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Abstract: The rapid development of microsystems technology with the availability of various machine
learning algorithms facilitates human activity recognition (HAR) and localization by low-cost and
low-complexity systems in various applications related to industry 4.0, healthcare, ambient assisted
living as well as tracking and navigation tasks. Previous work, which provided a spatiotemporal
framework for HAR by fusing sensor data generated from an inertial measurement unit (IMU) with
data obtained by an RGB photodiode for visible light sensing (VLS), already demonstrated promising
results for real-time HAR and room identification. Based on these results, we extended the system by
applying feature extraction methods of the time and frequency domain to improve considerably the
correct determination of common human activities in industrial scenarios in combination with room
localization. This increases the correct detection of activities to over 90% accuracy. Furthermore, it is
demonstrated that this solution is applicable to real-world operating conditions in ambient light.

Keywords: human activity recognition; inertial measurement unit; visible light sensing; sensor data
fusion; features extraction; machine learning

1. Introduction

Electrical and optical microsystems belong among the key technologies of industry
4.0, Smart Home, Smart Building, Ambient Assisted Living technologies and Internet of
Things (IoT) applications [1]. Inertial measurement sensors (IMUs), which include an
accelerometer and a gyroscope and are often also combined with magnetometers, represent
an important example for commercially very successful and often used microsystems, for
instance in wearable devices and for physical activity monitoring [2]. During recent years,
visible light sensing (VLS) and visible light positioning (VLP) methods have also received
increased attention from researchers and are realized by integrated microsystems [3,4]. The
task of VLS is to extract information from light received at photosensitive devices such as
photodiodes (PD) or CMOS cameras and to use this information for various applications,
such as occupancy detection, object identification, or gesture recognition. In VLP, objects
equipped with reflective, light-emitting or light-receiving components can be localized
through analyzing the light received by the photosensitive device by applying methods
such as fingerprinting, proximity detection or geometric methods [5].

The aim of human activity recognition (HAR) is to recognize the physical activities of
humans, such as daily routine actions such as walking and standing up/sitting down, and
usually sensors or integrated microsystems are employed for this purpose. In industrial
applications HAR is used, for example, to improve human-machine interaction or to
provide application-related data for the user or for monitoring systems. Therefore, the
development of advanced techniques to solve HAR problems is drawing more interest.
One of these problems observed in current HAR activities is the disregard of location
and time while monitoring the physical activity of persons. However, localization and
location-based HAR systems significantly expand the range of application scenarios and
are therefore also topics of the presented approach.
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HAR systems are divided into vision-based (e.g., cameras) and sensor-based systems.
Vision-based solutions have received more attention in recent years due to the introduction
of RGB depth images; however, there are privacy and cost concerns with these systems [6].
Sensor-based devices including IMUs and other wearable devices allow for an interaction
with the user and for collecting data in real time [7].

Besides the necessary hardware components for HAR solutions, machine-learning
algorithms present a frequently used approach for data processing and prediction both for
vision-based data and other sensor data. A common use case for wearable devices is to
determine whether a person is currently consuming more or less energy (e.g., walking and
running versus sitting) [8,9]. In this context, continuously performed basic activities such
as walking and running can be detected with a single sensor, while detection in situations
involving transitional activities such as sitting down on a chair, which are not repeated
more frequently, is improved by using multiple sensor elements [10]. For the latter, sensor
data fusion can thus provide a significant improvement in recognition accuracy.

Based on the combination of an IMU device and a RGB-sensitive PD it has already
been demonstrated that activities such as walking versus standing are detected in different
directions and rooms [11,12]. Sensor fusion thus provided a proof of principle for combining
localization and HAR. This was achieved by using standard IMU devices, such as those
used in smartphones, and implementing VLP without any changes to the existing lighting
infrastructure. The advantage of the chosen approach was the easy and cost-effective
implementation. Drawbacks regarding the recognition accuracy by the application of
clustering algorithms in this previous work can be related to the usage of sensor raw-data
and to the placement of sensor elements at improper parts of the body where the sensors
readings are affected by noise and strong disturbances [13].

