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Abstract: In an era of high penetration of renewable energy, accurate photovoltaic (PV) power
forecasting is crucial for balancing and scheduling power systems. However, PV power output has
uncertainty since it depends on stochastic weather conditions. In this paper, we propose a novel short-
term PV forecasting technique using Delaunay triangulation, of which the vertices are three weather
stations that enclose a target PV site. By leveraging a Transformer encoder and gated recurrent unit
(GRU), the proposed TransGRU model is robust against weather forecast error as it learns feature
representation from weather data. We construct a framework based on Delaunay triangulation and
TransGRU and verify that the proposed framework shows a 7–15% improvement compared to other
state-of-the-art methods in terms of the normalized mean absolute error. Moreover, we investigate
the effect of PV aggregation for virtual power plants where errors can be compensated across PV
sites. Our framework demonstrates 41–60% improvement when PV sites are aggregated and achieves
as low as 3–4% of forecasting error on average.

Keywords: Delaunay triangulation; interpretable AI; TransGRU

1. Introduction

Recently, the world has been converting fossil fuels-based primary energy resources
to renewable energy to reduce carbon emissions and prevent climate change. Among
various renewable energy sources, photovoltaic (PV) power generation has advantages
in terms of noise and vibration compared to wind power. In addition, PV has a long
lifespan and requires few maintenance costs. In 2021, the global total installed PV capacity
was 167.8 GW, representing a 36% growth in one year [1]. However, PV power output
is affected by the stochastic nature of weather conditions such as temperature, humidity,
wind speed, and cloudiness, so it has uncertainty problems. Considering this inherent
property, various solar PV systems have been designed to provide stable power quality for
grid-integrated distributed resources systems [2–4]. Furthermore, in operating smart grid
systems, accurate power generation forecasting of distributed energy resources has been
required for scheduling and balancing power systems.

In the literature, many approaches have been suggested to improve forecast accuracy.
Depending on the forecasting horizon, models can be categorized into three classes: short-
term, medium-term, and long-term forecasting [5]. Short-term forecasting is performed
on an hourly or daily basis and used for load balancing. Medium-term forecasting is
conducted on a one-week or one-month basis and used for providing an estimation of
power generation and demand. Long-term forecasting is usually carried out monthly or
yearly. The aim of long-term forecasting is to plan PV installation.

In order to predict the PV power for the three classes above, various forecasting
techniques have been proposed. Traditionally, physical models for solar energy predic-
tion have been developed based on specific conditions of regions such as meteorological,
climatological, and geographical parameters [6]. In addition, statistical models such as
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the auto-regressive integrated moving average (ARIMA) and the auto-regressive moving
average with exogenous inputs (ARMAX) models have been applied to predict PV power
generation [7,8]. However, physical models can only estimate solar energy for a longer
time period, e.g., monthly, so they are hard to predict in detailed time intervals such as
hours and minutes. Moreover, meteorological factors have a nonlinear relationship with
PV power generation, so physical models and statistical models may not perform well.
Recently, machine-learning-based models have been widely used since they can solve
nonlinear problems well and outperform linear techniques. Artificial neural networks
(ANN) [9,10], recurrent neural networks (RNN) such as long short-term memory (LSTM),
GRU [11–13] and convolutional neural networks (CNN) [14,15] are the typical models.
Furthermore, hybrid models also have been considered, such as CNN-LSTM and wavelet
packet decomposition-LSTM (WPD-LSTM) [16,17].

Machine-learning-based PV power forecasting methods can be summarized as follows
by the feature data that are related to PV power generation: (1) meteorological factors and
historical PV power generation, (2) spatio-temporal features and (3) satellite or ground-
based sky images. First, in [12], the authors used temperature, dew point, humidity and
wind speed as input data to predict solar irradiance by LSTM. Moreover, the work in [13]
additionally considered historical PV power. They used solar radiation, temperature, rela-
tive humidity, wind speed and historical PV power as an input of the CNN-bidirectional
GRU (BiGRU) model to improve the performance. Secondly, several researchers considered
spatio-temporal features, which are extracted from meteorological factors and geomorphol-
ogy of the PV site. The work in [18] additionally used a digital elevation map of the solar
PV power plant, solar irradiation, temperature, precipitation and wind speed to extract
spatio-temporal features using CNN. Without using meteorological factors, the authors
in [15] used the location of multiple PV sites to construct a space–time matrix with only
historical PV power data and placed it as an input of CNN to extract spatio-temporal
features. Thirdly, satellite and ground-based sky images are other approaches for extracting
spatio-temporal features of PV power generation. In [19], the authors suggested two-stage
predictions: the first is about cloud amount prediction by satellite images, and the second
is about PV power prediction using the predicted cloud amount as one of the features.
The authors in [20] used cloud images from ground-based cameras and historical solar
irradiance for the input of the CNN model to predict solar irradiance by extracting spatio-
temporal features. Recently, graph neural networks (GNN) have been considered to exploit
spatio-temporal correlations in PV power generation, and further studies are still ongo-
ing [21–23]. The work in [21] used the PV generation as signals on a graph to infer the part
of cloud dynamics. In [23], the authors focused on interconnections among meteorological
factors by factor-based graph modeling to capture complex weather variations. However,
all the methods mentioned so far [9–23] have high-model complexity and thus may not be
applicable to newly installed PV sites that do not have enough historical data. Considering
that many new PV sites are expected to be installed, developing a light model is crucial to
meet industrial needs.

