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Abstract: A microwave characterization technique to inspect subsurface scenarios is proposed and
numerically assessed in this paper. The approach is based on a combination of finite element
electromagnetic modeling and an inversion procedure in Lebesgue spaces with variable exponents.
The former allows for description of the measurement system and subsurface scenario with high
accuracy, while the latter exploits the adaptive definition of exponent function to achieve improved
results in the regularized solution of the inverse scattering problem. The method has been assessed
with numerical simulations regarding two-layered environments with both planar and non-planar
air–soil interfaces. The results show the capabilities of the method of detecting buried objects in
different operative conditions.
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1. Introduction

The ability to investigate subsurface scenarios is needed for a variety of applications,
including geophysical reconnaissance, archaeology, mine location and detection, environ-
mental monitoring, and ground mapping in civil applications [1–8]. In this area, ground
penetrating radars (GPRs) are one of the most widely adopted tools. However, GPR data
are usually represented through B-scans, which are a time-domain representation of GPR
measurements. Even though some post-processing techniques can be applied to these data,
such as migration techniques [1,9], classical GPRs often require experienced users to inter-
pret data. Moreover, they only provide a qualitative reconstruction of subsurface scenarios,
without allowing for a precise dielectric characterization of the inspected targets [6].

Among the various possible approaches to inspect underground structures, microwave
imaging provides the ability to characterize subsoil regions based on scattering measure-
ments collected by antennas placed over the area of interest. These techniques can be used
to non-invasively determine the presence and the approximate shape of buried objects (in
the case of qualitative methods [10–16]) or the distribution of their dielectric properties (in
the case of quantitative strategies [17–25]).

The scenario in which prospecting is performed makes the imaging problem particu-
larly challenging, especially focusing on quantitative inverse scattering methods. Indeed,
in addition to the general issues of the inverse scattering problem, which is inherently
ill-posed and nonlinear [4], there are other issues that are typical of this configuration. First,
unlike other applications where it is possible to place antennas around the entire survey
area, here, antennas can only be placed on the survey line above the ground or in boreholes,
reducing the available information to solve the problem [26,27]. In addition, the layering of
the environment is another critical element; for instance, probes are positioned at a certain
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distance from the ground, and the presence of discontinuities in the dielectric properties
of the scattering environment further adds a level of complexity due to the insurgence of
reflection phenomena [28].

In order to reconstruct accurate images of objects in the subsurface environments,
imaging techniques that integrate electromagnetic models in these settings have been
proposed in the literature. Indeed, the ability to accurately model the real environment in
which the diagnosis is made is crucial to obtain good results [29]. Moreover, the exploitation
of a suitable model to solve the forward problem enables synthetic data to be obtained
and testing methods in a simulated environment. In more detail, two main classes of
mathematical models can be distinguished: analytical and numerical ones. The former are
characterized by good robustness, but assuming simplified hypotheses [30–33]. The second
class includes methods based on finite differences in the time domain, the finite element
method, and the method of moments [34–36]. These classes of approaches, although
more computationally expensive, are particularly advantageous when certain geometric
configurations and specific soils are present in the domain. In addition, several radar-like
techniques [37–40] have been recently proposed in this research area to allow soil profiling,
so that retrieved soil configuration can be accurately integrated into the electromagnetic
model as a priori information [41]. Finally, hybrid solutions combining analytical and
numerical models have also been proposed [11].

