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Abstract: The accurate measurement of CO2 emissions is helpful for realizing the goals of “carbon
neutralization” and “carbon peak”. However, most current research on CO2 emission measurements
utilizes the traditional energy balance coefficient and top-down methods. The data granularity is
large, and most studies are concentrated at the national, provincial, municipal, or district/county
administrative unit scale. As an important part of the Guangdong–Hong Kong–Macao Greater Bay
Area of China, the Pearl River Delta region has good nighttime light vitality and faces huge carbon
emission pressure. Using the Pearl River Delta as the research area, this study constructed an opti-
mized pixel-scale regression model based on NPP-VIIRS (The Visible Infrared Imaging Radiometer
Suite on the Suomi National Polar-Orbiting Partnership spacecraft) nighttime light data and CO2

emissions data at the district and county levels for 2017. In addition, the spatial pattern of CO2

emissions in the Pearl River Delta was analyzed based on the predicted CO2 emission status. The
results showed that the spatial pattern of CO2 emissions in the Pearl River Delta had the distinct
characteristics of the “center-edge” effect, the spatial spillover effect, and high-value aggregation,
which should be considered when making related social or public decisions.

Keywords: Pearl River Delta; night light data; CO2 emissions; optimized regression model;
spatial pattern

1. Introduction

Global warming has been widely recognized as a major issue that urgently needs to
be alleviated, and it has been put on the agenda of every country globally [1]. Carbon
emissions generated by the production processes, lifestyle, and operation of human society
are among the main causes, and CO2 emissions are the main component of carbon emissions.
China accounts for a significant proportion of global CO2 emissions and is the world’s
largest carbon emitter [2–4]. To ensure China’s contribution to the fight against global
warming, the Chinese government strives to attain the “carbon peak” by 2030 and “carbon
neutrality” by 2060 so as to achieve green and low-carbon circular development. To meet
this goal, the scientific and accurate measurement of CO2 emissions from the earth’s surface
is of great significance to revealing the spatial pattern of CO2 emissions and providing an
auxiliary and theoretical basis for the formulation of carbon emission policies in line with
regional development.

Many scholars, at home and abroad, have attempted to use different methods to
measure carbon emissions. From the perspective of research data, most research is based
on energy statistics in statistical yearbooks of administrative units at all levels [5,6]. A
multi-scale carbon emission estimation model for the Yellow River Basin was constructed
based on the statistical carbon emission data of provincial energy consumption [7,8], and
the evolution characteristics of carbon emissions from energy consumption were analyzed
at multiple spatial and temporal scales [9]. Moreover, the sources of energy statistics are not
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completely unified, and finding carbon-related data sources remains challenging, making
it difficult to compare the results. At the research scale level, owing to a lack of statistical
data for municipal- and county-level administrative units, most of the existing studies are
based on national and provincial scales [10]. Studies and analyses of carbon emissions at
the municipal and county level [11] are scarce, and studies at the pixel level are rare. In
terms of research methods, bottom-up methods, such as the carbon emission coefficient
method, are mainly used [12], although they lack real-time carbon emission data. Fine and
real-time measurement methods can further reflect the spatial and temporal distribution
characteristics of carbon emissions scientifically and accurately and provide support for
region-specific carbon emission policy guidance.

Nighttime light data have the advantages of a wide coverage, a long time span,
and a simultaneous large area of ground information [13]. It can reveal the intensity of
economic and human activities and has become one of the most important geographic
information data [14–17]. With the rapid development of remote sensing technology, many
scholars have increasingly utilized nighttime light data in various studies such as the
multi-center extraction of urban agglomeration and the estimation of economic and social
factors. Previous studies have demonstrated a correlation between nighttime light data
and carbon emissions [13], which can be used to measure carbon emissions. However,
there are relatively few studies on the application of nighttime light data in the field of
carbon emissions. In general, most existing studies use DMSP-OLS (Defense Meteorological
Satellite Program-Operational Linescan System) nighttime light data for measurement,
which stopped updating after 2013, whereas NPP-VIIRS (The Visible Infrared Imaging
Radiometer Suite on the Suomi National Polar-Orbiting Partnership spacecraft) nighttime
light data not only filled the data gap after 2013 but also have a higher spatial resolution,
which is more suitable for recent research.