In this regard, we propose a novel framework of day-ahead PV power forecasting
using public weather station data in two aspects: weather station selection and weather
data transformation. Since sufficient historical PV data or expensive satellite images are
not available, we leverage the publicly available weather station data as follows. First, we
construct Voronoi cells and Delaunay triangles based on the locations of weather stations.
From these constructed regions, PV sites can exploit three nearby weather stations, which
are the vertices of the Delaunay triangle that covers the target PV site. Second, we use a
Transformer encoder to put more weight on seemingly important weather factors. The
Transformer encoder shows high predictive performance and robustness regarding weather
forecast error; this is possible because it transforms noisy input data to more useful time
domain features, which are then fed into an RNN-based time series forecasting block. The
proposed method is specifically useful for newly built PV sites because our model does
not require the past PV generation data in the input of the model. For input data, our
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model uses four meteorological factors: temperature, wind, humidity, and cloud, which are
relevant factors to PV power generation and collected far from the PV site, i.e., three vertices
of the Delaunay triangle. Many other studies use high-quality meteorological factors such
as solar radiation at the land surface and net solar radiation at the top of the atmosphere,
collected from a local PV site [24]. Furthermore, some experiments assume that the weather
forecast is correct, so the models under this assumption use historical weather data in the
test phase [25]. Unlike this naive assumption, we use weather forecast data with various
forecast error cases considering real cases. We summarize our key contributions as follows.

• We develop a framework for PV generation forecasting by using Delaunay triangula-
tion. Unlike the previous methods that use the weather data from the closest weather
station, our method can select three weather stations that enclose the target PV site.
We will see that this Delaunay triangulation-based approach outperforms selecting
the three-nearest weather stations when the target PV site is well positioned in the
corresponding Delaunay triangle.

• An interpretable AI model for PV power forecasting has not been actively studied
so far. Considering this, we design an interpretable AI model called TransGRU,
which is robust against weather forecast errors, by using a Transformer encoder.
TransGRU learns input data through the Transformer encoder, which builds the feature
importance for PV power generation in terms of feature representation learning. From
the transformed feature data, our model can selectively exploit the weather stations
and meteorological factors that are highly related to the target PV site.

• Our framework is simple but effective, specifically for newly built PV sites having a
short period of data, e.g., one and a half years. We show that our framework over-
comes the dependency on historical PV data by using Delaunay triangulation and a
Transformer encoder. Specifically, we provide extensive experiments using 1034 PV
sites nationwide and 86 weather stations in Korea. The results show that our frame-
work achieves a 7–15% improvement in forecasting individual PV power generation
and a 41–60% improvement in PV aggregation in forming a virtual power plant (VPP).
As a result, we achieved a 3–4% of forecast error for VPP, which sufficiently satisfies
the requirement of 6% or less error to participate in the renewable energy wholesale
market run by the Korea Power Exchange (KPX).

The rest of this paper is organized as follows. In Section 2, we describe the methodolo-
gies and propose the TransGRU-based forecasting technique. In Section 3, we describe the
model selection of TransGRU. The experimental results are provided in Section 4, followed
by the conclusion in Section 5.

2. Proposed Methodologies
2.1. Overall Framework

Figure 1 shows the overall process of the proposed framework called DTTrans and its
three steps: data preprocessing, training phase, and test phase. In the first step, PV sites are
clustered based on the Delaunay triangle to identify which weather stations enclose each of
them. After that, a union set of identified weather stations is fed into a rule-based selection
algorithm called Union-Inner Triangles in order to select three highly relevant weather
stations in an adaptive way. This process extends the vanilla Delaunay Triangulation to
DT+, as shown in Figure 1. The dataset is then split into a training set, validation set, and
test set. In the second step, the proposed TransGRU model is trained by the training set,
and the hyperparameters of TransGRU are determined by the validation set. In the final
step, we estimate the performance for the test set for various cases.
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Figure 1. Overall process of the DTTrans framework.