Therefore, the current work extends this approach by applying methods for feature
extraction from the sensor raw-data. Features in the time and frequency domain are
commonly used in dealing with HAR and for improving the overall accuracy of these
systems [14,15]. Time-domain features range from mean, median, standards deviation, vari-
ance, minimum and maximum values, interquartile range, signal magnitude area (SMA),
signal vector magnitude (SVM), to cross-correlation coefficients, only to mention some of
the most important. Frequency domain features can include the power spectral density,
power of short-time Fourier transform, autocorrelation coefficients, mean and median fre-
quency, average of continuous wavelet transform or spectral entropy [16,17]. Time domain
features are easily extracted from the raw data, whereas frequency domain features require
higher computation and storage capacities [18]. Applications which already implement
time and frequency domain features range from enhancing speech processing [19], image
classification [20], HAR accuracy [8] to fall detection accuracy [21].

The scientific novelty of the paper includes the extension of basic human activities
to additional complex activities based on feature extraction in the time and frequency
domain. Furthermore, it combines human activity recognition with room localization for
industrial applications under lighting conditions relevant for such application scenarios.
Investigating in particular the applicability of our approach in the presence of ambient
sunlight, it demonstrates real-world applicability where ambient sunlight cannot be ignored.
Future research can build on and benefit from the insights found here.

This paper is organized as follows: Section 2 summarizes the current state-of-the art
for time and frequency domain features extraction with HAR localization. Section 3 starts
with an outline of the system for HAR and localization in industrial scenarios. Based on
low-cost and low-power sensor elements, the proposed microsystem fuses IMU and VLP
data, which are used as an input to feature extraction methods for signal processing and
signal evaluation. The experimental conditions are outlined and details are given for the
training as well as the online test procedures. Last but not least, the applied methods
for feature extraction and data evaluation are presented. Section 4 shows the obtained
results with a strong focus on real-world conditions with ambient light. Section 5 provides
a conclusion and a few suggestions for future work.
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2. Related Work

Advances in electrical and optical microsystems have also pushed HAR research
activities in different fields. However, most of this work is based on IMU and especially
accelerometer data, while positioning and localization are often not addressed. The latter
can be related to the fact that for position determination commonly employed approaches
are based on time of arrival (TOA), angel of arrival (AOA) or time difference of arrival
(TDOA) in case of lower requirements concerning the position accuracy. Further, Direct
Position Determination (DPD) [22], Kalman filter [23], Particle filter [24], and laser tracking
measurements [25] are commonly used methods providing higher accuracy.

Yan et al. found that a combination of light detection systems with IMU data for
mobile robot localization provide a higher precision compared to the individual sensor
elements [26]. Ibrahim et al. investigated the determination and tracking of human activity
through VLS technologies with sensor elements placed on the floor or worn by the person
being studied [27]. Xu et al. proposed an indoor localization system using IMU and PD
sensors on a smartphone [28], and Liang et al. applied VLP, IMU and a rolling shutter
camera approach for improved position accuracy [29]. Hao et al. used a hybrid system with
VLP for distance information and IMU for orientation [30]. Liang and Liu combined IMU
motion data with camera measurements and LED markers for position estimation with high
accuracy [31]. Hwang et al. presented results for a wrist-mounted device, which combined
single camera RGB images with IMU data [32]. Finally, Poulose and Han proposed a hybrid
indoor positioning system based on an IMU and a camera for minimizing positioning
errors [33].

In addition to localization and activity recognition based on raw data processing
and analysis, efforts to improve the performance were also made in the area of feature
extraction methods and machine learning algorithms. Pires et al. considered walking,
walking-downstairs, walking-upstairs, standing, running and sitting to be among the most
frequently performed human activities [16]. Further, the authors summarized that mean,
standard deviation, maximum, minimum, energy, interquartile range, variance, median
and correlation coefficients belong among the most used features for extraction and that
Artificial Neural Networks (ANN), Multi-Layer Perceptron (MLP), logistic regression,
random forest and J48 are often used algorithms in HAR. Tian et al. extracted features such
as mean, variance, minimum and maximum from accelerometer and gyroscope data [34].
This allowed determining several activities with high accuracy by using a SVM algorithm.
Shen et al. also extracted several features from accelerometer and gyroscope data and
determined human activities with SVM, KNN, MLP, and Random Forest algorithms [35].
Vallabh et al. applied a similar approach for the detection of people collapsing on the
ground [36]. For this use case, the highest accuracy was found for SVM, Naïve Bayes, MLP
and Least Squares Method (LSM) algorithms. Feature extraction from both accelerometer
and gyroscope with J48, JRip, Random Forest, SVM, Naïve Bayes, MLP, Bagging, and
KNN algorithms for HAR was demonstrated by Tang and Phoha [37]. Bulling et al. found
varying results for the performance of HAR with accelerometer and gyroscope devices,
depending on the number and the type of used features and in correlation to the sensor
position and the type of sensor [38]. In general, accuracy depends on the amount of
information extracted from a sensor dataset, such as room-level localization alongside
HAR, and is usually countered by adding additional sensor elements. For example, a
previous work demonstrated the recognition of different human activities together with
room-level localization by combining data from multiple sensors [11].

