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Abstract: This paper proposes a data valuation algorithm for inertial measurement unit-based human
activity recognition (IMU-based HAR) data based on meta reinforcement learning. Unlike previous
studies that received feature-level input, the algorithm in this study added a feature extraction
structure to the data valuation algorithm, and it can receive raw-level inputs and achieve excellent
performance. As IMU-based HAR data are multivariate time-series data, the proposed algorithm
incorporates an architecture capable of extracting both local and global features by inserting a
transformer encoder after the one-dimensional convolutional neural network (1D-CNN) backbone
in the data value estimator. In addition, the 1D-CNN-based stacking ensemble structure, which
exhibits excellent efficiency and performance on IMU-based HAR data, is used as a predictor to
supervise model training. The Berg balance scale (BBS) IMU-based HAR dataset and the public
datasets, UCI-HAR, WISDM, and PAMAP2, are used for performance evaluation in this study. The
valuation performance of the proposed algorithm is observed to be excellent on IMU-based HAR data.
The rate of discovering corrupted data is higher than 96% on all datasets. In addition, classification
performance is confirmed to be improved by the suppression of discovery of low-value data.

Keywords: data valuation algorithm; meta-reinforcement learning; deep learning; transformer;
convolutional neural network; human activity recognition; inertial measurement unit

1. Introduction

Deep learning algorithms have been used in various fields [1–3]. In the field of
computer vision, deep learning algorithms are used to perform multi-modal learning to
obtain useful information from images and texts, images and speech, and images and
sensor signals [1]. In the field of audio analysis, deep learning algorithms are used for
automatic speech recognition, audio enhancement, and audio generation [2]. In the field
of natural language processing, deep learning algorithms are used to perform sentiment
analysis and machine translation [3]. The training of these deep learning algorithms tasks
requires large amounts of data. Using sufficient data during training prevents overfitting
and enhances generalizability. Therefore, deep learning algorithms are widely used for
big data analysis [4–6]. Unlike machine learning models that require handcrafted feature
engineering, deep learning models can extract features and rules from data and output the
desired signals or labels [7–9]. Therefore, both model structure and quality of training data
play important roles in improving the performance of deep learning-based models.

The quality of training data is often degraded for various reasons. In the case of sensor
data, artifacts of the sensor device or noise caused by the environment can degrade signal
quality [10,11]. Moreover, manual labeling of collected data may be erroneous owing to
mistakes or insufficient information [12,13]. Data collected via crawling may be uninten-
tionally collected or incorrectly labeled [14,15]. Data labeled via crowdsourcing can also
include labeling errors owing to human subjectivity or mistakes [16]. In turn, low-quality
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data of the aforementioned types degrade the model performance [17]. The challenge lies
in the fact that obtaining high-quality data is time-consuming and expensive [14].

Several studies have implemented robust models, even with low-quality data, to
overcome this limitation [18–20]. Moreover, studies have been conducted to improve the
performance of algorithms by improving the data quality. Liu [21] vectorized restaurant
names and user comments in social networks and improved the low-quality data and data
without location labels based on cosine similarity. The performance of the labeling model
was improved using game theory [22]. Ju [23] proposed an algorithm for reducing the label
noise of labeled medical images based on the Monte Carlo estimation method [24] and a
CNN model.

Studies have also been conducted on data valuation algorithms to improve the quality
of the training data. Data valuation algorithms evaluate the value of each training sample
to be used as its training weight. Leave-one-out (LOO) [25] is the most commonly used
data valuation method—it evaluates each sample by adopting the difference between the
performance of the model, including and excluding the sample as the sample value. As the
computational complexity of LOO increases linearly concerning the number of training
samples, it is not suitable for large datasets [25]. Data Shapley [26] is another data valuation
algorithm inspired by game theory [22]. It uses marginal performance improvement as
the data value after calculating the performance on all possible subsets of the training
data. Its computational complexity increases exponentially with the number of training
data as it requires training on all possible subsets. Monte Carlo sampling [24] can be used
for approximation to reduce the computational complexity. However, it exhibits high
computational complexity itself, and approximation introduces certain limitations.