2.2. Voronoi Tessellation and Delaunay Triangulation

Voronoi Tessellation and Delaunay Triangulation have been used in a practical and
theoretical way in many fields, such as science, technology and visual art [26–31]. Given a
set of seed points in the plane, their Voronoi Tessellation divides the plane according to the
nearest-neighbor rule [32].

Let pi ∈ R2 denote the coordinates of a seed point, i.e., the i-th weather station in our
case. Then, a set of n seed points, i.e., n weather stations, is denoted by

P = {p1, p2, . . . , pn}. (1)

Then, the Voronoi cell of i-th weather station is given by

V(pi) = {p ∈ R2| ||p− pi|| ≤ ||p− pj||, ∀j 6= i} (2)

where || · || is a distance metric. Equation (2) is about how the Voronoi cell is constructed.
Arbitrary point p and seed points pi are on the same plane, which are the locations of the
PV power plant (subspace of p) and weather station in our case. Under this status, the
distance between p and seed point (e.g., pi) is calculated and compared with other seed
points to find which seed point is closest. Hence, pi serves as the closest weather station
to any points in V(pi). A set of Voronoi cells is called the Voronoi Tessellation (VT) (or
Voronoi diagram) of P and denoted by:

V(P) = {V(p1), V(p2), . . . , V(pn)}. (3)

The Delaunay tessellation is considered to be dual to VT [33]. Given V(P), connecting
all pairs of the seed points whose Voronoi cells share an edge constructs the Delaunay
tessellation. Let pi pj be the line connecting pi and pj and e(pi, pj) be an edge between the
Voronoi cells V(pi) and V(pj). Then, in the Delaunay tessellation of P , denoted by D(P),
there exists an edge pi pj if and only if e(pi, pj) ∈ V(P) 6= ∅. If e(pi, pj) 6= ∅, then V(pi)
and V(pj) are considered adjacent. If the Delaunay tessellation consists of only triangles, it
is called Delaunay Triangulation (DT). VT and DT are not only dual graphs but also mutual
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figures [33]. In this way, we can construct V(P) and D(P), which are mutually the nearest
regions of P, i.e., the set of weather stations. As an example, Figure 2 shows the VT and DT
constructed from the 86 nationwide weather stations in Korea.

(a) (b)

Figure 2. PV sites (red cross), Voronoi diagram and Delaunay triangulation of weather stations (blue
circle) in Korea. (a) Voronoi diagram of weather stations. (b) Delaunay triangulation of weather
stations.

2.3. Union-Inner Triangles Algorithm

Now we present how to select relevant weather stations given a target PV site. One
weather station can be used for PV forecasting if the PV site is in the corresponding Voronoi
cell. This is a typical method used so far, i.e., choosing the nearest weather station. On
the other hand, if the PV site is in the corresponding Delaunay triangle, three weather
stations at the vertices of the triangle, called DT weather stations hereafter, can be used for
PV forecasting. However, using DT weather stations may not be good depending on the
position of the PV site as well as the shape of DT, specifically when DT is a very flat triangle,
as can be seen in some regions of Figure 2b. In addition, DT weather stations can sometimes
be very different from the three-nearest weather stations. Hence, we need to have a method
that can discern whether to use DT weather stations or the three-nearest weather stations.
The proposed algorithm considers the union set of DT weather stations and the three-nearest
weather stations. The size of this union set can be either 3, 4, 5 or 6. When the size of
the union set is 3, it implies that DT weather stations are also the three-nearest weather
stations, which is an ideal case. By contrast, as can be seen in Figure 3, the size can be 4 or
larger, depending on the shape of DT and the inside location of the PV site. To investigate
this, we focus on three inner triangles in the DT and their interior angles; an obtuse DT is
not favorable, nor are the obtuse inner triangles. Furthermore, when the PV site is close
to a side, either of the three inner triangles becomes a severe obtuse triangle. To simply
capture this, we want the interior angles, denoted by a1, b1, a2, b2, a3, b3 in Figure 3a, to not
be less than some threshold; otherwise, the three-nearest weather stations are selected.
This algorithm has the limitation that it is a heuristic way to select three weather stations;
however, it can be the one of examples that captures the most relevant weather stations
for PV power forecasting. The pseudo code of the proposed algorithm is summarized in
Algorithm 1, and various cases are shown in Figure 3b.
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(a) (b)

Figure 3. Extension of DT to DT+ using union-inner triangles algorithm. (a) Union-inner triangles.
(b) Cases for the union set of DT weather stations and 3 nearest weather stations.

