cells of the chosen machine
data type, presumably single or double precision. On the other hand, 2N-FFT has more
steep memory consumption requirements for N values remaining fixed, which provides a
sort of trade-off. The computational performance of 2N-FFT algorithm will also crucially
depend on the general performance of the program library used in the backend of the
chosen target platform for implementation of linear algebra operations.

The proposed method is promising for further development. The first direction may
consist of seeking a windowing function weighing each of the signal fragments in order
to decrease the leakage in both frequency and cyclic frequency dimensions. The second
direction would be coping with the main disadvantage of the algorithm—finding the way
to reduce the amount of memory required for storing the estimates. This can be carried
out with introduction of decimation in the frequency domain because the width of the
resolution cells along the frequency axis is considerably larger than the size of the step
between two samples in that direction. Finally, the possible increase in the performance
can be reasonably expected as soon as the parallel execution is introduced for estimating in
different evaluation of the partial SCF estimates.
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2N-FFT double number FFT method
AM amplitude modulation
CACF cyclic autocorrelation function
FAM FFT accumulation method
FFT fast Fourier transform
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PSD power spectral density
SCD spectral correlation density
SCF spectral correlation function
SSCA strip spectral correlation algorithm
VLSI very large scale integration
WSS wide-sense stationary
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