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Abstract: Physical fatigue is a serious threat to the health and safety of firefighters. Its effects include
decreased cognitive abilities and a heightened risk of accidents. Subjective scales and, recently,
on-body sensors have been used to monitor physical fatigue among firefighters and safety-sensitive
professionals. Considering the capabilities (e.g., noninvasiveness and continuous monitoring) and
limitations (e.g., assessed fatiguing tasks and models validation procedures) of current approaches,
this study aimed to develop a physical fatigue prediction model combining cardiorespiratory and
thermoregulatory measures and machine learning algorithms within a firefighters’ sample. Sensory
data from heart rate, breathing rate and core temperature were recorded from 24 participants during
an incremental running protocol. Various supervised machine learning algorithms were examined
using 21 features extracted from the physiological variables and participants’ characteristics to esti-
mate four physical fatigue conditions: low, moderate, heavy and severe. Results showed that the
XGBoosted Trees algorithm achieved the best outcomes with an average accuracy of 82% and accura-
cies of 93% and 86% for recognising the low and severe levels. Furthermore, this study evaluated
different methods to assess the models’ performance, concluding that the group cross-validation
method presents the most practical results. Overall, this study highlights the advantages of using
multiple physiological measures for enhancing physical fatigue modelling. It proposes a promising
health and safety management tool and lays the foundation for future studies in field conditions.

Keywords: fatigue estimation; physiological signals; classification algorithms; health and safety

1. Introduction

Fatigue is a multidimensional phenomenon resulting from the combination of various
factors [1,2] (e.g., time-of-day, extreme workloads, health, on-the-job and off-duty respon-
sibilities and lifestyle [3]). In the workplace, it is associated with the inability to continue
with an activity at the desired level because of mental and physical exhaustion [4]. Mental
fatigue is related to decreased motivation and ability to respond to information resulting
in diminished alertness and productivity [5]. On the other hand, physical fatigue can be
described as the inability to maintain the physical capability to perform a task optimally
and is generally the result of prolonged work tasks, adverse environmental conditions and
inadequate rest breaks [6].

From an occupational and safety view, fatigue management is of utmost importance
since it has major immediate and long-term implications [7], including decreased cognitive
and motor abilities, reduced work efficiency and productivity and subsequent heightened
risk of accidents [8]. The consequences can aggravate even further within safety-sensitive
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professions, such as the military, police officers and firefighters [9]. Indeed, this last group
is one of the most physically demanding occupations, with a considerably high rate of on-
duty fatalities worldwide [10]. Extremely hot environments, high work intensity and heavy,
impermeable protective clothing and equipment all together expose firefighters to substantial
cardiorespiratory and thermoregulatory stress levels. Consequently, and before unacceptable
risk levels are reached, preventive and interventional measures should be taken [11].

Since physical exertion is considered the primary source of fatigue, different methods
have been proposed for its estimation, such as monitoring physiological responses and
the use of subjective scales [12]. To avoid subjectivity and allow continuous monitoring,
wearable technology has also made major advances, facilitating the noninvasive collection
of multiple physiological variables in real-time [13,14]. Accordingly, literature has evi-
denced that combining different physiological variables can help in more accurate physical
fatigue assessments, and recent studies have addressed this multivariable approach among
occupational groups [15–17]. Different supervised machine learning algorithms have
been proposed to estimate physical fatigue within construction workers while performing
simulated manual handling tasks [8,18] and regular duties in the field [19]. Equivalent
approaches have been used to determine stress levels in train drivers in a high-speed rail
simulator [20] and to distinguish fatigued and non-fatigued states after specific occupa-
tional activities [12,21,22]. In addition, neural networks have been applied to develop
binary fatigue classifiers during manufacturing tasks [23].

While these studies have opened the path for automated and individual real-time phys-
ical fatigue monitoring, more work is still needed to fully explore the potential of wearables
and develop generalisable methods for assessing physical fatigue [24]. Most investiga-
tions assessed fatigue-inducing tasks with workloads that were not representative of all
occupational groups, especially those that are subjected to extreme physically demanding
conditions, as in the case of firefighters. Furthermore, studies have predominantly focused
on detecting fatigue through binary models and have not delimited various levels to under-
stand the transition leading to a maximal exhaustion status and individuals’ physiological
limits [25]. In addition, there is scarce evidence of validation procedures of these models
considering the inter-subject variability and potential data imbalances [14]. As a result, the
current study aims to contribute to physical fatigue assessment, evaluating a high range
of exercise intensities within this occupational group using multivariable physiological
monitoring and machine learning algorithms and testing different validation methods.