Algorithm 1 Union-Inner Triangles Algorithm

U ← {{vertices o f Delaunay triangle}⋃{3 nearest weather stations}}
|U | ∼ {3, 4, 5, 6}
a1, b1, a2, b2, a3, b3 ← the angles of 3 inner triangles
ε1, ε2 ← the threshold angles
if |U | = 3 then

Use DT weather stations
else if |U | = 4 then

if min{a1, b1, a2, b2, a3, b3} < ε1 then
Use 3 nearest weather stations

else
Use DT weather stations

end if
else if |U | = 5 then

if min{a1, b1, a2, b2, a3, b3} < ε2 then
Use 3 nearest weather stations

else
Use DT weather stations

end if
else if |U | = 6 then

Use 3 nearest weather stations
end if

2.4. Proposed TransGRU Model

We now make vectors x and y, which are the input and output of our TransGRU
model. Let x, y ∈ Rtime represent the hourly time-series values. x has 4 meteorological
factors (temperature, wind speed, humidity, and cloud) per weather station during a day.
By contrast, y has hourly PV generation during a day. Figure 4 shows the form of the input
vector x based on VT and DT.

Figure 4. Input vector x for Voronoi Tessellation and Delaunay Triangulation.
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In doing this, we leverage the Transformer encoder, which is then concatenated by
GRU for time series forecasting. Details are as follows.

2.4.1. Transformer Encoder

The Transformer encoder is a part of the Transformer, which is a well-known model
in machine translation [34]. In the Transformer encoder, as shown in Figure 5, multi-head
attention is the main technique. Instead of a single attention function with queries, keys,
and values, multi-head attention linearly projects the queries, keys and values. Furthermore,
multi-head attention allows the model to attend to different representations at different
positions from the number of heads, denoted by h. We use a single Transformer encoder
layer and a single head (i.e., h = 1), which is single self-attention. Thus, we have multi-head
attention as follows by using the same notations in [35]:

MultiHead(Q, K, V) = Concat(head)WO

where head = so f tmax(QWQ, KWK, VWV)
(4)

where the projections are parameter matrices WQ ∈ Rdmodel×dk , WK ∈ Rdmodel×dk , WV ∈
Rdmodel×dv and WO ∈Rhdv×dmodel . The variables dk, dv and dmodel denote the dimension of
keys, values and outputs of the Transformer encoder. We use dk = dv = dmodel/h = 96 for
PV sites in the Voronoi cell and dk = dv = dmodel/h = 288 for PV sites in the Delaunay
triangle. Applying a single Transformer encoder with single a self-attention mechanism
allows the model to selectively focus on input features that are more relevant to the current
output and alleviate the intervention of other features.

Figure 5. Architecture of Transformer encoder and multi-head attention.

2.4.2. Gated Recurrent Unit (GRU)

Gated recurrent unit (GRU) is a well-known RNN model, which is slightly different
from a long short-term memory network (LSTM). It uses reset gate and update gate to solve
the long-term dependencies of different time scales and takes the sum between the newly
computed state of the data and the existing hidden state to solve the gradient vanishing
problem. GRU has fewer parameters than LSTM since it has only two gates. In [36], the
authors showed that GRU has fast convergence compared to LSTM while maintaining
the performance of LSTM in certain tasks, depending on a dataset. We also find that the
performance of GRU and LSTM is similar, so either can be a flexible choice for recurrent
neural networks, and we choose GRU considering model complexity. Figure 6 shows the
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architecture of the GRU unit. The relationship between the input and output of GRU can
be described as follows:

r(t) = σg(Wrx(t) + Urh(t− 1) + br)

z(t) = σg(Wzx(t) + Uzh(t− 1) + bz)

h(t) = (1− z(t))� h(t− 1) + z(t)� ĥ(t)
ĥ(t) = σh(Whx(t) + Uh(r(t)� h(t− 1)) + bh)

(5)

where z(t) is the update gate vector at time step t, r(t) is the reset gate vector, W, U and b
are parameter matrices and vector. The operator � denotes the Hadamard product. σg is a
sigmoid function, and σh is a hyperbolic tangent.

Figure 6. Architecture of the GRU unit.