Recently, a meta-learning-based algorithm was proposed that addresses the aforemen-
tioned limitations of high computational complexity and approximation. Ren et al. [27]
proposed a robust algorithm for low-quality data by adjusting the weight of the batch-size
training data for each gradient step using the validation set. Hendrycks [28] corrected the
labels of corrupted label data using a clean validation set and re-trained the model using the
corrected training data. Saeed [29] used a neural network-based task predictor for image
segmentation and classification to update the neural network-based image quality assess-
ment (IQA) controller for medical image data. The authors performed meta-reinforcement
learning for newly added data or meta-task data to fine-tune the IQA controller network
using the task performance of the predictor. Yoon [30] proposed a deep learning-based data
valuation algorithm using reinforcement learning by combining a predictor with a data
value estimator (DVE). The DVE was trained using meta-reinforcement learning using the
task performance of the predictor. This method exhibited better performance and efficiency
than LOO [25] and Data Shapley [26]. Previous data valuation algorithm studies [26,29,30]
primarily dealt with public image datasets and insufficiently dealt with other types of data,
such as time series data and data with a small number of samples.

In this paper, we propose a data-valuation algorithm based on meta-reinforcement
learning for inertial measurement unit-based human activity recognition (hereinafter, IMU-
based HAR) data. The IMU comprises a three-axis acceleration sensor and a three-axis
gyroscope sensor and measures the inertia applied to the unit based on the captured
motion information. The IMU-based HAR algorithm, which is a type of pattern recognition
algorithm, recognizes the type and quality of motion based on the IMU data collected
using wearable devices. Previous studies on data valuation algorithms have primarily
utilized vision-based public datasets [26,29,30]. However, IMU-based HAR data have
not been investigated yet. Unlike [30], which required feature-level input, the proposed
algorithm adds a feature extraction structure to the data valuation algorithm, enabling
the utilization of raw-level inputs. In the algorithm proposed in [30], a pre-trained model
was required to accept feature-level input data, which required training data of sufficient
volume and quality. Thus, constructing good pre-trained models may be difficult in
some cases. The proposed algorithm does not suffer from this limitation. Meanwhile, in
previous studies, pre-trained models were used to generate feature-level data to train the
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network for prediction. However, if a feature extraction structure is included in the data
valuation algorithm, as in the proposed algorithm, its network is trained for the purpose of
data valuation.

The proposed data valuation algorithm incorporates a structure suitable for IMU-
based HAR data within it. It comprises a DVE that receives the training data input and a
predictor that supervises the output of the DVE during model training. A feature extraction
structure suitable for IMU-based HAR data is added to the DVE to enable it to accept
raw-level inputs. Both local and global features can be extracted from the IMU-based HAR
data using the feature extraction structure, where a transformer encoder is inserted after
the 1D-CNN backbone. A stacking ensemble structure, including a double-head 1D-CNN,
which exhibits good performance and efficiency on IMU-based HAR data, is used as the
predictor. Four IMU-based HAR datasets are used for model evaluation—the Berg balance
scale (BBS) HAR data collected at Inha University Hospital and the public IMU-based
HAR datasets from the University of California, Irvine, human activity recognition using a
smartphone dataset (UCI-HAR), wireless sensor data mining (WISDM), and the Physical
Activity Monitoring dataset (PAMAP2). Corrupted data are generated by contaminating
the labels of 20% of the training data to evaluate the algorithm. On all IMU-based HAR
datasets, excellent performance is observed concerning the ratio of finding corrupted data
in low-value data, exceeding 96%. In addition, a classification performance is observed
to improve on all IMU-based HAR datasets when low-value data are removed from the
training data. This indicates that the proposed algorithm evaluates the data adequately.

2. Materials and Methods
2.1. Proposed Algorithm
2.1.1. Structure of the Proposed Data Valuation Algorithm

The algorithm comprises a DVE and a predictor that supervises the output of the DVE
during training. The structure of the algorithm is illustrated in Figure 1.

In the case of a training sample input of batch size = B, the DVE extracts appropriate
features from it, concatenates it with label information, and refines the information of the
input data using a multi-layer perceptron (MLP) structure comprising five dense layers.
All dense layers are structurally identical, with 100 perceptrons and the ReLU activation
function. The final dense layer in the MLP is concatenated with marginal information
which is the degree of contamination of training data. The marginal information is given
by m(x, y) = |y− fv(x)|, where fv denotes a predictor pretrained using validation data.
Subsequently, a dense layer is placed, and the selection probability, hϕ(x, y), of the cor-
responding data is output as softmax. The selection probability is equal to the value of
the corresponding sample. Corresponding to training data, D = {(x, y)}N

i=1 ∼ P, the
sampler uses the polynomial distribution hϕ(D) obtained by the DVE to choose the se-
lection vector s = {s1, s2, . . . sB}. The probability of outputting the selection vector, s, is
πϕ(D, s) = ∏N

i=1

[
hϕ(xi, yi)

s·
(
1− hϕ(xi, yi)