2. Materials and Methods
2.1. Participants

A convenience sample of twenty-four healthy individuals (18 men) from a local
fire brigade participated in the current study. Their main anthropometric characteristics
were: age 33.1 ± 9.5 years, body mass 76.0 ± 10.6 kg, height 173.1 ± 7.9 cm and fat
mass 22.7% ± 10.6% (InBody270; InBody Co. Ltd., Cerritos, CA, USA). They were active
volunteer firefighters with no history of cardiopulmonary or intestinal diseases and an
absence of musculoskeletal disorders. All experiments were conducted in accordance with
the Declaration of Helsinki and approved by the Ethics Committee of the University of
Porto (Report 106/CEUP/2021). An informed written consent form was read and signed
by all subjects involved in the trials.

2.2. Data Collection and Labelling

The methodology employed for physical exertion monitoring and modelling is sum-
marised in Figure 1, illustrating the steps followed from the physiological data collection,
up to assessing the model’s performance. As described in Figure 2, volunteers (in light
clothing, approximately 0.3 clo [26]), performed an incremental intermittent running proto-
col of seven stages of 4 min (with 1 km/h increments and 30 s rest periods in between) on a
treadmill (T2100 treadmill; GE, Boston, MA, USA) [27–29] inside a climatic chamber (FITO-
CLIMA 25000 EC20; Aralab, Rio de Mouro, Portugal) [30]. The chamber (3.20 m × 3.20 m),
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which controls temperature to an accuracy of ± 0.2 ◦C and relative humidity of ± 5%, was
set at thermoneutral conditions (24 ◦C and 50% of relative humidity). The participants’
initial velocity was determined according to their experience and capacity, and validated in
a previous bout in which they ran at low intensity at that pre-defined pace [28,29].
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Figure 2. Scheme describing the implemented intermittent incremental running protocol.

Volunteers were familiarised with all testing procedures and equipment prior to the
experimental sessions. The day before each trial, an explanation of the risks and benefits of
participating was provided, and the informed consent form was signed by the volunteers.
Next, a medical examination took place to ensure their aptness to participate and complete
all parts of the experiment. With the volunteers’ and the physician’s consent, a telemetric
ingestible thermometer pill (e-Celsius Performance capsule; BodyCAP, Hérouville-Saint-
Clair, France) was then given with the respective indication on how and when to ingest it
(6 h prior to the test) [31]. During the experimental protocol, breath-by-breath respiratory
gas exchange variables were measured continuously by a telemetric portable gas analyser
(COSMED K5; Cosmed, Rome, Italy). It was attached to the participant’s back and placed
near their body’s centre of mass to avoid relevant interferences during running [28,29].
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Heart rate was measured at baseline and every 5 s using a heart rate monitoring
belt (Garmin Edge 830; Garmin, Olathe, KS, USA) that telemetrically emitted the data to
the K5 portable unit. Intraabdominal core temperature was continuously retrieved from
low-frequency radio waves transmitted from the gastrointestinal capsules to an external
logger (e-Viewer Performance monitor, BodyCAP, France) at 15 s intervals [31]. The rates
of perceived exertion were collected at the end of each 4 min stage through direct feedback
from the participants and using the 6–20 Borg scale [28]. Finally, for complementary
information, capillary blood samples for blood lactate analysis were collected (Lactate Pro2;
Arkay, Inc., Kyoto, Japan) from the fingertip at baseline, during the 30 s rest stages and
at the 1st, 3rd, 5th and 7th min of the recovery stage [28,29,32]. They were included as
indicators of the anaerobic system contribution and to validate the physical fatigue levels
determined through the Borg scale.