Using the Transformer encoder and GRU, our proposed TransGRU model adaptively
represents the input features that are highly related to the output and solves the long-term
dependencies and the gradient vanishing problem by using represented feature data.

3. Model Selection

In this section, we describe PV generation data and weather data (i.e., input and
output data of the model) used for training, validation and testing. Then we describe
the hyperparameters of the proposed TransGRU, the compared models and the model
optimization.

3.1. Data Description

We used the PV generation data of Korea provided by the Korea Electric Power
Corporation (KEPCO). There are 1034 sites located in all parts of the country, and PV
generation data from newly built sites are from 1 December 2019 to 28 October 2021 every
hour. Table 1 shows the statistical information (maximum, mean, conditional mean, i.e.,
during effective daytime, and standard deviation) of sampled PV data from each location.
The data are normalized between 0 and 1 using the installed PV capacity. The dataset is
split into training set (80%), validation set (10%), and test set (10%).

We used Automated Synoptic Observing System (ASOS) weather data of Korea re-
leased by the Korea Meteorological Administration (KMA) [37]. There are n = 86 weather
stations located in all parts of the country, and weather data were obtained for the same
period of PV generation. ASOS weather data provides 16 meteorological factors every
hour, and we selected 4 meteorological factors: temperature, wind speed, humidity and
cloud amount. The linear interpolation method is used to fill the missing values after data
cleaning. In addition, the data are normalized using the maximum value of each factor.
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Table 1. Statistical information of the PV sites in Korea.

Location # of PVs
Statistical Parameter of PV Data from Each Location

Maximum Mean Conditional Mean Standard Deviation

Gangwon 72 0.9439 0.1418 0.4334 0.2377
Gyeonggi 77 0.4336 0.0697 0.1932 0.1059

Gyeongnam 112 1.3644 0.2189 0.6407 0.3493
Gyeongbuk 147 0.8453 0.1374 0.3798 0.2102

Gwangju 39 0.9845 0.1499 0.4373 0.2324
Daegu 27 1.7818 0.3044 0.8400 0.4550

Daejeon 5 0.8604 0.0595 0.3635 0.1419
Busan 12 0.0475 0.0086 0.0229 0.0129
Seoul 8 1.1770 0.1986 0.5493 0.3030
Sejong 4 3.2630 0.5486 1.5490 0.8344
Ulsan 4 0.8950 0.1454 0.4104 0.2245

Incheon 10 0.7373 0.1287 0.3522 0.1932
Jeonnam 243 0.5957 0.0985 0.2836 0.1544
Jeonbuk 110 0.4478 0.0700 0.2030 0.1113

Chungnam 113 1.8684 0.3018 0.8458 0.4673
Chungbuk 51 1.3418 0.2063 0.5972 0.3247

3.2. Hyperparameters of the Proposed TransGRU

The size of the input vector is determined by the number of time steps per day. As
shown in Figure 4, the size of time steps depends on the number of selected weather
stations. We determine time = 96 when the PV site is clustered in the Voronoi cell, and
time = 288 when the PV site is clustered in the Delaunay triangle. For example, the input
vector for DT is formed as x ∈ R288. For the output vector, the size of time steps is fixed
by 24 for hourly PV generation during a day. Therefore, the shape of the output vector
becomes y ∈ R24.

In Section 2.4.2, we had provided the reason for the choice of RNN models; LSTM
and GRU. We already performed experiments about using LSTM; however, it was found
that the performance of LSTM and GRU are similar. Therefore, either can be a flexible
choice, but we chose GRU considering the model complexity and generalization; GRU has
a smaller number of model parameters than LSTM. The reason for only comparing LSTM
with GRU is that these methods are the most well-known and the basis of many other RNN
models. Then we determined the hyperparameters of each component in TransGRU, i.e.,
Transformer encoder and GRU using a validation set. For the Transformer encoder, we
selected 1 head for multi-head attention, which is equal to single self-attention. We set
512 as the dimension of a single hidden layer in the feed-forward network and 1 encoder
layer. For GRU, we selected the single GRU unit and set the size of the hidden state as 64.
Two fully connected (FC) layers are followed behind, and we set 256 as the dimension of
each layer. For an activation function, ReLU [38] is adopted in a feed-forward network of a
Transformer encoder and two fully connected layers. The structure of TransGRU is shown
in Table 2.

Table 2. Structure of the proposed TransGRU.