)1−si
]
. The DVE output is passed as a training

weight for each sample of the predictor model.
The predictor, fθ , is trained to minimize a weighted loss function, L f , on the training

dataset, D. Equation (1) express this. Cross-entropy is used as the loss function, and θ
denotes a parameter of the predictor model.

fθ = argmin f∈F
1
N

N

∑
i=1

hϕ(xi, yi)·∇L f

(
f̂θ(xi), yi

)
(1)

The task performance of trained predictor is used as the loss, Lh. At this time, to
calculate the task performance, clean validation data Dv = {(xv, yv)}L

k=1 ∼ Pt are used.
The DVE loss is trained using a gradient-based method. The loss is transmitted to the DVE
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as a reward. The loss for DVE training obtained by multiplying the probability and reward
corresponding to the sample can be expressed as the following expected value:

l̂(ϕ) = E(xv ,yv)∼Pt ,s∼πϕ(D,·)[Lh( fθ(xv), yv)]

=
∫

Pt(xv) ∑
sε[0,1]N

πϕ(D, s)·[Lh( fθ(xv), yv)]dxv (2)

At this time, the agent is DVE, the action is the data selection process, and the environ-
ment encompasses training and evaluation of the predictor.
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2.1.2. Structure for IMU-Based HAR in Proposed Data Valuation Algorithm

The proposed data valuation algorithm introduces appropriate deep learning struc-
tures into an existing algorithm [30] to achieve a good performance on IMU-based HAR
data. A structure for extracting the features of IMU-based HAR data is inserted into the
data input part of the DVE to enable raw-level, IMU-based HAR data to be accepted as
input. The predictor uses a module with good efficiency and performance on IMU-based
HAR data.

The feature extraction structure extracts both local and global features by inserting
a transformer encoder after the 1D-CNN backbone. The filter size of the 1D-CNN layer
is taken to be 64, its kernel size is taken to be 3, and the GeLU activation function is used.
Two self-attention heads are used in the transformer block, 256 perceptrons are used in
the feed-forward layer, a dropout of 0.1 is used, GeLU is used as the activation function,
and two structurally identical transformers are placed in a row. In previous studies on
IMU-based HAR data [31–33], models comprising a recurrent neural network (RNN) series
after the 1D-CNN exhibited good performance. The feature extraction structure used in
this study is inspired by those used in previous studies [31–33]. Rather than using an
RNN-series model, a transformer encoder block is used to perform a similar role. The latter
is superior to the former in terms of computational efficiency [34].

A 1D-CNN-based stacking ensemble structure model [35–38] that exhibits good per-
formance and efficiency in an inertial sensor-based HAR algorithm is used as the predictor.
Structurally, it consists of a simple dense layer classifier after a double-head 1D-CNN, and
the kernel sizes of the two heads are taken to be 1 and 3 to extract different features. The
filter size of the 1D CNN layer is taken to be 64, and ReLU is used as the activation function.

2.2. Evaluation Datasets

In this study, four IMU-based HAR datasets are used to evaluate the proposed
algorithm—the BBS HAR data collected together with the Department of Rehabilitation
Medicine at Inha University Hospital and public datasets, namely, UCI-HAR, WISDM, and
PAMAP2 data.

2.2.1. BBS HAR Data

The BBS HAR dataset comprises IMU-based HAR data recorded by introducing a
wearable inertial measurement unit (IMU) into a BBS, a balanced assessment. The BBS is
the balance assessment designed to evaluate the balance ability of the elderly and is known
to be highly reliable, even for patients with brain diseases [39,40]. In BBS, subjects are asked
to perform 14 static and dynamic tasks, each of which is scored. The balance ability of the
subject is evaluated on the basis of the total score [41].

The data were collected from the Department of Rehabilitation Medicine at Inha
University Hospital. The experimental design was approved by the Institutional Review
Board. In aggregate, 53 patients aged 50–80 years (male: 31, female: 22) with brain disease
and three healthy individuals in their late 20s participated in the experiment. The healthy
participants imitated the motions of the patients and performed all motions with scores
between 0 and 4.

Noraxon’s myoMotion, which is a multichannel wireless IMU system, is used for
the experiment. This system is certified to be an ISO 13,485 compliant (Registration #
MED−0037b) and an FDA 510 K compliant (Registration number #2098416) medical device.
IMU modules are attached to the human body using Velcro bands. The IMU modules
transmit data wirelessly to receivers, which are connected to a computer via a USB. The
system uses a type of PC software for recording and management hardware. If a webcam
is connected to the PC, video data synchronized with IMU data can be recorded, which can
be used to label IMU motion data. Figure 2 illustrates the software and equipment of the
Noraxon’s myoMotion.
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Figure 2. Software and equipment of the multichannel wireless IMU system.