For indoor localization and positioning, another approach is to use various radio
frequency methods. These methods can provide accuracies of a few meters, but there are
still limitations in terms of cost, complexity and the need for infrastructure modifications.
Other methods, such as VLP, can provide high localization accuracy without the need for
changes to the lighting infrastructure [39], depending on the solution approach. However,
in most cases, this method is used for localizing a user in a room, while there is still a lack
of research for room-level localization. Carrera et al. proposed a room-level localization
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system for person tracking based on a Wi-Fi fingerprint database created by smartphones
in combination with magnetic field measurements [40]. With the help of Hidden Markov
Models (HMM), the system demonstrated a high precision accuracy. Wojek et al. presented
the tracking of several persons in their daily activities on a room level [41]. This was realized
through gathering audio and video data features from camera and microphone systems
placed in each room and employing a HMM algorithm for data processing and analysis.

Overall, given the state of the art just described, our work provides new insights
into the application of HAR together with room-level localization. By combining dif-
ferent sensor technologies with feature extraction techniques, we investigate the perfor-
mance of a system for industrial scenarios under realistic application conditions. The
approach offers a low-cost and low-complexity solution without requiring any changes to
the existing infrastructure.

3. Methods

The presented approach includes sensor data extraction, sensor data fusion and finally
machine learning experiments. This section provides details about the proposed system,
the training and the online test procedures, experimental conditions, and finally, also about
data extraction.

3.1. System Description

Recorded datasets are composed of sensor data that are acquired on the one hand
from an IMU device called Next Generation IMU (NGIMU) [42] that is used for human
physical activity recognition (HAR), and on the other hand, from light data provided by
an in-house designed VLP unit [11], which is used for the room detection. Data from the
NGIMU includes accelerometer, gyroscope and magnetometer values.

The VLP receiver consists of a RGB sensitive PD, which provides three separate
sensitive areas for the three different signal channels, Red (R), Green (G) and Blue (B),
corresponding to three wavelength ranges in the visible light spectrum. In general, the
PD delivers a current, which is proportional to the incident light in the respective spectral
range. These current signals are separately detected and converted by Transimpedance
Amplifiers (TIA) to voltage signals, which are connected to the built-in Analog-to-Digital
Converter (ADC) of the NGIMU. The advantages of connecting the VLP unit with the
internal ADC of the NGIMU are, first, that the provided communication interface is shared
with the VLP sensor device and, second, that sensor readings of both devices, the NGIMU
and the VLP unit, are synchronized and exhibit the same timestamp from the NGIMU.

Sensor signals are collected at a commonly used sampling rate of 100 Hz [43,44].
Further, the IMU device is connected to a laptop via Wi-Fi by an Open Sound Control (OSC)
wireless communication protocol using a data transmission rate of 1 kHz. For the training
sequences of the system (see Section 3.2) an additional hardware button is implement,
which is pressed by the user to record the data relevant for the respective situation.

For having a clear line-of-sight (LOS) between light sources and the RGB PD sensor,
the NGIMU device with its additional supporting circuit is placed on top of a helmet. Other
works suggested placing the IMU on the front, on the back, or on the sides of the head
as well as placing the sensors on the wrist, hip, foot, elbow, knee, or chest [45]. For the
industrial application scenario envisioned here we consider the position on the helmet to
give results with high accuracy while only minimally interfering with the user’s tasks.

Figure 1a shows the NGIMU device with sensors placed in the top right corner [42].
Figure 1b depicts the in-house developed VLP unit with an RGB PD located middle-left
and a LED on the middle-right side. The three TIAs can be seen on the bottom left corner.
Figure 1c shows the side view of the helmet with the sensor equipment mounted on the top.
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Figure 1. The hardware components used in this study: (a) NGIMU device; (b) VLP unit; (c) Side
view of the helmet with integrated sensor devices and additional supporting circuit.

Overall, this work contributes to more detailed insights about human physical activity
detection and room localization with a helmet-mounted sensor device. This is emphasized
for comparing reported prediction accuracies in different works [46].