Layer Name Dimension Number of Parameters

0 Input 288 -
1 Transformer encoder; Feedforward input 512 147,968
2 Transformer encoder; Feedforward output 288 147,744
3 GRU 64 67,968
4 FC layer 1 256 16,640
5 FC layer 2 256 65,792
6 Output 24 6168
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3.3. Hyperparameters of the Compared Models

We compare the proposed TransGRU model with two well-known models: multi-layer
perceptrons (MLP) and GRU [39]. MLP was chosen as a baseline because complex models
suffer from overfitting with insufficient training data from newly built PV sites. GRU was
chosen over LSTM because they have similar performance, but GRU has lower model
complexity. The MLP-based model uses 3 hidden layers, and each of them consists of
256 units. For an activation function, ReLU [38] is adopted. The GRU-based model uses a
single GRU unit and two fully connected layers. The size of the hidden state is 64, and the
number of dimensions of two layers is 256, which is the same as the last two components
of the TransGRU model.

3.4. Hyperparameters of the Model Optimization

All models were trained using the hyperparameters in Table 3. We used the Adam op-
timizer [40] with a learning rate of 0.0001. The batch size was selected as 18 for 1000 epochs.
Lastly, we selected the mean squared error (MSE) as our objective function.

Table 3. Hyperparameters of the model optimization.

Hyperparameter Value

Batch size 18
Learning rate 0.0001

Optimizer Adam
Epoch 1000

Loss function MSE

By setting the hyperparameters in this way, Figure 7 shows that our models are trained
well on the dataset without overfitting and underfitting problems.

Figure 7. Learning curve comparison during training and validation.

4. Experiment Results

In this section, we describe the performance metric, the reproduction of weather
forecast data, performances of union-inner triangles, the transformed input data and the
experimental results for individual and aggregated PV generation forecasting.

4.1. Performance Metric

In order to evaluate the performance of prediction models, we mainly use the normal-
ized mean absolute error (NMAE10):

NMAE10(%) =
100
T

T

∑
t=1
|yt − ŷt|1(yt≥0.1C) (6)

where yt is the ground truth PV generation, ŷt is the predicted PV generation, T is the
number of prediction intervals, C is the installed PV generation capacity and 1() is an
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indicator function. Since error is measured in KPX only when the PV generation is at least
0.1C, i.e., during the effective daytime, our performance metric accounts for this.

4.2. Reproduction of Weather Forecast Data

ASOS does not provide weather forecast data, only historical weather data. Hence,
to be realistic, we reproduce weather forecast data in the test set by using additive white
Gaussian noise (AWGN) [34], which is given by:

x(t)← x(t) +N (0, σ2) (7)

where x(t) is ASOS weather data at time step t. To consider diverse weather forecast
errors, we vary σ to the rate of 5%, 10%, 15% and 20% of the maximum value of each
meteorological factor.

4.3. The Impact of Delaunay Triangulation and Union-Inner Triangles Algorithm

Recall that we proposed the union-inner triangles algorithm in Section 2.3 to extend
the Delaunay triangle-based weather station selection; the target PV site can use either DT
weather stations or the three-nearest weather stations. In the experiment, we found that
DT weather stations and the three-nearest weather stations are the same for 348 PV sites
out of 1034 PV sites, but different for the rest of the 686 PV sites. As shown in Figure 3,
the number of PV sites for the size of the union set is determined as |U | = 3 for 348 PV
sites, |U | = 4 for 528 PV sites, and |U | = 5 for 158 PV sites. In our case, none of the PV
sites have |U | = 6. Now, it is interesting to see which one would be better for the rest of
the 686 PV sites when |U | > 3: DT weather stations or three-nearest weather stations. In
doing this, Figure 8 shows the distribution of 686 PV sites. As can be seen, 472 PV sites
(i.e., red triangle symbol) show that using DT weather stations performs better than the
three-nearest weather stations. We found that DT is less effective when PV sites are located
in obtuse triangles or close to the side of a triangle. Figure 8b shows an example when the
three nearest neighbors are better than DT; we can infer that if PV sites are located in the
way like green plus points in Figure 8b, which is the case that DT weather stations can be
very different from the three-nearest weather stations, then using the nearest three weather
stations can be better than using DT.

(a) (b)

Figure 8. The result of union-inner triangles preprocessing. (a) When DT weather stations and
3-nearest weather stations are different, 66% of PV sites (red triangle) use DT weather stations and
34% of PV sites (green cross) use the 3 nearest weather stations. (b) An example when DT is not a
good choice.
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In the implementation of the union-inner triangles algorithm, we set the degree
parameters to ε1 = 1.3 and ε2 = 2. The choice of ε1 and ε2 is based on validation results of
a comparison between DT weather stations and the three nearest weather stations, which
shows the pattern of the specific locations of PV sites. As an example, Figure 9 shows the
CDFs of NMAE10 for one of the Delaunay triangles in Daegu and Gwangju, respectively.
As can be seen, our proposed method, denoted by DT+, outperforms the three-nearest
weather stations and Voronoi in both cases by effectively selecting three relevant weather
stations in the preprocessing step.