Overall, the existing literature summarizes the traditional means of carbon emission
measurement research, but the research scale is large, there are few pixel-level studies, and
most of these take the administrative unit as the research object. It is difficult to determine
the differences in the refined spatial distribution of carbon emissions. As the leading area of
economic development in the Guangdong–Hong Kong–Macau Greater Bay Area, the Pearl
River Delta region consumes considerable energy and is one of the key areas for controlling
carbon emissions. Therefore, in this study, taking the Pearl River Delta region as the focal
area and utilizing NPP-VIIRS nighttime lighting data and district- and county-level CO2
emission data, CO2 emission data were retrieved through the nighttime light index. An
optimized pixel-scale regression model was constructed so that the spatial distribution
unit of CO2 emissions was refined from the administrative unit scale to the pixel scale,
realizing a fine simulation of the spatial distribution of carbon emissions and extracting the
spatial distribution pattern of carbon emissions so as to provide a scientific basis for the
reasonable control of carbon emissions. At the same time, it also provides a reference for the
fine-grained carbon emission calculation research of the bay area and urban agglomeration.

2. Research Areas and Data Sources
2.1. Overview of the Study Area

The Pearl River Delta is located in the central and southern parts of Guangdong
Province, connecting the two special administrative regions of Hong Kong and Macao to
the south. It is the “south gate” of China, the core and prosperous home of Cantonese
culture, and an important part of the Guangdong–Hong Kong–Macau Greater Bay Area.
In 2017, the Pearl River Delta covered a total area of 55,368.7 km2, including Guangzhou,
Jiangmen, Zhongshan, Zhuhai, Huizhou, Dongguan, Shenzhen, Zhaoqing, and Foshan
(Figure 1), with a GDP(Gross Domestic Product) of CNY 7.58 trillion. Since the reforms
and the opening up of the economy, the Pearl River Delta region has been one of the
most economically dynamic regions in China, accounting for less than 1/3 of the area
of Guangdong Province but attracting more than half of the province’s population and
recording nearly 80% of the total economic output. It plays a prominent and strategic
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role in the overall situation of national economic and social development, reform, and
opening up. It is also one of the largest urban agglomerations in the world, with a great
driving force and potential for development. However, this immense driving force of
development means that there will inevitably be an accompanying huge carbon emissions
expenditure in the Pearl River Delta in the future. Therefore, studying fine measurements
of CO2 emissions in the Pearl River Delta is of practical significance.
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Figure 1. Sketch map of the study area.

2.2. Data Source

The data included NPP-VIIRS nighttime lighting data (Figure 2), CO2 emission data
from the Chinese carbon accounting database, and district and county administrative
division vector data. The NPP-VIIRS nighttime lighting data were obtained from the
National Geophysical Data Center (NGDC; https://eogdata.mines.edu/products/vnl;
accessed on 24 May 2022). The nighttime lighting data product was 2017 composite data
with a spatial resolution of 530 m from the NPP-VIIRS data source. The CO2 emission data
at the county level for the region in the Chinese carbon accounting database [18] for 2017
are expressed in millions of tons of CO2. To facilitate the subsequent numerical processing,
the unit was converted into tons. The vector data of administrative divisions at the district
and county levels were based on data of the national administrative division at the county
level at a 1:1 million scale from national basic geographic databases, which, according to
the Ministry of Civil Affairs of China, reflect “the changes in administrative divisions at
and above the county level of the People’s Republic of China in 2021” and thus have a good
trend to strictly adjust the time scale of the data.

https://eogdata.mines.edu/products/vnl
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Figure 2. NPP-VIIRS nighttime light data of the Pearl River Delta in 2017.