2.3. Preprocessing and Cleaning

The collected data were revised to remove errant measurements from talking, coughing
or signal interruptions [28,29,32]. Signals from heart rate, core temperature, breathing rate
and gas exchange variables were preprocessed to consider only the data between the mean
± 3 standard deviations and posteriorly smoothed using a moving average filter [27–29,32].
The first three variables were selected as the main variables and therefore included in
the model, since they have been previously proven as valid and reliable indicators of
physical exertion and fatigue within various occupational settings [13,16]. Furthermore,
they can be obtained using sensors that allow mobility, continuous monitoring and ease of
wearing [13,14,17,33]. For the main and complementary measured variables, the normality
of distribution was checked using the Shapiro–Wilk’s test and mean values ± SD were
calculated for every stage. Pairwise multiple post hoc comparisons were conducted with
Bonferroni’s correction, with the significance level set at p < 0.05.

2.4. Feature Extraction

Preprocessed data were synchronised, testing different time intervals, and various
features were extracted from heart rate, breathing rate and core temperature within each
considered time interval. These features, including mean, minimum, maximum, standard
deviation, variance and kurtosis, calculated from 4, 2 and 1 min intervals, and baseline
values (3 min average of pre-exercise values while sitting) from the variables, were evalu-
ated to be integrated or not into the model based on their capacity to increase the model’s
prediction accuracy. After testing all the alternatives (using different feature combinations
to train the model), baseline, mean, minimum and maximum values per minute were
included from heart rate, breathing rate and core temperature signals. In addition, the age-
predicted maximum heart rate (220-age) [29], the percentage of the age-predicted maximum
heart rate (calculated from the mean heart rate per minute) and personal characteristics
(i.e., gender, age, weight, height, fat mass, fat-free mass and body mass index) were com-
bined as inputs for modelling. As described in Table 1, the level of physical fatigue reported
with the 6–20 Borg Scale was simplified to a 4-level scale [12,15,18], with the resulting
categories (i.e., low, moderate, heavy and severe) used as ground truth for modelling.

2.5. Classification Algorithms

The resulting dataset, comprising a total of 750 sets of 21 features (six from heart
rate, four from breathing rate, four from core temperature and seven from personal char-
acteristics) together with the corresponding fatigue levels, was normalised and fed to
machine learning algorithms. Various supervised classification algorithms, previously used
for modelling physiological variables responses [12,15,18,34,35] and many health-related
purposes [36,37], were evaluated since no previous study assessed this combination of
variables for firefighting applications. The tested algorithms included K-nearest neighbours,
Boosted Trees (Gradient-boosted Trees, XGBoosted Trees and RUSBoosted Trees), Bagged
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Trees, Random Forests, Support Vector Machines with different kernel functions (linear,
quadratic, cubic and Gaussian) and Artificial Neural Networks.

Table 1. Correspondence of the 6–20 Borg scale with the simplified 4-level physical fatigue scale.

RPE Level of Exertion Physical Fatigue Levels
6 No exertion
7

7.5 Extremely light
8
9 Very light
10
11 Light

Low

12
13 Somewhat hard
14

Moderate

15 Hard
16

Heavy

17 Very Hard
18
19 Extremely hard
20 Maximal exertion

Severe

K-nearest neighbours is one of the simplest yet accurate classifiers that assumes that
similar results are near each other and, therefore, depends mainly on measuring the distance
or similarity between the unlabelled data and the training examples [38]. Boosted Trees
algorithms utilise numerous weak classification trees and turn them into strong classifiers.
The weight of each classification tree is in proportion to their ability to classify given labelled
examples correctly. While numerous algorithms can be used for Boosted Trees implementation,
the current study used Gradient-Boosted Trees, an ensemble technique able to operate with
small amounts of data [39], and XGBoosted Trees, an improved extendible application of
gradient-boosted machines [40,41]. RUSBoosted Trees are a hybrid approach (sampling and
boosting) especially suited for cases where the classification model is built using imbalanced
data. While it takes all class samples with the least labelled examples, it undersamples other
classes by taking samples equal to the class with the least examples. Then, the classifier is
improved iteratively based on loss function minimisation [42].