3.2. Training and Online Test Procedures

The open source machine-learning tool Weka [47] was applied for system training as
well as for online test procedures. For the final evaluation of the results, a tenfold cross
validation is used, where a recorded dataset is split in nine parts for training and one part
for testing. Further, in-house developed Python scripts were employed for the extraction of
time and frequency domain features, connecting the IMU device through Wi-Fi to a laptop,
and for training as well as for online test procedures of the system.

Training procedures for the VLP unit were performed with the room lighting on but
blinds closed, i.e., without external ambient light. Data were recorded at all available
points in each of the rooms (see Figures A1–A3 in the Appendix A). Further online tests
were conducted under similar and under different lighting conditions, i.e., both closed and
open blinds.

For IMU sensor training, an arbitrary user collected data for a specific physical activity
and assigned the respective activity label to this data. Physical activities included walk,
no-walk (standing and sitting), sit-to-stand, and stand-to-sit in four defined directions of the
rooms as specified in Figure A4. Subsequent feature extraction is based on measurements
from the accelerometer sensor of the IMU. At the end of IMU sensor training, which in
principle can be performed at any point in a room, the data from different activities are
merged for further processing. However, the test series were planned so that the data were
collected at different times, days and in different rooms. This was to provide the possibility
to investigate whether these factors affect recognition accuracy. For example, Dillon et al.
suggested that a wrist-worn accelerometer would need to be monitored for at least six days
to reliably detect habitual activity [48].

Upon completion of the training procedures, the training dataset is processed using a
common J48 algorithm to generate a data-driven decision tree, which is then converted into
executable Python 3.9 code via a self-developed script. The generated Python code, which
reflects the decision tree rules determined by the training data, is then used to evaluate the
online tests.

A series of online tests was performed in all three rooms, R1, R2 and R3, for system
performance evaluation. The online tests included walk, no-walk, sit-to-stand and stand-
to-sit activities in the defined four directions D1 to D4 as shown in Figure A4. The walking
activities were always carried out along set paths marked by lines on the floor and shown in
red color in the room plans (“L”-characters, see Figures A1–A3). No-walk, sit-to-stand, and
stand-to-sit activities were performed at test points marked on the floor and represented
by green dots in the room plans (“P”-characters). The no-walk activity is represented by
both stand-still and sit-still activities. Further, it should be emphasized that the activities
studied here include both static and transitional human activities. Transitional activities
are considered more complex for HAR, but they can provide a more complete activity
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description compared to using only static tasks. Thus, the presented approach allows an
extended application under more realistic operational conditions.

The evaluation results of the online test series including room determination, activity
determination and direction determination were stored for each experiment, and finally
the number of correct determinations over all experiments was calculated. From this, the
respective accuracy for correct predictions is derived.

3.3. Experimental Conditions

To explore the impact of variations in external light conditions during the day, a
training procedure was conducted at a specific time and day, and the online tests were
repeated at a later stage. Table 1 summarizes the parameters for the performed series of
experiments, which were analyzed with the focus on room localization by the VLP unit.

Table 1. Parameters and environmental conditions for the performed experiments.

Experiments Indoor
Lighting Blinds Start Time of

Experiment
Weather

Conditions

Training ON Closed Day 1, 10:00 Cloudy
Online test-1 ON Closed Day 1, 13:00 Cloudy
Online test-2 ON Opened Day 1, 16:00 Cloudy
Online test-3 ON Opened Day 2, 09:00 Sunny, but no direct sunlight

To provide even more detailed information about the specific changes in light con-
ditions during the experiments, the illumination level and the spectral light distribution
were determined at the beginning of each experiment. The illumination (in units of lux, one
lux is equal to one lumen per square meter [49]) was measured at various heights above
the floor and at specified spectrum test points inside the three rooms. The spectrum test
points are marked with “S”-characters in blue in the room plans—see Figures A1–A3—and
visible light spectra were taken with an UPRtek Spectrometer MK350S Premium [50]. The
respective heights of the spectrum test points from the floor are summarized in Table A1 in
the Appendix A. Illumination values and spectra are shown in the Section 4. By applying
the training procedure described above, it is expected that the approach to HAR and room
identification presented here can be applied to any indoor space under varying environ-
mental and different lighting conditions, although the proposed system was only evaluated
in three specific rooms in the experiments conducted here.

A second series of tests was carried out with regard to testing the accuracy for HAR.
Table 2 gives an overview of this series of experiments. Data for five activities were collected
on three different days and in two different rooms. The corresponding number of iterations
and experiments for each of the activities is specified in this table, and the bottom line
summarizes the merged data of all three previous days. The last column indicates how the
data have been split for training and testing. An example of a captured data file can be
found in the Section 3.4 (see Table 3).