Eight IMUs are used in the experiment and worn on the forehead, left and right wrists,
left and right upper hips, back of the left and right ankles, and back. Each IMU recorded
the values of accelerometer X, Y, Z, roll, pitch, yaw, rotation X, Y, Z at a sampling rate of
100 Hz. The rotation refers to the number of rotations and is calculated by cumulatively
aggregating the rotation angles of the sensor. Figure 3 depicts a photograph of the BBS
experimental environment and the IMU attachment locations.
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In [35], a deep-learning-based BBS score recognition algorithm was proposed. We
adopt the data pre-processing methodology of the aforementioned algorithm, comprising
data augmentation based on the oversampling technique, data downsampling, normaliza-
tion, and zero-padding [35].

2.2.2. UCI-HAR

The UCI-HAR dataset comprises IMU-based HAR data obtained using inertial sensors
embedded in smartphones and were devised by Anguita [42]. The participants performed
six motions in aggregate—“walking”, “walking upstairs”, “walking downstairs”, “sitting”,
“standing”, and “lying down”—while wearing a smartphone on their waist. A total of
30 participants aged 19–48 years participated in the experiment. Motion data were recorded
using a 3-axis gyroscope and 3-axis accelerometer at a sampling rate of 50 Hz. A sliding
window was applied to the data for real-time recognition. The window size was taken to
be 128, with an overlap of 50%. Data augmentation was performed using the same method
as that in a previous study [37].
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2.2.3. WISDM

The WISDM dataset comprises HAR data obtained using inertial sensors embed-
ded in smartphones and were devised by Kwapisz [43]. Each participant performed six
movements—“walking”, “jogging”, “ascending stairs”, “descending stairs”, “sitting”, and
“standing”—with a smartphone in the front pocket of their trousers. A total of 36 people
participated in the experiment, and the 3-axis accelerometer data were recorded at a sam-
pling rate of 20 Hz. For real-time recognition, a sliding window was applied to WISDM
data with a window size of 80 and an overlap of 50%. Data augmentation was performed
using the same method as in a previous study [37].

2.2.4. PAMAP2

The PAMAP2 dataset comprises IMU-based HAR data collected by Reiss [44] from
test participants using three wearable IMUs on their hands, chest, and ankles and a heart
rate sensor. The test participants performed 12 movements commonly performed in
daily life—“lying”, “sitting”, “standing”, “walking”, “running”, “cycling”, “Nordic walk-
ing”, “ascending stairs”, “ descending stairs”, “vacuum cleaning”, “ironing”, and “rope
jumping”—and six optional movements—“watching TV”, “computer work”, “car driv-
ingx”, “folding laundry”, “house cleaning”, and “playing soccer.” In this study, 12 types of
data corresponding to actions undertaken in daily life are used. Nine participants aged
27–32 years participated in the test. The 3-axis gyroscope, 3-axis accelerometer, and 3-axis
geomagnetic and temperature sensor data were recorded at a sampling rate of 100 Hz, and
the heart rate data were recorded at a sampling rate of 9 Hz. For real-time recognition, a
sliding window was applied to the data with a window size of 100 and an overlap of 50%.
Data augmentation was performed in the same manner as in a previous study [45], and
synthetic data were generated to ensure at least 6500 windowed data for each class.

2.3. Training and Evaluation Method

For the evaluation of the proposed algorithm, the data are divided into training,
validation, and test datasets in a 4:2:3 ratio. The predictor pre-trains with training data.
At this time, the batch-size training data is received from the DVE. The batch size of the
predictor is considered as 64 for BBS data and 1024 for public data based on excellent
results obtained and corresponding to the batch sizes [35,37]. The predictor uses the Adam
optimizer, a learning rate of 0.01, and 200 iterations. DVE uses the reward received from
the predictor for training. The DVE uses the Adam optimizer, a learning rate of 0.01, and
30 iterations for training. Algorithm 1 describes the training process of the data valuation
algorithm using a pseudocode.