In this paper, a quantitative imaging method based on the inversion of scattering
S-parameters combined with an electromagnetic model of finite element (FE) type is pro-
posed and applied to the diagnosis of shallow subsurface structures. In the literature,
several approaches have been described to solve the nonlinear inverse scattering problem
by deterministic, stochastic, and neural networks techniques [42–47]. Among the determin-
istic approaches, an interesting class is represented by Newton-type schemes [48–51]. In the
present work, the nonlinear and ill-posed inversion problem is treated using a Newton-type
technique formulated in Lp(·) Lebesgue spaces with variable exponent [52–54]. This is an
iterative regularization procedure which is able to provide accurate diagnostic results
due to an adaptive definition of the exponent function. Moreover, the FE-based electro-
magnetic model combined with the formulation of S-parameters [8] allows for a precise
modelling of the electromagnetic problem. The approach, which was first developed for
stroke imaging [54], has now been expanded to buried target detection. The main plus
of the proposed approach for shallow subsurface inspection is the capability of suitably
taking into account the measurements and background configuration inside the inversion
procedure. Indeed, in this way, the structure of the measurement system and environments
can be considered in the electromagnetic model providing valuable reconstruction results
even in this challenging scenario.

The method has been validated by means of numerical data obtained with a two-layer
configuration illuminated by open waveguide probes. In detail, the variation in target
size, depth, and some other relevant parameters has been evaluated. Finally, a study of
the method in the case of non-planar air-soil interface has been conducted; the results of
inversion with a priori knowledge of the exact interface have been compared with those
achieved by replacing the actual surface profile with a planar one in the embedded model.

The paper is organized as follows: in Section 2, the inverse scattering formulation
along with the finite element approach and the inversion procedure are reported. The
results are then presented in Section 3. Finally, the Conclusions follow in Section 4.

2. Formulation of the Problem

The shallow subsurface scenario in which detection is performed is shown in Figure 1.
A multistatic and multiview system with W waveguide antennas positioned at height h
from air–soil interface Λ on a measurement line of length lm parallel to x-axis is used to
illuminate the soil. The air is modelled as vacuum (i.e., ε0 ' 8.85× 10−12 F/m) and the soil
is characterized by a complex dielectric permittivity εb.
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Figure 1. Geometry of the shallow subsurface scenario.

The antennas are activated one by one, and measurements of transmission S-parameters
are completed between the antenna ports. In addition, z-polarized fields with no compo-
nents of the electric field parallel to the xy plane at an angular frequency ω are considered,
and the target properties are hypothesized invariant along the z axis. Therefore, a two-
dimensional environment is assumed [55].

The distribution of the dielectric permittivity of the region R containing the cross-
section of the objects under test is retrieved starting from scattering S-parameters between
antenna ports i and w, δŜiw = Siw

tot − Siw
inc, where Siw

tot is the S-parameter measured in
the presence of the target and Siw

inc is the corresponding quantity related to an empty
investigation domain (assumed to be available or estimated).

Moreover, the dielectric properties of the investigation domain R can be described by
the contrast function

τ(x, y) =
ε(x, y)− εb

εb
(1)

where ε(x, y) is the complex dielectric permittivity of the configuration under test and εb is
the background value. In a two-dimensional setting, the scattering parameters are related
to the contrast function by means of the following data equation [8]

− jωεb
2cicw

x

R

Ei
inc(x, y)Ew

tot(x, y)τ(x, y)dxdy = δŜiw (2)

where cm is the incoming wave amplitude on m-th antenna port, Ei
inc is the z-component

of the incident electric field when the i-th antenna acts as a transmitter and Ew
tot is the

z-component of the total electric field when the w-th antenna transmits, i 6= w. In detail,
Ew

tot represents the field collected in the presence of the unknown target; therefore, it is a
function of the unknown contrast function itself, and this results in a nonlinear relation
linking the contrast function with the scattering parameters.
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Considering the measurements collected by each antenna for each view, it follows:

− jωεb
2c1c2

s
R E1

inc(x, y)E2
tot(x, y)τ(x, y)dxdy

...
− jωεb

2c1cW

s
R E1

inc(x, y)EW
tot(x, y)τ(x, y)dxdy

...
− jωεb

2cW cW−1

s
R EW

inc(x, y)EW−1
tot (x, y)τ(x, y)dxdy


=



δŜ12

...
δŜ1W

...
δŜW(W−1)

 (3)

This is the nonlinear system to be inverted starting from scattering parameters measure-
ments to retrieve the contrast function.