Table 2. Description of the second experimental test series.

Experiments Iterations Total no. of
Iterations

No. Measurements
per Activity

Total no. of
Measurements

Training vs.
Test Samples

Day 1,
Location#1 10 50

Sit: 2723
Si-st: 1716

Stand: 2628
St-si 2021

Walk: 2689

11,777 n.a.
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Table 2. Cont.

Experiments Iterations Total no. of
Iterations

No. Measurements
per Activity

Total no. of
Measurements

Training vs.
Test Samples

Day 2,
Location#1 30 150

Sit: 11410
Si-st: 7114

Stand: 11648
St-si: 7654
Walk: 9847

47,673 n.a.

Day 3,
Location#2 100 500

Sit: 38580
Si-st: 24199

Stand: 32954
St-si: 21645
Walk: 33670

151,048 350 vs. 150

Merged
data from
three days
and two
locations

140 700

Sit: 52713
Si-st: 33029

Stand: 47230
St-si: 31320
Walk: 46205

210,497 490 vs. 210

Table 3. Example dataset for data generated from the 3-axis accelerometer sensor element (x, y and
z-values in columns 2 to 4, respectively) with corresponding timestamp in the first column and
activity classification in the last column (ADL—activity daily living. Five different activities are
studied: stand—standing, sit—sitting, walk—walking, si-st—sit-to-stand and st-si—stand-to-sit).

Time (s) Acce-X (m/s2) Acce-Y (m/s2) Acce-Z (m/s2) ADL

0.1 0.161799952 0.017999846 0.981487095 sit
0.2 0.164758027 0.023350080 0.977752686 sit
0.3 0.170689359 0.034476221 0.982251704 sit
0.4 0.112286702 0.039446317 1.005190372 si-st
0.5 0.123579949 0.051039595 1.009228349 si-st
0.6 0.128493294 0.057355978 1.005034924 si-st
0.7 0.331447363 0.039430257 0.934785128 stand
0.8 0.331414938 0.035566427 0.930415988 stand
0.9 0.332439810 0.041852437 0.935305059 stand
1.0 0.170633137 0.026200492 0.985943556 st-si
1.1 0.169641167 0.023775911 0.985902011 st-si
1.2 0.168163225 0.021850912 0.983475626 st-si
1.3 0.293405503 −0.028735712 0.900109053 walk
1.4 0.302678615 −0.026843587 0.903027654 walk
1.5 0.310985833 −0.023983495 0.907395661 walk

Finally, it should be also mentioned that all experiments were conducted by a single
person (male, age 55 years, 173 cm tall) wearing the helmet with the mounted sensor
devices on his head. This is justified by the fact that, on the one hand, different people
should not have a significant influence on the setup chosen here and, on the other hand,
the major focus of the investigations is rather on different rooms and ambient conditions.

3.4. Data Extraction

For the purpose of this work, IMU and light data were extracted separately. Since the
activity detection is location-independent, the experiments can in principle be performed
at any location. In contrast, data acquisition for the VLP device must be conducted in the
target rooms, since room identification is based on the specific lighting conditions of these
rooms. Afterwards, IMU and light data from both sensor devices are fused to constitute
a supervised data set for feature extraction in machine learning algorithms. Finally, the
extracted features can be listed in single columns together with an additional column,
which represents the class—for example, describing one of the physical activities.
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Figure 2 shows the reference model of our approach and illustrates the processes of
training and online testing.
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3.4.1. IMU Data

Accelerometer sensor data are the best suited to differentiate between various activi-
ties [51,52]. Therefore, IMU data is recorded, and an extraction of the time and frequency
domain features applied to the measured values of acceleration in the three directions x, y
and z is done. Data acquisition is performed for a duration of three seconds for each of the
five different studied activities, and each individual activity is repeated several times and
on different days. This results in a total number of 140 iterations for each activity. Table 3
shows an exemplary dataset generated from the accelerometer sensor data together with
a timestamp and the classification for the respective data-related activity ADL (activity
daily living).

For activity recognition in combination with room localization, the IMU data were
acquired during all five considered activities. Further, all activities were performed in
four directions of a room based on the room orientation as shown in Figure A4 in the
Appendix A (D1 to D4). A final data set representing all physical activities is formed by
merging the data from all activities. In the next step, a set of time and frequency domain
features is extracted; Table 4 shows the list of features as used in this study. These are
features that are commonly employed in HAR approaches.