Random Forest is an ensemble of many individual tree predictors in which each tree
depends on the values of a random vector sampled independently and with the same
distribution of all trees in the forest [43]. Support Vector Machines are algorithms that use a
probabilistic binary linear classifier to learn the structure of the data. The kernel functions
transform the features into high-dimensional spaces to improve the accuracy [19,37]. With
the linear kernel, the original features of the data are used. The quadratic and cubic take
each feature dimension into their squared and cubic values, respectively. The Gaussian
kernel uses a radial basis function to transform the features. Finally, the Artificial Neural
Network algorithm is a set of connected input-output networks (one input, one or more
intermediate and one output layer) in which weight is associated with each connection, and
the classification is made as belonging to some discrete class based on inputs [12]. All tested
algorithms were trained with their default hyperparameters for feature selection, and then
they were iteratively adjusted and retrained, modifying their training hyperparameters. The
final version of each algorithm was defined with the hyperparameters combination leading
to the best performance. The details of these classifiers and the process of determining
their hyperparameters are not reported here, as they can be consulted in various machine
learning resources [37,44].

2.6. Model Assessment

To validate the capability of the trained models to accurately predict the four physical
fatigue levels, 10-fold cross-validation was initially performed. This is the most commonly
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used method to validate supervised machine learning algorithms and has been widely
employed to measure the performance of classification models using physiological sig-
nals to predict human psychophysiological states, such as stress, emotions and physical
exertion [15,19,45]. In the 10-fold cross-validation, the dataset is randomly divided into
ten equal-sized subsets, with nine of the ten subsets being used to train the model and the
remaining subset applied to validate the performance of the trained model. The training
and validation are repeated ten times so that all subsets are used for validation and the
reported accuracy is the average of the ten iterations.

Furthermore, given the characteristics of the dataset, other validation methods were
also examined to determine the model’s good performance. Stratified 10-fold cross-
validation was applied to solve any under or overfitting of the model resulting from
the imbalanced classes (e.g., participants reported low and heavy categories more than
moderate and severe). This method ensures that each fold of the dataset has the same
proportion of samples with each category. Finally, group cross-validation was used with
24 splits to divide the dataset by participants and explore the capability of the model to
predict the physical fatigue of every volunteer separately. In the three cases, the number
of correctly predicted samples or true positives from the total amount of data, the false
negatives (resenting the number of predictions wrongly classified as other fatigue groups)
and the false positives (referring to the number of predictions that belong to other groups
and were wrongly estimated) were calculated to obtain the four performance metrics of
accuracy, precision, recall and F1 score (Equations (1)–(4), respectively). The results of these
metrics were compared to determine the model with the best performance.

Accuracy =
True positives
Total records

(1)

Precision =
True positives

True positives + False positives
(2)

Recall =
True positives

True positives + False negatives
(3)

F1 score =
Precision ∗ Recall

Precision + Recall
∗ 2 (4)

3. Results

Data collected from the 24 participants were initially preprocessed, removing approxi-
mately 13% of the records (minimum 9%, maximum 21%, median 13%). Table 2 shows the
results for each measured variable during every stage of the incremental running protocol,
noting the significant differences among stages (p < 0.05). Although not all of them were
used for developing the model (heart rate, breathing rate and core temperature were used for
feature extraction and RPE for labelling the physical fatigue stages), together they provided a
complete view of the participants’ performance and physiological limits while validating the
physical fatigue levels resulting from the Borg scale. Preprocessed records were synchronised
per minute, resulting in a dataset of 750 sets of 21 features, from which 283 belonged to the
low, 140 to moderate, 167 to heavy and 160 to severe levels. Various supervised machine
learning algorithms were tested on this dataset, and Table 3 displays the performance metrics
of these classification algorithms using the three cross-validation techniques.

Observing the accuracy, the three methods identified XGBoosted Trees (using
500 estimators, a maximum depth of individual regression estimators of five and a learn-
ing rate of 0.1) as the best classifier. Indeed, this algorithm consistently showed the best
results in accuracy, recall and F1-score. Regarding precision, Gradient-boosted Trees (with
500 estimators, maximum depth of five and learning rate of 0.1) and Random Forest (with
500 estimators, maximum depth of five, and the quality of splits measured with the Gini
impurity criterion) also showed good results in stratified and group cross-validation (re-
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spectively). Overall, the XGBoosted Trees algorithm outperformed all the tested algorithms
and was selected for further analysis.