(a) Daegu

(b) Gwangju

Figure 9. An example of union-inner triangles test results.

4.4. The Impact of Transformer Encoder

Thus far, we have discussed the selection of relevant weather stations. Now we discuss
the forecasting model using the weather data from those weather stations. As shown in
Table 2, the Transformer encoder is located in the first and the second layer of the TransGRU
model, and it transforms input data into the feature domain. In other words, TransGRU
learns input data for better representation and feed-forwards it to the recurrent learning
task. In making an interpretable model, we compared the raw input data and transformed
input data of three selected weather stations A, B, and C, as shown in Figure 10.
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(a) Four meteorological factors of weather station A

(b) Four meteorological factors of weather station B

(c) Four meteorological factors of weather station C

Figure 10. Comparison of raw input data and transformed input feature.

As can be seen, the transformed data have high or low values at certain time steps,
compared to the raw data in each section: temperature, wind speed, humidity and cloud
amount. From the transformed data, we can specifically infer which meteorological factor
is highly considered at a certain time step because the role of the Transformer encoder
is to learn and transform the input data to the feature data with the same dimension.
Furthermore, TransGRU considers the importance of weather stations adaptively, which
may not be similar to the order of distance to the weather stations. For example, the
averages of the transformed input data of Figure 10a–c are 0.46, 0.49, and 0.50, respectively.
Hence, one may think that weather station C is the closest to the target PV site, and weather
station A is the farthest away from the target PV site. However, as shown in Figure 11, in
fact, weather station B is the farthest but has more effect than weather station A. Therefore,
the Transformer encoder performs feature representation learning to make a subsequent
learning task easier, which builds robustness for the weather forecast error [41]. The
impact of the Transformer encoder becomes more evident when we see the performance
improvement of TransGRU over GRU in Section 4.5.
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Figure 11. The location of 3 weather stations and the target PV site.

4.5. Forecasting of Individual PV Sites

Figure 12 shows the CDF comparison of MLP, GRU and TransGRU in Gwangju and
Daegu, respectively. As can be seen, the proposed TransGRU is located in the upper left for
all weather forecast error cases. Furthermore, the performance gap between TransGRU and
others becomes larger as the weather forecast error increases. In Figure 12b, as the weather
forecast error goes from 5% to 20%, TransGRU further outperforms MLP and GRU. More
specifically, for the 5% weather forecast error case, differences between TransGRU and MLP,
GRU in terms of NMAE10 are 3.81% and 10.31%. For the 20% weather forecast error case,
differences between TransGRU and MLP, GRU increase, which show 7.28% and 11.57%. In
addition, the differences between the 5% and 20% weather forecast error cases for each MLP,
GRU, and TransGRU itself are 12.72%, 10.20%, and 8.65%, which show TransGRU has the
smallest decrease. This confirms that the Transformer encoder is robust for the weather
forecast error. One may wonder why MLP is better than GRU. This is because GRU (or
LSTM) requires more data to be effective, but, in our case, newly built PV sites do not have
sufficient data.

(a) Gwangju (b) Daegu

Figure 12. CDF comparison (individual PV sites forecasting).

In addition to CDF comparison, the averages of NMAE10 in Gwangju and Daegu are
shown in Table 4. In addition, we provide the result using VT to highlight the performance
improvement using DT+ over VT in Table 4. As described in the table, DT+ outperforms VT
for all the cases of weather forecasting error and the choice of learning model. For example,
DT+ shows 19.9%, 16.0%, and 10.3% improvement compared to VT in the 20% weather
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forecast error for Gwangju. In addition, TransGRU outperforms MLP and GRU as well. For
example, TransGRU with DT+ shows 5.9% and 15.1% improvement compared to MLP and
GRU with DT+ in the 20% weather forecast error for Gwangju. Therefore, it demonstrates
that DT+-based TransGRU works well in PV power forecasting.

Table 4. PV forecasting error of individual PV sites.