3. Methods
3.1. Data Preprocessing

The NPP-VIIRS nighttime lighting data used in this study were obtained from the
open data source (https://eogdata.mines.edu/products/vnl; accessed on 24 May 2022) of
the Earth Observation Organization, which uses the 2017 composite data. For the original
NPP-VIIRS data, after initial filtering, the pixels of sunlight, moonlight, and cloud were
removed, and background noise such as fire and gas combustion was not completely
filtered. Additionally, there are some problems, such as negative and extreme values.
The original projection coordinate system of the NPP-VIIRS nighttime light image was
transformed into the Lambert equiangular azimuth projection coordinate system, and the
resampling was performed at 500 m × 500 m. Then, the nighttime light image of the Pearl
River Delta region was cropped using the administrative division vector data of the Pearl
River Delta, and the background noise and extreme bright values were removed. (1) The
background noise was filtered by selecting multiple sampling points in the rivers, lakes,
and other large waters in the study area. The average value of the pixel at the sampling
point was selected as the minimum light threshold, and pixels less than this threshold
in the study area were assigned a value of zero. (2) Extreme brightness was filtered out;
the largest pixel values of international airports (Shenzhen Bao’an International Airport
and Guangzhou Baiyun Airport) in the study area were selected as the maximum lighting
threshold, and pixels larger than this threshold in the study area were assigned as the
maximum lighting threshold.

3.2. Construction of the Pixel-Scale Regression Model
3.2.1. Nighttime Light Index

In this study, we used preprocessed NPP-VIIRS nighttime light data to establish a
correlation between district- and county-level CO2 emission data. Because the minimum

https://eogdata.mines.edu/products/vnl
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granularity of nighttime light data is 500 m pixels, and the scale of the original carbon
emission data is at the district and county levels, the nighttime light data were aggregated
by district and county, and two indicators commonly used for nighttime light data, total
nighttime light (TNL) and average nighttime light (ANL), were constructed and used to
characterize the nighttime lighting characteristics of the study area. It is generally believed
that the larger the index is, the more intense the nighttime economic, social, and production
activities are. The specific calculation method is as follows.

TNL =
n

∑
i=1

DNi (1)

ANL =
∑n

i=1 DNi

n
(2)

where DNi represents the luminance value of pixels in the region, and n represents the
number of pixels in the region.

3.2.2. Correlation Analysis and Stratified Random Sampling

The Pearson correlation coefficient is widely used to measure the degree of correlation
between two variables. The expression is as follows:

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(3)

where r represents the Pearson correlation coefficient, n represents the sample size, Xi
represents the nighttime light index of sample i, X represents the average nighttime light
index of all samples, Yi represents the CO2 emissions of sample i, and Y represents the
average CO2 emissions of all samples. Pearson’s correlation analysis was performed for
TNL, ANL, and CO2 emissions.

In addition, considering that the carbon emission levels of 50 districts and counties
among the nine prefecture-level cities in the Pearl River Delta areas were objectively very
different and had strong spatial heterogeneity, stratified random sampling was required.
Stratified random sampling is a sampling method that divides the data population into
several smaller and homogeneous subgroups and then conducts random sampling in the
subgroups. Eighty percent of the subgroups were randomly selected for model construction.

3.3. Result Correction and Accuracy Test

For the regression results of CO2 emissions, a correction method was used for the
districts and counties in the Pearl River Delta area to construct their correction coefficients,
and each pixel of the regression was adjusted such that all pixels contained in each district
and county were generally close to each other. Thus, CO2 emissions at a pixel scale of
500 square meters in the entire Pearl River Delta region were obtained after correction. The
correction formula is as follows: 

y′ji = ŷji ×Cj

Cj =
Yj

Ŷj

Ŷj = ∑ ŷji

(4)

where y′ji represents the corrected CO2 emission of the first pixel in administrative unit j,
ŷji represents the CO2 emission of pixel i in administrative unit j, obtained by regression,
Cj represents the correction coefficient of administrative unit j, Yj represents the CO2

emission of administrative unit j, and Ŷj represents the CO2 emission of administrative
unit j, obtained by regression.
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Because the CO2 emission at the county level in the Pearl River Delta area is an
observation value that is as close to the true value as possible, the root mean square error
(RMSE) was used to test the accuracy. The calculation formula is as follows:

RMSE =

√
∑n

i=1
(
Ŷj − Yj

)2

n
(5)

where n represents the number of counties in the Pearl River Delta region in the verification
set, which accounted for 20% of the total data, Yj represents the CO2 emissions of admin-
istrative unit j, and Ŷj represents the CO2 emissions of administrative unit j, obtained
by regression.