Table 2. Incremental running protocol measured variables (means ± SD) in each 4 min stage. The
variables used for extracting the features and labels of the model are in bold. Superscripts represent
values significantly different from noted stages (e.g., 4–7, differences in stages 4, 5, 6 and 7).

Stage No.: 1 2 3 4 5 6 7

Treadmill velocity
(km/h) 5.4 ± 1.8 6.2 ± 1.9 7.0 ± 2.1 8.0 ± 2.1 9.0 ± 2.1 10.0 ± 2.1 11.0 ± 2.1

Oxygen uptake
(mL/min/kg) 18.7 ± 7.2 2–7 22.5 ± 8.3 3–7 25.5 ± 9.2 4–7 29.5 ± 9.4 5–7 34.5 ± 9.1 6–7 39.1 ± 8.6 40.5 ± 8.6

Oxygen uptake
(mL/min) 1418.5 ± 571.9 2–7 1688.3 ± 630.3 3–7 1919.3 ± 706.5 4–7 2228.0 ± 731.9 5–7 2611.2 ± 709.4 6–7 2964.5 ± 684.9 3065.2 ± 698.1

Respiratory
frequency (1/min) 26 ± 7 2–7 28 ± 8 4–7 31 ± 7 4–7 35 ± 7 5–7 40 ± 8 6–7 47 ± 8 7 52 ± 8

Tidal volume (L) 1.25 ± 0.38 2–7 1.47 ± 0.48 5–7 1.50 ± 0.46 4–7 1.65 ± 0.40 5–7 1.86 ± 0.39 6–7 2.03 ± 0.43 1.99 ± 0.34

Ventilation (L/min) 33 ± 14 2–7 42 ± 16 3–7 47 ± 18 4–7 58 ± 18 5–7 75 ± 20 6–7 94 ± 19 7 105 ± 20

Carbon dioxide
production (mL/min) 1260.2 ± 533.5 2–7 1601.3 ± 609.4 3–7 1802.1 ± 689.9 4–7 2170.0 ± 708.7 5–7 2641.8 ± 689.9 6–7 3091.8 ± 609.3 3236.2 ± 691.7

Respiratory quotient 0.89 ± 0.13 2–7 0.95 ± 0.15 5–7 0.95 ± 0.17 6–7 0.99 ± 0.20 5–7 1.03 ± 0.207 1.06 ± 0.19 1.07 ± 0.20

Heart rate (bpm) 110 ± 17 2–7 127 ± 20 3–7 139 ± 22 4–7 153 ± 20 5–7 168 ± 13 6–7 179 ± 11 183 ± 20

Core temperature
(◦C) 37.36 ± 0.36 3–7 37.47 ± 0.40 3–7 37.56 ± 0.40 4–7 37.71 ± 0.45 5–7 37.81 ± 0.40 6–7 38.01 ± 0.40 7 38.19 ± 0.44

Lactate concentration
(mmol/L) 2.4 ± 1.0 4–7 2.6 ± 1.0 3–7 3.1 ± 1.4 4–7 4.3 ± 1.5 5–7 6.0 ± 3.0 6–7 10.3 ± 3.4 7 14.4 ± 4.0

RPE (6–20) 9 ± 2 2–7 11 ± 2 3–7 12 ± 2 4–7 14 ± 2 5–7 16 ± 2 6–7 17 ± 1 7 19 ± 1

Table 3. Performance metrics for the various classifiers and using three cross-validation methods:
(a) 10-fold cross-validation, (b) stratified 10-fold cross-validation and (c) group cross-validation with
24 splits. Bold values show the best score for each performance metric.