To handle this problem, an FE approach is applied and integrated inside the inversion
performed in variable exponent Lebesgue spaces. In detail, the electromagnetic model
expressed through the FE method as applied to the present inverse scattering problem is
described in Section 2.1. Then, in Section 2.2, the inversion approach is presented.

2.1. FE Approach

A fundamental step for the development of the proposed imaging method is to define a
procedure to model the electromagnetic problem, exploiting an FE formulation to compute
the electric fields and S-parameters inside the inversion procedure.

In more detail, the analyzed measurement system, shown in Figure 2, is composed
of a set of W open waveguides of width a and length b, filled with material of complex
dielectric permittivity εwg. The waveguides are terminated by PEC boundaries on the
lateral sides, ΠPEC, and a waveguide port on the top side, Πw. In each antenna, a reference
system

(
x(w), y(w)

)
is defined at the waveguide port centered at

(
x(w), y(w)

)
=

(
− lm − a

2
+ (w− 1)(s + a), h + b

)
, w = 1, . . . , W (4)

where s is the mutual distance between antenna waveguides.
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Assuming the i-th waveguide excited with an incoming wave of the TE10 fundamental
mode, to compute the electric field, the Helmholtz equation solution is necessary along with
boundary conditions in order to take into account the exact structure of the environment
and measurement system:

∇2
t Ei

inc/tot(x, y) + ω2µoε(x, y)Ei
inc/tot(x, y) = 0 (5)

where non-magnetic materials are considered. The following boundary conditions must
be imposed: on ΠPEC, Dirichlet conditions state that Ei

inc/tot

∣∣∣
ΠPEC

= 0; on waveguide ports,
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the Dirichlet and Neumann conditions are Ei
inc/tot

∣∣∣
Πw

= E(w,i)
wg and ∂Ei

inc/tot/∂y
∣∣∣
Πw

=

∂E(w,i)
wg,inc/tot/∂y(w), with w = 1, . . . , W where E(w,i)

wg,inc/tot, i.e., the z-component of the electric
field tangent to the w-th port when the i-th port is in transmitting mode, is:

E(i,w)
wg,inc/tot

(
x(w), y(w)

)
= δiwe(i)1

(
x(i)
)

ejβ1y(i) +
M

∑
m=1

A(i,w)
m,inc/tote

(w)
m

(
x(w)

)
e−jβmy(w)

(6)

with δiw the Kronecker delta, A(i,w)
m,inc/tot the amplitude of m-th mode in wth port, e(w)

m the
orthonormal modal function of TEm0 modes in the wth waveguide, and βm the propagation
constant of TEm0 modes inside the waveguide [56].

The first term of Equation (6) represents the incoming TE10 mode feeding the i-th port
and the second one represents the outcoming TEm0 modes inside the wth waveguide. For
the solution of the forward problem, coefficients A(i,w)

1,inc/tot are left as unknowns, and the

S-parameters are then retrieved as Siw
inc/tot = A(i,w)

1,inc/tot. Moreover, in the analysed config-
uration, absorbing boundary conditions (ABC) are required to terminate the simulation
domain outside the antenna ports. To this end, the perfectly matched anisotropic absorber
(PMA) has been selected [56,57].

The simulation domain includes the above-described shallow subsurface scenario
comprised air and soil layers and limited by waveguide ports, waveguide PEC walls, and
the PMA layer. In order to solve the forward problem with FE formulation, the domain
has been partitioned in a mesh of N triangles of dimension Σn with frontier Π(n). Then, the
electric field Ei

inc/tot(x, y) in each n-th element of the mesh is formulated through first-order
basis functions. It is worth highlighting that such a triangular form of subdomains gives the
possibility of mapping complex structures in an accurate way, making it suitable to describe
the problem at hand. In particular, the first-order triangular basis functions for each n-th
triangle, Ψ(n)

t , satisfy properties Ψ(n)
t

(
x(n)u , y(n)u

)
= δut and ∑3

t=1 Ψ(n)
t (x, y) = 1, (x, y) ∈ Σn,

where
(

x(n)u , y(n)u

)
are the coordinates of the u-th node of each n-th triangular element and

are defined as follows:Ψ(n)
1 (x, y)