Corrupted sample discovery (CSD) and remove high/low-value samples (RHLVS) are
used to evaluate the data valuation algorithm. In total, 20% of the labels of the training
data are contaminated for evaluation. CSD represents the rate at which corrupted samples
are discovered while accumulating a constant rate of the amount of data from the lowest
value data. The performance of the data valuation algorithm can be considered to be
excellent when several corrupted samples are observed in the low-value data. In the
previous studies on data valuation algorithms [26,30], CSD was used as a performance
evaluation criterion. A value is assigned to each sample of the training dataset using
the trained data valuation algorithm, and the dataset is in descending order in terms of

the value of DsortH =
{(

xh
i , yh

i

)}N

i=1
. The contaminated training dataset is denoted by

Dconta = {(x, y)}o
i=1. The number of data corresponding to 5% of the training data is

v = N
100/5 , and the index of the result is r ε {0, 1, . . . 10}. Accumulated data with low values

are denoted by DsortH
r =

{(
xH

i , yH
i
)}v×r

i=1 . The function that outputs the number of elements
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in a dataset is denoted by Numb. The formula for obtaining CSD and the resulting value
can be expressed as follows:

CSDr =
Numb(DsortH

r ∩ Dconta)
o

CSD = {CSD0, . . . , CSD10}
(3)

Algorithm 1 Pseudo-code of data valuation training

Inputs: Learning rates α, β > 0, mini-batch size Bp, Bs > 0, inner iteration count NI > 0,

moving average window T > 0, training dataset D, validation dataset Dv =
{(

xv
k , yv

k
)}L

k=1
Initialize parameters θ, ϕ, moving average δ = 0
While waiting for convergence perform

Sample DB =
(

xj, yj

)Bs

j=1
∼ D

for j = 1, . . . , Bs perform
Get selection probabilities : wj = hϕ

(
xj, yj

)
Sample a selection vector : sj ∼ Ber

(
wj

)
for t = 1, . . . , NI perform

Sample (x̃m, ỹm, s̃m)
Bp
m=1 ∼

(
xj, ym, sm

)Bs

j=1
Update the predictor model :

θ ← θ − α
Bp

∑
Bp
m=1 s̃m·∇θ L f ( fθ(x̃m), ỹm)

Update the DVE model:

ϕ← ϕ−
[

B
L ∑L

k=1
[
Lh
(

fθ

(
xv

k
)
, yv

k
)]
− δ
]
·∇ϕlogπϕ(DB, (s1, . . . , sb))

Update the baseline:
δ← T−1

T δ + 1
LT ∑L

k=1
[
Lh
(

fϕ
(
xv

k
)
, yv

k
)]

RHLVS repeatedly removes a certain amount of data—either of highest or lowest
value—and evaluates the accuracies of HAR after removing each training data point.
If the data valuation model exhibits excellent performance, the classification accuracy
can be decreased by removing high-value data, and the classification accuracy can be
slightly improved by removing low-value data. The value (=selection probability) of
each training sample calculated using the data valuation algorithm is given by hϕ(D) =
{p1, . . . , pN}. When Sorth is a descending sort function and SortL is an ascending sort func-
tion, Sorth

(
hϕ(D)

)
=
{

ph
11, . . . , ph

N

}
, SortL

(
hϕ(D)

)
=
{

pl
1, . . . , pl

N

}
. The sorted training

data are denoted by DsortL =
{(

xl
i, yl

i
)}N

i=1 and DsortH =
{(

xh
i , yh

i
)}N

i=1. The classification
model is denoted by Cγ, where γ denotes the training parameter. The accuracy function,
Accuracy, calculates the accuracy using prediction labels and true test labels. The formulas
and results used to obtain “remove high value data” and “remove low value data” can be
expressed as follows:

Ch
γr = argmin f∈F

1
N−v∗r

N
∑

i=v×r
ph

i ·∇LC

(
Ĉγ

(
xh

i

)
, yh

i

)
Cl

γr = argmin f∈F
1

N−v∗r
N
∑

i=v×r
pl

i ·∇LC

(
Ĉγ

(
xl

i

)
, yl

i

)
Acch

r = Accuracy
(

Ch
γr
(

Dt), yt
)

Accl
r = Accuracy

(
Cl

γr
(

Dt), yt
)

remove high value data =
[

Acch
0, . . . , Acch

10

]
remove low value data =

[
Accl

0, . . . , Accl
10

]
(4)

For RHLVS, a deep learning-based classification model is used. A model structurally
identical to the model for BBS HAR data proposed in [35] but with a slightly lower capacity
is used for the BBS HAR data. The complex model for public HAR data proposed in [36] is
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used for public data, and the baseline model for public HAR data is used for comparison.
Figure 4 depicts the structure of the HAR model for BBS and public data. The 1D-CNN
convolutional layer used in the three models has a filter size = 64, kernel size = 3, activation
function = “ReLU”, and maxpooling size = 2. The unit size of the GRU layer is taken to be
eight, and an 8-size hidden state is the output for each unit. The Model for BBS HAR data
uses a 50% dropout layer, and the complex model for public HAR data uses a 70% dropout
layer. The number of perceptrons in the dense layer is 100 in all three models.
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Figure 4. Deep learning-based HAR model for performance evaluation of the data valuation algo-
rithm: (a) the model for BBS HAR data, (b) baseline model for public HAR data, and (c) complex
model for public HAR data.