Classifier
Accuracy Precision Recall F1 score

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

XGBoosted Tree 0.88 0.88 0.82 0.89 0.88 0.82 0.88 0.88 0.82 0.88 0.88 0.82
Gradient-Boosted Tree 0.87 0.87 0.81 0.87 0.88 0.81 0.87 0.87 0.81 0.87 0.87 0.81

Bagged Tree 0.85 0.84 0.81 0.85 0.84 0.81 0.85 0.84 0.81 0.85 0.84 0.81
Random Forest 0.84 0.84 0.81 0.85 0.85 0.82 0.84 0.84 0.81 0.84 0.84 0.81

Linear Support Vector Machine 0.83 0.84 0.77 0.83 0.84 0.77 0.83 0.84 0.77 0.83 0.84 0.77
K-nearest Neighbours 0.80 0.80 0.64 0.80 0.80 0.66 0.80 0.80 0.64 0.80 0.80 0.65

RUSBoosted Trees 0.79 0.79 0.71 0.79 0.80 0.72 0.79 0.79 0.71 0.79 0.79 0.72
Artificial Neural Network 0.73 0.72 0.73 0.72 0.71 0.73 0.73 0.73 0.73 0.72 0.71 0.73

Quadratic Support Vector Machine 0.41 0.42 0.42 0.38 0.43 0.47 0.41 0.42 0.42 0.31 0.31 0.31
Cubic Support Vector Machine 0.45 0.46 0.44 0.46 0.49 0.44 0.45 0.46 0.44 0.36 0.37 0.34

Gaussian Support Vector Machine 0.36 0.38 0.36 0.35 0.46 0.37 0.37 0.38 0.36 0.28 0.29 0.27

Figure 3 presents the relative importance values obtained for each feature, with the
maximum heart rate and the age-predicted maximum heart rate percentage evidencing
the highest contributions to the developed model. Further analysis of the impact of these
features on the model’s performance showed that excluding the maximum heart rate from
the model reduced the overall accuracy to 77%, and the lowest reported individual accuracy
(considering group cross-validation results) dropped to 54% (compared to 69% including
the feature). On the other hand, without the percentage of the age-predicted maximum
heart rate, the overall accuracy decreased to 76%, and the variability among individual
accuracies increased. By excluding this feature, the lowest individual accuracy was 62%
and the number of participants with accuracies under 70% went from three (including the
feature) to nine.
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Confusion matrices for the best accuracy algorithm are shown in Figure 4, describing
the outcomes among the three cross-validation procedures. While the 10-fold and stratified
cross-validation methods present less than 5% differences within the same categories, the
group cross-validation displays differences of up to 10%. Nevertheless, a close examina-
tion of the three methods reveals that most misclassified cases belonged to the adjacent
categories, with very few cases observed for non-adjacent categories. Interestingly, the
results also report varying accuracy for the four physical fatigue categories (from 69 to
93% in the group cross-validation), with the best predictions registered in the low and
severe intensities (93 and 86%, respectively). This outcome evidences the model’s ability to
identify extreme physical exertion cases, which is particularly useful for field scenarios.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 14 
 

 

 
(a) (b) 

 
(c) 

Figure 4. Confusion matrices: (a) using 10-fold cross-validation, (b) using stratified 10-fold cross-

validation and (c) using group cross-validation with 24 splits. 

4. Discussion 

Recent wearable sensors have the potential to retrieve different physiological signals 

in extreme conditions. However, the resulting data needs to be processed and interpreted 

to provide meaningful outcomes and lead to timely interventions in occupational envi-

ronments. To address this gap, this study applied signal processing and machine learning 

techniques using physiological signals to train and validate a classification model to detect 

four physical fatigue levels among firefighters. Various supervised machine learning al-

gorithms and cross-validation alternatives were explored and helped develop and vali-

date a model with an overall performance of 88%, using 10-fold and stratified cross-vali-

dation methods, and 82%, by evaluating the predictions for each participant separately 

(through the group cross-validation procedure). 

The current study used machine learning classifiers instead of traditional statistical 

methods because they do not require the manual discovery of the variables’ patterns for 

the different fatigue levels and are able to determine the best category by reviewing com-

plex data without a previous view of underlying structures [46]. Machine learning focuses 

on prediction to then explain the causal relationships, feeding the algorithms with labelled 

examples such that the algorithms themselves identify the patterns within each level and 

adjust their parameters based on these examples [47]. In addition, deep learning ap-

proaches were not appropriate due to their lack of transparency and interpretability, their 

need for large datasets and their computation costs, all of which would hinder their ap-

plicability in occupational settings [48]. Therefore, different supervised classification al-

gorithms were evaluated. The XGBoost classifier was determined to have the best perfor-

mance. Consistently, supervised machine learning for binary and multiclass classification 

Figure 4. Confusion matrices: (a) using 10-fold cross-validation, (b) using stratified 10-fold cross-
validation and (c) using group cross-validation with 24 splits.