4. Results
4.1. Construction of the Optimized CO2 Pixel-Scale Regression Model

The two nighttime light indices of TNL and ANL and CO2 emissions data were used
in the Pearson correlation analysis (Table 1). The TNL was significantly correlated with
carbon emissions, with a correlation coefficient of 0.95, whereas no correlation was found
between ANL and carbon emissions (0.039 or close to 0). Therefore, TNL was selected as
the independent variable for model construction.

Table 1. Correlation analysis between the nighttime light index and CO2 emissions. TNL, total
nighttime light; ANL, average nighttime light.

TNL ANL

r (Pearson) 0.950 −0.039
Significance 0.000 0.787

The results of the constructed TNL and CO2 emission models in Pearl River Delta
counties are shown in Figure 3 and Table 2. The cubic polynomial model had the highest
goodness of fit (R2 = 0.919), whereas the logarithmic model had the worst (R2 = 0.596). In
addition, the linear and quadratic polynomial models also showed a high goodness of fit,
which reveals that the classical polynomial model has a good fit for TNL and CO2.
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Table 2. Comparison of regression results.

Model Summary Parameter Estimated Value

Model R2 F Significance Constant b1 b2 b3

Linear 0.909 380.551 0.000 647,055.855 334.133
Logarithm 0.596 56.157 0.000 −56,557,734.916 6,748,511.249
Quadratic 0.911 189.890 0.000 192,425.593 374.718 0.000

Cubic 0.919 136.401 0.000 1,479,980.790 171.999 0.006 −3.293 × 10−8

Based on the above analysis, the cubic term model was selected to regress the pixel-
scale CO2 emissions of the Pearl River Delta area. After correction, the RMSE of the model
was 41,140.3 tons of CO2. Considering that the CO2 emissions of all districts and counties
in the Pearl River Delta area are more than one million tons, the RMSE is much smaller
than the magnitude of the data background, which meets the error scale of 1/10,000.

4.2. Spatial Distribution Pattern of Pixel-Scale CO2 Emissions in the Pearl River Delta

Overall, the spatial distribution of CO2 emissions in the Pearl River Delta showed
high values in a few areas, whereas CO2 emissions in most areas were at a low level,
reflecting a considerable “center-edge” effect with distinct spatial heterogeneity (Figure 4).
From the perspective of spatial distribution, Guangzhou, Shenzhen, Dongguan, Foshan,
Huizhou, Zhuhai, and Zhongshan had high CO2 emission areas. Among them, Guangzhou,
Shenzhen, Dongguan, and Foshan had more high-value regional distribution, which is
consistent with their urban status; they are all cities with intense social and economic
production activities, a high population attraction, and a high density of human activities.
These results further confirm the validity of the conclusion that nighttime light data can
be used to characterize the intensity of human activity [14,19–23]. The result also reveals
the close relationship between CO2 emission levels and city status. In addition, the CO2
emission levels of the Zhaoqing, Jiangmen, Huizhou, Zhuhai, and Zhongshan cities, far
from the center of the Pearl River Delta, were relatively low. Among them, Zhongshan and
Huizhou still had sporadic high-value regional distributions, whereas Zhuhai, Zhaoqing,
and Jiangmen lacked high-value areas of CO2 emissions, and all districts and counties in
the city showed low CO2 emission levels. In terms of numerical distribution, the number
of pixels of the first four levels of CO2 emissions (>2000 tons/ppx) only accounted for
20% of the entire Pearl River Delta, with the highest level accounting for only 0.28% of
the total and the lowest level accounting for 80%, as shown in Table 3, indicating that the
carbon emission level of most regions in the Pearl River Delta is low. Extremely high carbon
emissions existed in only a small part of the region, which have a complex and far-reaching
impact on the carbon emissions of the entire Pearl River Delta region.

Table 3. Proportion of regions with different CO2 emissions.