3. Results and Discussion
3.1. Evaluation of the Proposed Algorithm on BBS HAR Data

The performance of the data valuation algorithm is evaluated through CSD and
RHLVS after training the algorithm using the BBS HAR data. Figures 5–11 depict the
CSD and RHLVS of the proposed algorithm on the BBS HAR data. In CSD, the maximum
corrupted discovery rate is plotted on a graph. In RHLVS, the maximum and minimum
accuracies are indicated on the graph.
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Figure 11. CSD and RHLVS on BBS HAR data: (a) CSD graph of BBS task 13, (b) RHLVS graph of
BBS task 13, (c) CSD graph of BBS task 14, and (d) RHLVS graph of BBS task 14.

In the CSD graphs depicted in Figures 5a,c, 6a,c, 7a,c, 8a,c, 9a,c, 10a,c and 11a,c, the opti-
mal graph corresponding to ideal model performance is drawn. Greater amounts of contami-
nated data in the low-value data correspond to higher proximity between the algorithm’s per-
formance graph and the optimal graph. All data graphs depicted in BBS tasks 1–14 are con-
firmed to be close to the optimal graph, corroborating the excellent performance of the algo-
rithm. The RHLVS graphs depicted in Figures 5b,d, 6b,d, 7b,d, 8b,d, 9b,d, 10b,d and 11b,d
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indicate that, in the remove high value data graph, the accuracy decreases significantly as
the percentage of data to be removed increases. Meanwhile, in the remove low value data
graph, the reduction in accuracy is small even when the percentage of data to be removed is
high. As this tendency is clear, the performance of the data valuation algorithm is considered
to be good. The performance is improved by removing low-value data from all BBS data.
Thus, the data valuation algorithm improves classification performance by improving the
training data quality.

Table 1 summarizes the major results obtained for RHLVS and CSD on BBS data,
including maximum accuracy, improved accuracy, and removed data. Improved accuracy
indicates the maximum improved performance achieved by removing low-value data.
Removed data represents the rate of removal of low-value data at maximum accuracy. For
CSD, the major metrics are maximum discovery and removed data. Maximum discovery
represents the ratio of the corrupted data when the discovery of corrupted data is the
maximum. Removed data represents the ratio of removed low-value data when the
discovery of corrupted data is the maximum.

Table 1. Major metrics of data valuation algorithm on BBS data.

Task
Major Figures of RHLVS (%) Major Figures of CSD (%)

Maximum
Accuracy

Improved
Accuracy

Removed
Data

Maximum
Discovery Removed Data

1 99.4 5.5 30 100 25
2 99.4 6.1 45 100 25
3 99.7 3.6 25 100 25
4 98.2 2.1 25 100 25
5 99.4 5.5 30 98.9 40
6 99.4 3.9 25 100 25
7 100 8.2 25 100 25
8 98.5 5.8 30 100 25
9 99.4 3.3 25 100 25
10 99.4 5.8 35 100 25
11 100 10 40 100 20
12 97.9 8.5 30 98.9 25
13 99.1 6.1 25 100 20
14 100 7.9 25 100 20

Average 99.3 5.9 29.5 99.8 25

The CSD values on BBS tasks 1–14 indicate that the average maximum discovery is
99.8%, and the average removed data is 25%. As the corrupted data comprises 20% of
the training data, the CSD performance is almost ideal. The RHLVS values indicate that
the average maximum accuracy is 99.3%, which corresponds to excellent performance,
and the average improved accuracy is 5.9%. Futhermore, a performance improvement
is confirmed in all the tasks. Data with values below 25% are observed to be primarily
composed of contaminated data. Therefore, the performance improvement observed in
the initial part of the remove low value data graph seems to be primarily caused by the
removal of contaminated data. As the average removed data for RHLVS is 29.5% and the
that for CSD is 25%, data with a low value among the clean data are also removed in the
former case.