Ψ(n)
2 (x, y)

Ψ(n)
3 (x, y)

 =

 1 1 1
x(n)1 x(n)2 x(n)3

y(n)1 y(n)2 y(n)3


−11

x
y

, (x, y) ∈ Σn (7)

The electric field in each n-th triangle can be written as:

Ei
inc/tot(x, y) =

E

∑
t=1

Ei(n)
inc/tot,tΨ

(n)
t (x, y), (x, y) ∈ Σn (8)

By considering the FE approximation of field along with the Helmholtz equation, the
electric field is numerically computed following the approach in [56].

Then, in the soil region, a rectangular investigation domain R of dimension lR × hR
centered at (xR, yR) has been defined (Figure 3), which, in its discrete representation, is a
subregion of the simulation domain composed of NR triangles. Therefore, we can introduce

the vector ε ∼=
[
ε(1), . . . , ε(NR)

]T
, which is obtained by approximating the dielectric prop-

erties as constant inside each triangle of the domain R, thus, the corresponding contrast

vector results τ ∼=
[
τ(1), . . . , τ(NR)

]T
.
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In this way, starting from Equation (2), considering the FE formulation, we obtain the
following system:

D(τ) ,



− jωεb
2b1b2

NR
∑

n=1
E1(n)

inc
T [T(n)]E2(n)

tot τ(n)

...

− jωεb
2b1bW

NR
∑

n=1
E1(n)

inc
T [T(n)]EW(n)

tot τ(n)

...

− jωεb
2bW bW−1

NR
∑

n=1
E(n)

W,inc
T [T(n)]EW(n)

tot τ(n)


=



δŜ12

...
δŜ1W

...
δŜW(W−1)

 , δŜ (9)

where Ei(n)
inc/tot =

[
Ei(n)

1,inc/tot, Ei(n)
2,inc/tot, Ei(n)

3,inc/tot

]T
is the vector with the nodal values coeffi-

cients of the field in each triangle computed by means of the FE method and [T(n)] is a
3× 3 matrix of coefficients:

T(n)
ut =

∫
Σn

Ψ(n)
u Ψ(n)

t dxdy, u, t = 1, . . . , 3 (10)

By means of Equation (8), a discrete nonlinear operator D(τ) linking the contrast
vector with the measurements in δŜ is defined.
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2.2. Inversion Procedure

The imaging problem is solved by inverting Equation (9). In order to address the
inversion, an inexact Newton procedure has been exploited where the space X of the
unknowns is a variable exponent Lebesgue space Lp(·) (i.e., τ ∈ X ⊆ Lp(·)) and the space
Y of the data is a space Lpa with constant exponent (i.e., δŜ ∈ Y ⊆ Lpa ) [53]. In particular,
since the discrete case is considered, the exponent function of unknowns’ space X turns

out to be a vector p = [p(1), . . . ,p(NR)
]T

, p(n) being the value of the exponent in each n-th
triangle. The constant exponent of data space Y is set equal to its spatial average value in R,
i.e., pa =

1
NR

∑NR
n=1 p(n).
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The inexact Newton method solves the inverse problem in a regularized way by
minimizing the following residual function:

Ω(τ) =
1
2
‖δŜ−D(τ)‖2

Y (11)

with ‖·‖Y norm in the space Y, by moving along a nonstandard gradient direction in
the dual space X∗ of X. In detail, the method consists of two nested iteration cycles as
summarized in the flow chart in Figure 4 [54]. At first, at each k-th iteration of the external
cycle, Equation (9) is linearized around its current solution (denoted as τk) with null initial
value τ0 = 0. Then, a Landweber-like approach in Lebesgue space Lp(·) is adopted to solve
the resulting linearized problem (as shown in the red box of the flowchart). With reference
to Figure 4, JX, JX∗ , and JY represent the duality maps of X, X∗, and Y, respectively.
(X∗ = Lp(·)∗ is the dual space of X, with p(·)∗ as the Hölder conjugate of p(·)), D′k is the
Fréchet derivative of D, and α = ‖D′k‖

−2 is the step width [52,54].
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Moreover, the exponent function is adaptively modified during the inversion to
achieve accurate reconstruction results. In the first iteration of the external cycle, the expo-
nent vector is set to constant values p

0
= [pstart, . . . ,pstart]

T since no a priori information is
available. Then, at each outer iteration, the current solution τk is exploited for updating p,
with the l-th component

p(l)k+1 = pmin + (pMAX − pmin)τ
(l)
k /max

nεNR

∣∣∣τ(n)
k

∣∣∣, 1 < pmin ≤ pMAX (12)
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where [pmin, pMAX ] denotes the range of p. This way, values of p close to pmin are assigned
to the portions of R without targets leading to a reduction in ringing effects; values of p
close to the maximum are in target regions where a smooth reconstruction is favored.

Finally, the two loops are stopped when the proper convergence criteria are fulfilled.
In this case, the number of inner, Imax, and outer iterations, Kmax, and the relative variation
of the residual between two consequent steps, ∆R, are considered as stopping rules.

3. Numerical Validation

In this section, numerical validation of the proposed imaging method is presented. In
particular, a shallow subsurface scenario has been simulated by the FE forward solver to
produce synthetic data and a reference case is described in Section 3.1. Then, the behavior of
the method was investigated when some variations in the various parameters were applied.
In particular, in Sections 3.2 and 3.3, the effects and limitations on the performance of the
method versus a variation in target size and target depth have been analysed, respectively.
Then, in Section 3.4, the method has been studied considering different geometries and
the number of targets, while in Section 3.5 the effect of the background uncertainties has
been explored. Finally, in Section 3.6, some numerical tests in the presence of a non-planar
air–soil interface are reported; the results achieved with exact interface surface known a
priori or replaced with planar surfaces in the inversion procedure have been compared.

3.1. Reference Case

In numerical simulations, synthetic S-parameter data were provided as input to the
proposed method to determine the distribution of complex dielectric permittivity within
the investigation area. The FE forward solver has been exploited for the generation of
numerical data.

Concerning the measurement parameters, a set of W = 10 antennas was placed along
the measurement line of length l = 1.095 m at a distance s = 55 mm from eachother and
located at h = 50 mm over a planar air–soil interface (Figure 1). The waveguides are filled
with a material with a dielectric permittivity εwg = 25ε0 and the dimensions a = 60 mm in
width and b = 80 mm in length. The soil is characterized as dry sand with a permittivity
εb =

(
3− j10−3)ε0.

Configurations with and without a target were simulated at frequency f = 550 MHz
and M = 1 mode is considered. The simulation domain is discretized by Gmsh [58]
using the frontal Delaunay algorithm with maximum edge length at the antenna ports and
elsewhere with a size of swg = 2 mm and sq = 4 mm, respectively. In this way, total and
incident S-parameters have been generated. Total S-parameters were corrupted with a
multiplicative Gaussian noise of 3%.

Once synthetic data have been generated, a rectangular investigation domain R of
dimension lR = 60 cm and hR = 50 cm centered in (xR, yR) = (0,−30) cm is considered.
Inside R, a coarser discretization of edges sinv = 7 mm is considered for the inversion.

The results have been evaluated using the following error metric:

eReg =
1

NReg

NReg

∑
n=1

∣∣∣ε(n) − ε(n)
∣∣∣

|εb|
(13)

where Reg is the analysed region inside the investigation domain composed of NReg ele-
ments, with Reg = {R, tar} (i.e., whole domain R or target region tar are considered), ε(n)

is the reconstructed dielectric permittivity in the n-th element, and ε(n) is its reference value
in the same element.