CO2 Emission Level Area (m2) Number of Pixels Percentage (%)

High (>20,000 tons/ppx) 156,500,000 626 0.28
Medium (10,000–20,000 tons/ppx) 336,250,000 1345 0.61

Relatively Low (5000–10,000 tons/ppx) 1,580,750,000 6323 2.85
Low (2000–5000 tons/ppx) 9,016,500,000 36,066 16.24
Very Low (<2000 tons/ppx) 44,434,250,000 177,737 80.02

In the vicinity of high-value CO2 emission areas in the Pearl River Delta, there were of-
ten other high-value emission areas showing a significant “high–high” aggregation feature,
and the spatial spillover effect was significant. Typical examples were the Guangzhou–
Foshan and Shenzhen–Dongguan areas, as shown in Figure 5. The high-value areas of
Guangzhou–Foshan were mainly located in Nanhai District, Chancheng District, and the
western part of Shunde District in Foshan City and the Panyu, Haizhu, Liwan, and Tianhe
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districts in Guangzhou City, especially Panyu District. The high-value area presented an
axial band distribution characteristic. For the Shenzhen–Dongguan area, its high-value
areas were mainly located in the western, northern, and central parts of Dongguan City, as
well as the Baoan, Nanshan, Longhua, Futian, Luohu, Longgang, and Yantian districts in
Shenzhen. Areas with high CO2 emissions were distributed in almost every district-level
administrative unit in Shenzhen, which is beneficial to Shenzhen’s long-term industrial
development and the balanced layout of carbon sink industries. These results reflect the
development of industries related to high carbon emissions in the Guangzhou–Foshan
and Shenzhen–Dongguan areas. Because of the industrial characteristics of all-weather
operations, they can be fully identified by the nighttime light index, which confirms the
high positive correlation between nighttime light data and CO2 emissions.
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In addition, the numerical distribution of CO2 emissions in Guangzhou, Foshan,
Shenzhen, and Dongguan is explored, as shown in Table 4. Overall, the percentage of
high-value CO2 emission areas of Guangzhou–Foshan and Shenzhen–Dongguan is larger
than that of the Pearl River Delta as a whole (0.28%), which is 0.44% and 1.72%, respectively.
In addition to the lowest carbon emission level, other levels also show this characteristic.
Based on the comparison of the CO2 emission levels between Guangzhou–Foshan and
Shenzhen City, it is found that, in the “lowest” level, the percentage of extremely low
CO2 in Guangzhou–Foshan City is 63.06%, while that in Shenzhen and Dongguan is only
14.7%. In the “low” level, the corresponding percentage of Guangzhou Foshan City is
29.42%, while that of Dongguan and Shenzhen is 65.42%, which reveals that Dongguan
and Shenzhen have more high-carbon-emission areas than Guangzhou and Foshan, while
there are fewer low-carbon-emission areas.
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Overall, the results are mutually verified with other similar literature, showing signifi-
cant similarity in the results [24]. However, they are superior to similar studies on carbon
emissions on a fined-spatial scale. Meanwhile, the research results further confirm that
the overall level of carbon emissions in the Pearl River Delta region does increase with
time [25].
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Table 4. Proportion of different levels of CO2 emissions in the Guangzhou–Foshan and Shenzhen–
Dongguan areas.

CO2 Emission Level
Guangzhou–Foshan Shenzhen–Dongguan

Area
(m2) Number of Pixels Percentage

(%)
Area
(m2) Number of Pixels Percentage

(%)