3.2. Evaluation of the Proposed Algorithm on BBS HAR Data

The primary purpose of the data valuation algorithm is to improve classification
performance by enhancing the quality of training data. In this study, performance improve-
ment is confirmed by removing low-value data from the training data in RHLVS using the
proposed data valuation algorithm. A comparison of the results of this study with those
of a previous study on BBS HAR [35] reveals the extent of improvement. This study uses
the same data and a structurally identical model with a slightly smaller capacity as [35].
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Table 2 depicts the performance reported in [35], the maximum accuracy calculated from
the RHLVS in this study, and the volume of training data used for training. In this study,
44% of the total data are used as training data, which is determined by accounting for the
ratio of the removed data at the maximum accuracy for RHLVS.

Table 2. Comparison of BBS scoring performances of [35] and after applying the DVRL algorithm.

Task

Accuracy (%) Amount of
Training Data (%)

Previous Study [35] This
Study Previous Study [35] This

Study

1 98.5 99.4 90 30.8
2 98.5 99.4 90 24.2
3 99.6 99.7 90 33
4 99 98.2 90 33
5 96.7 99.4 90 30.8
6 97.9 99.4 90 33
7 99 100 90 33
8 98.9 98.5 90 30.8
9 97.8 99.4 90 33
10 98.2 99.4 90 28.6
11 97.8 100 90 26.4
12 98.2 97.9 90 30.8
13 98.1 99.1 90 33
14 99.1 100 90 33

Average 98.4 99.3 90 31

By improving the corrupted BBS HAR data by applying the data valuation algorithm,
the proposed algorithm outperformed the method proposed in [35], which used clean
data. The application of the proposed data valuation algorithm improves performance
perceptibly as corrupted training data as well as low-value data are removed from the clean
data. Moreover, excellent performance is confirmed when a small quantity of high-quality
data is used—the algorithm proposed in this study uses approximately 59% less training
data on average than that of [35].

3.3. Evaluation of the Proposed Algorithm on Public HAR Data

An additional experiment is conducted to verify if the proposed data valuation algo-
rithm, which exhibits good performance on BBS HAR data, continues to perform well on
public IMU-based HAR data. The data valuation algorithm is applied to public IMU-based
HAR datasets, UCI-HAR, WISDM, and PAMAP2, and its performance is evaluated in terms
of CSD and RHLVS. The baseline model for public HAR data and complex model for public
HAR data are used to evaluate the performance of the data valuation algorithm on public
IMU-based HAR data. Figures 12–14 depict the CSD and RHLVS results on public HAR
data. In the case of CSD, the maximum corrupted discovery rate is plotted on the graph. In
the case of RHLVS, the maximum and minimum accuracies are indicated on the graph and
the baseline, and complex model for public HAR data are used for classification.
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Figures 12a,c, 13a,c and 14a,c indicate that the CSD graphs are close to the optimal
graphs on all public HAR datasets, and the performance of the algorithm is good in all
cases, despite being inferior to that of BBS data. Figures 12b,d, 13b,d and 14b,d indicate
that the accuracy of the removed high-value data graph decreases significantly as the
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percentage of data removed increases. On the other hand, in the removed low-value data
graph, the reduction in accuracy is small even when the percentage of data removed is high.
As this tendency is clear, the data valuation algorithm can be considered to perform well.
In the removed low- value data graph, the performance improvement is attributed to the
removal of low-value data. Thus, the performance of the classification model is improved
by improving the quality of training data using the proposed data valuation algorithm.

Table 3 presents the major metrics of RHLVS and CSD. For RHLVS, these are the
maximum accuracy, improved accuracy, and removed data. Improved accuracy represents
the maximum improved performance while removing low-value data. The removed data
represents the rate of removal of low-value data at maximum accuracy. The major metrics
of CSD are maximum discovery and removed data. The maximum discovery represents
the ratio of corrupted data when the discovery of corrupted data is at its maximum. The
removed data represents the ratio of the removed low-value data when the discovery of
corrupted data is at its maximum.

Table 3. Major metrics used to evaluate the proposed data valuation algorithm on public IMU-based
HAR data.

Data

Major Metrics of RHLVS
Baseline Model for

Public HAR Data (%)

Major Metrics of RHLVS
Complex Model for

Public HAR Data (%)

Major Metrics of
CSD (%)