Location Weather Forecast
Error (%)

NMAE10 (%)

MLP GRU TransGRU
VT DT+ VT DT+ VT DT+

Gwangju

5 9.47 7.97 10.23 8.85 8.11 7.49
10 9.51 8.04 10.37 9.04 8.59 7.62
15 10.04 8.66 10.92 9.29 8.74 7.67
20 10.98 8.79 11.60 9.74 9.22 8.27

Daegu

5 9.48 8.41 10.07 9.02 9.40 8.09
10 10.35 8.79 10.64 9.42 9.46 8.21
15 10.44 8.99 11.25 9.37 9.55 8.22
20 11.14 9.48 12.12 9.94 10.01 8.79

The best performance metric for each weather forecast error case is in bold.

4.6. Forecasting of Aggregated PV Sites

Finally, we investigate the effect of PV site aggregation, which is the concept of
VPP [42]. VPP is a cloud-based distributed power plant that aggregates the capacities of
heterogeneous distributed energy resources (DER) for the purposes of enhancing power
generation, as well as trading or selling power on the electricity market. Since aggregating
PV sites can improve the forecasting accuracy substantially, it is of interest to see the
VPP performance of the proposed DTTrans model. Power generation from individual PV
sites may severely fluctuate due to stochastic weather conditions, but power generation
becomes smoother as more PV sites are aggregated. Therefore, PV aggregation can achieve
economical profit by stable PV power generation. In this case, PV power forecasting can be
different from the individual PV sites case because forecasting errors from one site can be
compensated by other sites. To implement this, we normalize the aggregated data between
0 and 1 using the sum of installed PV generation capacities. Table 5 shows the results of PV
aggregation in Gwangju and Daegu, respectively. As can be seen, PV aggregation shows a
30−45% improvement compared to the individual PV site in Table 4.

Table 5. PV forecasting error of PV aggregation.

Location # of PVs Capacity (MW) Weather Forecast
Error (%)

NMAE10 (%)

MLP GRU TransGRU
VT DT+ VT DT+ VT DT+

Gwangju 39 29.92

5 5.50 4.73 5.47 5.03 5.28 4.97
10 5.64 4.8 5.68 5.21 5.36 5.0
15 6.13 4.81 6.09 5.49 5.59 5.12
20 6.20 5.03 6.07 5.54 6.05 5.54

Daegu 27 34.47

5 5.76 5.29 5.66 5.09 6.43 5.35
10 6.14 5.51 6.22 5.98 6.41 5.34
15 6.67 5.88 6.50 5.12 6.44 5.53
20 7.28 5.86 7.06 5.82 7.27 6.14

The best performance metric for each weather forecast error case is in bold.

Rather than simply aggregating PV sites colocated in some regions, one can consider
the best combination of multiple PV sites based on meteorological satellite images, as
done in [43]. We can seek a method to obtain the best combination of multiple PV sites,
but since the proposed DTTrans is in parallel to constructing VPP, here we simply focus
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on randomized VPP construction; the randomized VPP may not be better than the best
combination method, but it can capture the performance in the real field because VPP
construction cannot always be performed at will. In Figure 13, we compare the CDFs
of NMAE10 between the DT+-based VPP and individual PV sites. DT+-based VPP is
constructed to meet the requirements in Korea; VPP capacity should be larger than 20MW,
and capacities of each PV site should be lower than 1MW. In implementing this, we
randomly select PV sites and aggregate them to make 200 VPPs. It shows that the DT+-
based VPP substantially improves the performance from 8.7% to 4.2%. The CDF shown
in Figure 13 clearly shows this improvement. Considering that the renewable energy
wholesale market in Korea currently requires 6% or less forecasting error, the proposed
method sufficiently satisfies this requirement.

Figure 13. CDF comparison in terms of randomized VPP in Korea.

5. Conclusions

In this paper, we proposed a novel short-term PV power forecasting technique called
DTTrans based on DT and TransGRU. Unlike using weather data from the closest weather
station, DT selects three weather stations that enclose PV sites. Since the effect of DT
weather stations depends on the shape of DT and the inside location of the PV site, the
proposed union-inner triangles algorithm adaptively handles whether to use DT weather
stations or the three-nearest weather stations. The proposed method is then combined with
an interpretable AI model called TransGRU and becomes robust against weather forecast
error since it selectively considers the weather stations and meteorological factors that are
highly related to PV generation. Extensive experiments show that the proposed DTTrans
is highly effective in forecasting individual PV sites as well as aggregated PV sites. As
the weather forecast error increases from 5% to 20%, TransGRU further outperforms the
other methods based on MLP and GRU. Furthermore, DTTrans considerably improves the
performance when multiple PV sites are aggregated in the VPP form and finally achieves a
3–4% forecasting error on average.
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