Initially, the target under consideration has a square cross-section of side lt = 15 cm,
it is centered at (xt, yt) = (−15,−15) cm and characterized by a dielectric permittivity
εt = ε0. The method has been run under the following setting: Kmax = Imax = 100,
pstart = pmin, and pMAX = 2. Furthermore, solution loops are terminated when a threshold
∆R = 1% is reached. Concerning the range of variation in the exponent function, a study
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has been conducted to find its optimum value. Specifically, pmin = [1.2, 1.9] has been
considered with step 0.1.

Figure 5 shows the errors in the whole investigation domain, eR, and in the target
region etar. As can be noticed, concerning the error in the investigation domain, an incre-
ment versus pmin can be observed whereas the error inside the targets has a minimum in
pmin = 1.3. Therefore, pmin = 1.3 has been selected since it offers the best target recon-
struction and high-quality results in the investigation domain. In Figure 6, the real part
of relative dielectric permittivity is reported along with the actual target shape. As can be
noticed, the localization of the target is adequate, and its dielectric permittivity has been
reconstructed quite well.
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3.2. Variation in Target Size

The size of the target has been changed in the first set of numerical simulations.
Specifically, the values lt ∈ [3, 18] cm with a step of 3 cm have been considered for the
side length (i.e., lt has been varied between [0.095λb, 0.572λb] with λb the wavelength in
the soil). Figure 7 shows the reconstructed distributions of the real part of the dielectric
permittivity for lt = {3, 12, 18} cm. In configurations with lt = 18 cm and lt = 12 cm
[Figure 7a,b], the reconstruction of the dielectric permittivity is close to the actual value. A
good reconstruction is obtained, and the dielectric target is clearly visible and adequately
localized. Conversely, considering a smaller target with lt = 3 cm, the object is barely
visible in the reconstruction [Figure 7c]. In Figure 8, the reconstruction errors computed in
the investigation domain and inside the target region are reported. As can be noticed, the
whole domain error eR tends to increase with the target size. Instead, the error on the object
etar has a parabolic-like behavior with a minimum at lt = 9 cm (0.286λb). In particular, very
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small targets are weak scatterers and become difficult to detect. Indeed, an underestimation
of the dielectric properties can be observed by reducing the target’s size until the method is
not able to reconstruct the object. On the contrary, slight degradation of the background
reconstruction can be seen by increasing the size of the target [Figure 7a].
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In addition, the method was compared with the inversion formulated in the classical
Hilbertian space (i.e., X ⊆ L2, Y ⊆ L2). By comparing the errors achieved with the
proposed variable exponent space method, it can be observed that the latter approach
allows an accuracy improvement both in the investigation domain and in the target under
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test. This proves that the inversion performed in variable exponent Lebesgue spaces
leads to more accurate reconstructions. Indeed, by defining a proper map of the exponent
[Equation (12)], low values are assumed in the background and values close to pMAX are in
the region where the inhomogeneities are localized. In this way, low values better control
sparsity in the background whilst a better estimation of smoothness of the object is reached
by assigning relatively high values of exponent in that region.

3.3. Variation in Target Depth

As a further analysis, the depth of the buried target has been varied, i.e., yt ∈ [−15,−35] cm
with a step of 2.5 cm (i.e., yt ∈ [−0.477λb,−1.112λb]) has been considered in order to assess
the effectiveness and limitations of the method depending on the depth. The reconstructed
distributions of the real part of the relative dielectric permittivity, Re{εr}, are shown in
Figure 9 for the cases yt = −32.5 cm, yt = −25 cm, and yt = −20 cm. Moreover, in
Figure 10, the scattering S-parameters simulated when the first antenna acts as the source
are compared with those computed inside the inversion procedure from the reconstructed
dielectric permittivity for cases yt = −25 cm and yt = −20 cm. As can be observed, the
reconstructed data match with the simulated ones.
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Figure 9. Reconstructed distribution of the real part of the reconstructed relative dielectric permittivity,
Re{εr}, in the investigation domain R together with a square box indicating the shape of the actual
target. Target centered at (a) yt = −20 cm, (b) yt = −25 cm, and (c) yt = −32.5 cm.