Maximum
Accuracy

Improved
Accuracy

Removed
Data

Maximum
Accuracy

Improved
Accuracy

Removed
Data

Maximum
Discovery

Removed
Data

UCI-HAR 94.8 5 20 96.0 0.4 20 99.9 35
WISDM 94.7 3.5 30 96.8 0.6 30 96.1 50

PAMAP2 96.0 3.1 30 96.8 1.9 35 96.6 50

The CSD on the IMU-based HAR data reveals that more than 96% of the contaminated
data is identified on all IMU-based HAR datasets. Maximum discovery and the removed
data of CSD are observed to be 35%, 50%, and 50% of the UCI-HAR, WISDM, and PAMAP2
data, respectively. However, when 25% of the low-value data are accumulated in all three
datasets, the discovery rate of corrupted data becomes close to the maximum discovery
rate. Considering that corrupted data accounts for 20% of the training data, the CSD
performance can be considered to be excellent. In RHLVS, the maximum accuracies in the
baseline model for public HAR data are 94.8%, 94.7%, and 96.0% for the UCI-HAR, WISDM,
and PAMAP2 datasets, respectively, and 96.0%, 96.8%, and 96.8% for the complex model
for public HAR data. The accuracy is improved by 5%, 3.5%, and 3.1% on the UCI-HAR,
WISDM, and PAMAP2 datasets, respectively, when using the Baseline model for public
HAR data, and by 0.4%, 0.6%, and 1.9%, respectively, when using the Complex model for
public HAR data. Performance improvement is confirmed in all experiments by improving
the data quality using the data valuation algorithm. The improvement in accuracy over
the baseline model for public HAR data is greater than that over the complex model for
public HAR data owing to the better regularization performance of the latter. In RHLVS,
the removed data value is 20%, 30%, and 50% for UCI-HAR, WISDM, and PAMAP2 data,
respectively. When 25% of the low-value data is removed, the CSD performance is observed
to be almost saturated on all three datasets. As the number of training data gradually
decreases as the data are removed, it seems that the maximum accuracy is attained before
reaching the maximum discovery. In conclusion, the proposed data-valuation algorithm is
observed to exhibit excellent classification performance on IMU-based HAR public data.

4. Conclusions

In this paper, a meta-reinforcement learning-based data-valuation algorithm was
proposed to improve the IMU-based HAR training data. A deep learning structure suitable
for IMU-based HAR was introduced in the DVE, and a predictor was added to construct
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the data valuation algorithm. In previous studies [26,29,30], vision-related public datasets
were used primarily, because the purpose of the data valuation algorithm was limited to
improve image classification. In this study, HAR data, which is multivariate timeseries
data derived from human movements, is targeted. In general, HAR data has a lower
resolution than vision data, and the amount of data in a public dataset is relatively very
small. The purpose of our study is to find a good data valuation algorithm that functions
efficiently on HAR data. The proposed data valuation algorithm improves the DVE
structure used in previous studies [30], which were not capable of feature extraction
after adding this capability. Therefore, the proposed algorithm can accept raw-level data
as an input, making pre-training redundant. In previous studies, a pre-trained model
was used to train the network for prediction purposes. However, the feature extraction
network of the proposed algorithm was trained explicitly for data valuation. As the feature
extraction structure, a transformer encoder block was inserted after the 1D-CNN backbone
in front of the DVE, enabling the extraction of both local and global features. The proposed
data-valuation algorithm is observed to be capable of performing feature extraction and
data-value estimation simultaneously. The predictor uses a multi-head 1D-CNN-based
stacking ensemble structure with good efficiency and performance on IMU-based HAR
data. Two metrics, CSD and RHLVS, were used to evaluate the algorithm. In terms of CSD,
the ability of the algorithm to discover corrupted data is observed to be excellent on all four
IMU-based HAR datasets. In particular, the ability to identify corrupted BBS HAR data is
nearly ideal. In terms of RHLVS, the performance is observed to be improved by removing
low-value data. The proposed data valuation algorithm exhibits excellent performance in
assigning data values to all IMU-based HAR data, confirming that it can contribute to the
improvement of the quality of IMU-based HAR data and HAR model performance.

The proposed data valuation algorithm suffers from the limitation of requiring manual
updating of clean validation data when new data are added, which can be time-consuming
and effort-intensive. We intend to compensate for this limitation in a follow-up study by
utilizing a semi-supervised learning algorithm to remove outliers and identify good-quality
validation data. Another limitation of the proposed data valuation algorithm is that its
entire structure cannot use gradient descent or backpropagation, which is commonly used
for training deep neural network algorithms, as its sampler structure is non-differentiable.
This is why the algorithm uses meta-reinforcement learning instead. In a follow-up study,
we intend to use an alternative differentiable structure, enabling the algorithm to be
trained using gradient descent or backpropagation. This may improve training efficiency
and performance.

Recently, large technology companies have started to gather smartphone and smart
watch-based healthcare data automatically to provide more comprehensive healthcare
service. These data require management and quality control to ensure good service. We
expect the proposed algorithm to be efficient and effective in this regard.
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