Sensors 2023, 23, 194 9 of 13

4. Discussion

Recent wearable sensors have the potential to retrieve different physiological signals
in extreme conditions. However, the resulting data needs to be processed and interpreted
to provide meaningful outcomes and lead to timely interventions in occupational environ-
ments. To address this gap, this study applied signal processing and machine learning
techniques using physiological signals to train and validate a classification model to detect
four physical fatigue levels among firefighters. Various supervised machine learning algo-
rithms and cross-validation alternatives were explored and helped develop and validate a
model with an overall performance of 88%, using 10-fold and stratified cross-validation
methods, and 82%, by evaluating the predictions for each participant separately (through
the group cross-validation procedure).

The current study used machine learning classifiers instead of traditional statistical
methods because they do not require the manual discovery of the variables’ patterns
for the different fatigue levels and are able to determine the best category by reviewing
complex data without a previous view of underlying structures [46]. Machine learning
focuses on prediction to then explain the causal relationships, feeding the algorithms with
labelled examples such that the algorithms themselves identify the patterns within each
level and adjust their parameters based on these examples [47]. In addition, deep learning
approaches were not appropriate due to their lack of transparency and interpretability,
their need for large datasets and their computation costs, all of which would hinder their
applicability in occupational settings [48]. Therefore, different supervised classification
algorithms were evaluated. The XGBoost classifier was determined to have the best perfor-
mance. Consistently, supervised machine learning for binary and multiclass classification
models is currently predominant among the proposed fatigue quantification approaches
for occupational applications [14].

Although similar approaches exist in the literature, they mostly assessed workers
during manual handling tasks [7,8,15,18], which do not reflect the firefighters’ physical
demands. In their regular duties, they may be sedentary for extended periods of time, take
part in training and simulated fires or be called with little to no notice into situations of
danger and extreme physiological stress. To allow a complete view of their physiological re-
sponses from an unfatigued state until maximal exertion, our study applied an incremental
running protocol until exhaustion in controlled conditions [27–29]. Training the model with
the data collected using this protocol helped the algorithms to have examples of every state
the subject went through until reaching a maximal exertion and being unable to continue.
For field applicability, it allowed learning on the subjects’ physiological limits to intervene
before they reach them. Regarding the use of the Borg scale as a prediction label, several
studies have applied it for similar goals, evidencing an agreement on its usefulness and
validity for physical fatigue estimation [8,12,15,18]. While it is a subjective scale, grouping
it into four levels reduced the potential bias caused by reporting slightly higher or lower
fatigue levels due to individual differences in understanding of the scale [15].

Another crucial aspect considered when developing the model was feature selection.
An excessive number of features required for high-accuracy classification and monitoring
could increase space and computational requirements, while irrelevant features could
decrease performance [18]. Before achieving the final version of the model, alternatives
on time intervals and features extracted from them were used to train different versions
of the model. As a result, the features obtained per minute led to the best accuracy and
were therefore included in the final model. However, as Figure 3 evidenced, the second
and third most important features were the age-predicted maximum heart rate and the
percentage derived from it. When eliminating only the age-predicted maximum heart
rate, the variability among accuracies obtained in each fold increased and the overall
accuracy decreased to 76%. While there are discrepancies in the accurateness of these two
variables [49], some studies have successfully included them in their machine learning
models [7] and, in the current study, they improved the consistency of results among
participants and the averaged performance.
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Overall, the results showed the model’s good performance (compared to similar
fatigue estimation approaches [15,19]) with the 10-fold and stratified cross-validation
describing equivalent scores. However, the 6% difference between them and the group
cross-validation indicates the potential overfitting of the model when randomising the data.
Since the model’s goal is to predict physical fatigue based on the biological individualised
data, it should be able to perform well when dealing with new individuals. Therefore,
dividing the data by participants helped to have a detailed view of the results obtained
in each case. The interindividual accuracy variability found among subjects revealed
the importance of personal data and individualised monitoring for better predictions.
Concerning the categories’ accuracies, the highest was registered at the low level (93%),
which might be attributed to the larger dataset for this category. For machine learning
models, it is well known that a larger dataset could lead to greater performance accuracy
and vice versa [44]. Of the 750 sets of features, 38% belonged to the low level, and 19%, 22%
and 21% to moderate, heavy and severe levels, respectively.