By comparing the results, as the depth increases [Figures 6 and 9a,b], the target
reconstruction shows a decrease in the accuracy of the dielectric properties up to the point
where it is difficult to locate the object [Figure 9c].

The reconstruction errors in the whole investigation domain and target region are
shown in Figure 11. For low values of depth, the best target and whole domain error are
achieved; then, by deepening the buried target, both the error in the target region and in
the whole investigation domain has an upward trend. In more detail, beyond the depth of
yt = −25 cm (yt = −0.794λb), the detection of the object is more difficult, and the quality
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of the reconstruction deteriorates as evidenced by the error trend, which for yt < −25 cm
shows eR > 0.6.
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3.4. Effect of Different Geometries and a Different Number of Targets

In this section, the behavior of the method has been investigated considering different
geometries and a different number of targets.

To this end, the target with a square-cross section of side lt = 12 cm analysed in the
previous section has been considered and a second target with a circular-cross section has
been introduced in the investigation domain. In detail, the second target is “vacuum-filled”,
has a radius r = 6 cm, and is located at (xt2, yt2) = (17,−20) cm.

Figure 12 shows the reconstructed distribution of the real part of the dielectric permit-
tivity together with the actual shapes of the targets. As can be noticed, both targets with
different geometries are correctly localized, and although in the case of the object with a
circular-cross section a slight underestimation can be observed, a quite good reconstruc-
tion is achieved. Moreover, by comparing the reconstruction of the square-cross section
target alone [Figure 7b] and in the presence of a second object, a slight deterioration can
be observed, due to the interaction between the objects. This is confirmed by the com-
puted reconstruction errors in the target region and in the whole domain (i.e., etar = 0.553
and eR = 0.074), which are higher than in the single-target case (i.e., etar = 0.521 and
eR = 0.035).

3.5. Effect of Uncertainties in Soil Dielectric Properties

In order to assess the robustness of the method versus an inexact knowledge of the
dielectric properties of the soil, the background dielectric permittivity used inside the
inversion procedure has been set to ε∗r,b = εr,b ± 0.5. All the other parameters are the same
as those described in Section 3.1. In the first case, an underestimation of the background di-
electric permittivity is considered whereas in the second case an overestimation is assumed.
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Figure 13 shows the reconstructed distributions of the real part of the dielectric permittivity.
The reconstruction errors in the whole investigation domain and in the target region are
shown in Table 1 (for the sake of comparison, we also reported the errors when the exact
background properties are known in the inversion analysed in Section 3.1). The error in
the whole investigation domain increases when an inaccurate background permittivity
is considered. Moreover, a decrement of the target error can be noticed in the first case
because the initial estimation of background permittivity is closer to the properties of the
object.
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Figure 13. Reconstructed distribution of the real part of the dielectric permittivity, Re{εr}, in the
investigation domain R together with a square box indicating the shape of the actual target. Back-
ground dielectric permittivity in the inversion procedure: (a) underestimation (ε∗r,b = εr,b − 0.5) and
(b) overestimation (ε∗r,b = εr,b + 0.5).

Table 1. Reconstruction errors in the whole domain and inside the target versus estimation of
background dielectric permittivity.

Background Whole Domain Error, eR Target Error, etar

Exact estimation 0.054 0.563
Underestimation 0.187 0.378
Overestimation 0.215 0.766
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3.6. Variation in Air–Soil Interface Roughness

A further study has been conducted to inspect the robustness of the method in the
presence of a non-planar air–soil interface. Moreover, the results have been compared
when:

• the model endowed in the inversion takes into account the exact interface profile
(i.e., assuming that the surface is known a priori);

• a planar interface is considered instead (i.e., no a priori information is available).