High
(>20,000 tons/ppx) 97,500 195 0.44 158,000 316 1.72

Medium
(10,000–20,000 tons/ppx) 246,000 492 1.1 336,500 673 3.67

Relatively Low
(5000–10,000 tons/ppx) 1,335,500 2671 5.98 1,329,500 2659 14.49

Low
(2000–5000 tons/ppx) 6,574,000 13,148 29.42 6,002,000 12,004 65.42

Very Low
(<2000 tons/ppx) 14,094,000 28,188 63.06 1,349,000 2698 14.7

5. Discussion

In this study, the NPP-VIIRS nighttime lighting data and open district- and county-
scale Pearl River Delta carbon emission data were applied to construct an optimized
pixel-scale regression model to predict the pixel-scale carbon emissions of Guangdong
Province in 2017. From the perspective of the data source, NPP-VIIRS nighttime lighting
data have great data accessibility, data quality, and temporal continuity, which proves this
study could be replicated in similar situations. Compared to other nighttime lighting data
sources—for example, the LJ1-01 data [17] and the DMSP-OLS data [26]—the former are
only disclosed until 2018, while the latter are relatively old. However, NPP-VIIRS data
have been updated and maintained all the time, although the spatial resolution is inferior
to that of the Luojia-1 data. Different regression models were compared in this study,
and the model was optimized by the open district- and county-scale Pearl River Delta
carbon emission data. The spatial distribution pattern of pixel-scale CO2 emissions in the
Pearl River Delta thus obtained was analyzed, which compensates for the shortcomings
of traditional data, such as spatial distortion, large granularity, and insignificant spatial
distribution patterns.

The main discussions are as follows.
(1) The optimized pixel-scale regression model constructed based on the NPP-VIIRS

nighttime lighting data could provide fine-scale estimates of the CO2 emission at a pixel
scale of 500 m. This study used nighttime light data to construct a nighttime light index.
Several regression models were constructed through index correlation analysis and strati-
fied random sampling, and the advantages of each regression model were compared. Cubic
polynomials were selected to regress CO2 emissions at the pixel scale. After correction, the
RMSE could reach the 1/10,000 level, and the CO2 emissions at the 500 m pixel scale could
be estimated and predicted at a fine scale.

(2) The spatial pattern of CO2 emissions in the Pearl River Delta showed a distinct
“center-edge” effect, with significant spatial heterogeneity. There were several high-value
CO2 emission areas in the central and southern parts of the Pearl River Delta, whereas the
eastern, western, and northern regions had low CO2 emissions, which reveals that there is a
close relationship between CO2 emission levels and city status. At the numerical level, the
majority of regions had low levels of carbon emissions, with only a very small number of
regions having very high carbon emissions, and a small number of high-emission regions
had a significant impact on the carbon emissions of the entire Pearl River Delta region.

(3) CO2 emissions from the Pearl River Delta showed significant spatial spillover
effects and high-value aggregation. Typical areas such as the Guangzhou–Foshan and
Shenzhen–Dongguan areas, corresponding to high-value areas, have developed high-
carbon emission-related industries that operate around the clock, which confirms the high
positive correlation between nighttime lighting data and CO2 emissions. At the numerical



Sensors 2023, 23, 191 11 of 13

level, Dongguan and Shenzhen had a higher proportion of high carbon emissions than
Guangzhou and Foshan did. In the future, when formulating carbon emission-related
policies for the four core cities of the Pearl River Delta (Guangzhou, Foshan, Dongguan,
and Shenzhen), more attention should be paid to Dongguan and Shenzhen to control the
impact of the expansion of their high-carbon-emission areas.

6. Conclusions

Nighttime light data provide new perspectives and methodological tools for characteriz-
ing surface human activity-related indicators such as near-surface CO2 emissions [20,27–34].
In this study, the NPP-VIIRS data source was used to determine CO2 emissions at the
pixel scale in the Pearl River Delta area in 2017. Compared to the traditional top-down
or bottom-up method [35,36], this study used the NPP-VIIRS data source [13] with CO2
emissions at the district and county levels in China to construct a quantitative model to
project CO2 emissions at the 500 m image metric scale in the Pearl Delta River area for 2017
to estimate and explore the spatial distribution pattern. The results of the study confirm the
interpretability of nighttime light data in the perception of CO2 emissions, revealing that
the CO2 emissions in the Pearl River Delta region show significant spatial heterogeneity
and high-value aggregation characteristics. However, this study did not consider a richer
time-and-space scale and only focused on the single time node of 2017. In the future, it
will be possible to introduce more remote sensing big data of different scales and even
multi-source heterogeneous big data for fusion to construct a multi-time series analysis
of different time sections, or even high-time-resolution and more fine-scale CO2 emission
prediction research for use in policy formulation. Fine-scale carbon emission research can
be introduced as a consideration in various forums, such as public decision making and
social distribution [37], to provide a reference for the realization of China’s long-term goals.
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