Although a direct comparison with other studies is not possible because of different
physiological collected data, datasets sizes, experimentation and participants, some remarks
can be made of the performance of the current study against other approaches. Similar
to this study, Aryal et al. [15] used a four-level exertion scale derived from the Borg scale
as labels and developed a fatigue classification model based on a decision tree algorithm.
However, unlike the current study, they used signals from electroencephalography, multiple
infrared temperature sensors on the face and heart rate collected from 12 construction
workers during simulated construction tasks and grouped in 2 min buffers. By performing
10-fold cross-validation, they obtained an 82.6% accuracy, compared to the 88% on the
current study, with the most notorious differences observed in the accuracies for the low
and severe intensities (87% and 82% reported by them and 98% and 87% obtained in this
study), which evidence our model’s potential to predict extreme fatigue scenarios and its
good performance in comparison to current literature.

Alternatively, Pluntke et al. [50] and Kupschick et al. [51] used machine learning
algorithms applied to firefighters’ data. The first study used 1 min window features from
heart rate variability as inputs for a decision tree algorithm to distinguish between stressed
and non-stressed states [50] and, in contrast, the latter used the Borg scale but simplified
it to a two-point scale to classify low strain (6–10) and high strain (15–20) [51]. They
used similar features from personal characteristics, core temperature and heart rate but
applied a Support Vector Machine algorithm as the classification method. In both cases,
sample sizes were comparable to the current study’s (27, 22 and 24, respectively) and
accuracies using the same cross-validation method were also equivalent (88%, 85.8% and
88%, respectively). Although there were differences in the considered fatigue levels and
reported metrics, consistent results were observed in the highest physical fatigue level,
with Pluntke et al. [50] reporting a precision of 92% and recall of 82% (compared to 87%
and 95% from this study) and Kupschick et al. [51] describing a 90% accuracy in their high
strain category (compared to 87% achieved in this study). This comparability of results
confirms the contribution and prediction capability of the model of our study, which uses
equivalent features but classifying four physical fatigue levels.

Despite the successful model implementation, the current work had some limitations.
First, although the trials satisfactorily captured the gradual increment in physiological re-
sponses through each delimited physical fatigue level, they were conducted in controlled
conditions with a low mental workload and thermoneutral environment. Additional physical
and thermal burdens were not considered since they would have accelerated the transition
to maximal exhaustion. However, during their regular duties, firefighters can be subjected
to prolonged physically and mentally demanding activities and adverse climatic conditions.
Hence, future studies will aim to repeat the trials under different controlled environmental
conditions and in real settings, during simulated or real fires, to assess the model’s perfor-
mance under those situations. Furthermore, the current study measured breathing rate and
core temperature from a portable gas unit and a thermometer capsule (respectively). The
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combination of the two is not feasible in working environments. To address this issue, future
research will evaluate other combinations of noninvasive sensors to achieve the same as
this study has accomplished. Finally, other noninvasively monitored variables with proven
applicability in fatigue estimation approaches (e.g., accelerometry [52]) will also be evaluated.

5. Conclusions

This study developed a four-level physical fatigue prediction model using physiologi-
cal signals and a machine learning approach. XGBoost classifier made the best physical
fatigue estimations using 21 features from heart rate, breathing rate, core temperature
and personal characteristics. The group cross-validation method gave the most practical
view of the model’s performance and determined an 82% accuracy by evaluating it in
each of the 24 participants. Although there is room for improvement, this high accuracy
proved the feasibility of using these variables and machine learning techniques to monitor
fatigue among firefighters. This study contributes with a new alternative for continuous
and objective methods for monitoring firefighters’ physical fatigue. Real-time physical
fatigue monitoring could enhance firefighters’ health and safety by reducing the possibility
of overexertion leading to fatigue, helping to monitor those at a higher risk of physical
fatigue development and enabling intervention before any injury or accident occurs.
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