In the analysed measurement setting, the antennas are located at h = 7 cm over the
average soil level. To simulate a non-planar interface, in this set of tests, the profile of Λ is
modelled with Catmull–Rom splines [59]. In particular, Λ is based on C = 7 equally spaced
control points located to have a no-planar air-soil interface as shown in Figure 14. The root
mean square height of the interface has been varied between hrms =

λ
10 and hrms =

λ
30 .
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A “vacuum-filled” target (i.e., characterized by a permittivity εt = ε0) centered at
(xt, yt) = (−20,−20) cm with lt = 12 cm has been investigated. The investigation domain
is centered at (xR, yR) = (0,−32) cm. All the other parameters of the forward and inverse
procedure are the same as those in the previous sections.

In Figure 15, the reconstruction errors in the target region and in whole investigation
domain are reported. Figure 16a–c shows the real part of the reconstructed dielectric
permittivity when the surface profile is considered as a priori information in the inversion
and Figure 16d–f reports the reconstruction when planar interfaces are adopted in the
FE-model inside the inversion procedure.

As can be noticed from the reconstruction of the real part of the permittivity, although
the reconstruction is quite successful in both cases, the artifacts in the background appear
more pronounced for greater interface roughness when no a priori information about the
interface is assumed in the inversion. This is confirmed by the trend of the errors; the
error on the object is comparable in the two cases for hrms ≤ λ

20 , while with hrms =
λ
10 , the

knowledge of the exact interface brings a significant improvement in the reconstruction;
the error on the whole domain is better in all cases with a valuable improvement as the
roughness increases.
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Figure 15. Reconstruction errors in the whole domain and inside the target versus the RMS height of
the air–soil interface, hrms.

This proves the potentiality of the model embedded in the inversion procedure com-
bined with S-parameters formulation in various operating conditions. Indeed, an accurate
structural description of the involved environments can be integrated and taken into
account in the inversion procedure, leading to an enhancement in reconstruction results.
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Figure 16. Reconstructed distribution of the real part of the complex dielectric permittivity, Re{εr},
in the investigation domain together with a square box indicating the shape of the actual target.
Cases of surface with hrms = λ

30 and inversion with (a) exact interfaces and (b) planar interfaces;
hrms =

λ
20 and inversion with (c) exact interfaces and (d) planar interfaces; and hrms =

λ
10 inversion

with (e) exact interfaces and (f) planar interfaces.

4. Conclusions

In this paper, a microwave imaging technique for shallow subsurface prospecting is
proposed, whose aim is to provide the distribution of dielectric permittivity from scattering
S-parameters measurements. The method combines an FE approach with an inversion
procedure in Lebesgue spaces with variable exponent. In this way, the structure of the
measurement system together with the environment can be accurately considered together
in the electromagnetic model by the FE formulation that is incorporated into the inversion
procedure. Furthermore, the adopted inversion technique, which operates in non-Hilbertian
Lebesgue spaces, exploits the adaptive update of the exponent function during the inversion
procedure leading to good results even in this challenging scenario.

At first, the method is tested by considering a set of waveguide probes to illuminate a
“vacuum-filled” target buried in a two-layered configuration with a planar interface. The
behavior and limitations of the method such as the size and depth of the target change have
been studied. Moreover, the effects of geometries and the number of targets as well as the
uncertainties in soil dielectric permittivity have been investigated. In addition, the behavior
of the method in the case of the non-planar air–soil interface has been analyzed, as well as
the effect of the a priori knowledge of the interface profile inside the inversion procedure.
The potentialities of this method for shallow subsurface prospection are shown by the
achieved results. Future developments include both the validation with experimentally
measured data and the extension to three-dimensional settings.
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