Sensors 2023, 23, 132 9 of 24

Table 4. Time and frequency domain features used in this study.

Domain Features Description

Time

Mean average based on the sum of the values divided by the number
of values

Median middle number in a sorted list of numbers
SD Standard deviation: average amount of variability in the data
IQR Interquartile range: measure for the spread of the data
Min the lowest value
Max the highest value

SVM
Signal vector magnitude: distinguishes between periods of activity and
no-activity to identify when a person is doing an activity or not [45]

SMA
Signal magnitude area: calculates the intensity of movement, which is
important for detecting a fall [53]

Frequency
PSD

Power spectral density: a measure of the signal’s power. It shows at
which frequencies the variation is strong or weak

DF
Dominant frequency: refers to the component with highest sinusoidal
magnitude [54]

Table 5 shows an exemplary dataset for the extracted time and frequency domain
features in relation to the physical activities ADL. For the sake of space and simplicity, this
example only refers to x-axis accelerometer data.

Table 5. Example for a dataset that contains the extracted time and frequency domain features for
various activities ADL (activity daily living).

ADL Mean Median SD IQR Min Max SMA DF PSD

si-st 0.0270 0.0112 0.2635 0.4180 −0.418 0.5393 0.0270 4.0957 0.4166
si-st 0.1006 0.0410 0.2693 0.4717 −0.350 0.6080 0.1006 4.0260 0.5076
si-st 0.0657 −0.0195 0.2679 0.4451 −0.336 0.6621 0.0657 3.9124 0.4950
st-si 0.1259 0.16115 0.2816 0.5474 −0.348 0.5705 0.1259 4.0132 0.5882
st-si 0.0460 0.05314 0.2990 0.5293 −0.450 0.5425 0.0460 4.3323 0.4854
st-si 0.0280 0.04247 0.1315 0.5870 −0.484 0.4529 0.0280 4.3826 0.5209
sit −0.1633 −0.1622 0.0142 0.0208 −0.194 −0.133 −0.163 2.6134 0
sit −0.1503 −0.2150 0.0096 0.1013 −0.175 −0.127 −0.150 2.6521 0
sit −0.1326 −0.1320 0.0116 0.0161 −0.155 −0.098 −0.132 2.2441 0

stand −0.3144 −0.3153 0.0139 0.0217 −0.346 −0.271 −0.314 4.7428 0
stand −0.2801 −0.2817 0.0179 0.0246 −0.313 −0.222 −0.280 4.5632 0
stand −0.3228 −0.3226 0.0121 0.0148 −0.367 −0.294 −0.322 5.2891 0
walk −0.2271 −0.2524 0.1219 0.1396 −0.471 0.1130 −0.227 4.0336 0
walk −0.2835 −0.2963 0.1268 0.1864 −0.546 0.1038 −0.283 4.0899 0
walk −0.3027 −0.3289 0.1239 0.1752 −0.555 0.0192 −0.302 5.2423 0

Finally, for direction recognition, we used the quaternion message from the NGIMU,
which describes the device’s orientation relative to the Earth [42]. The utilized NGIMU
quaternion message is composed of four elements, namely the x, y, z and w information.
The w value gives the rotation around the vectors x, y and z, which was consequently used
for determining the direction of the system, as detailed in our previous work [11].

3.4.2. Light Data

As stated in Section 3.1, the VLP unit generates three data channels, which are related
to the detected light intensity in three regions of the visible light spectrum (RGB colors).
The measurements of absolute values are more sensitive to noise compared to relative data
characteristics based on, for example, ratios of raw data channels.

Due to the varying distance between the user and the light sources, the different
illumination infrastructure in the rooms and the changing ambient light conditions, it is to
be expected that the incident light at the PD sensor and thus the measured raw data are
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subject to significant variations. However, the spectral composition in a specific room is
expected to be more reliable for data analysis, and therefore relative data are computed
by either subtracting or dividing the sampled raw PD channel values. Based on these
considerations, the following six features were generated: blue minus green (B-G), blue
minus red (B-R), green minus red (G-R), blue divided by green (B2G), blue divided by red
(B2R) and green divided by red (G2R).

Table 6 shows an example data set with the raw data values (B, G, R) measured by the
VLP device and the subsequently calculated relative data characteristics.

Table 6. Example for timestamped raw data acquired from the VLP unit and further extracted relative
data in relation to the three different rooms R1 to R3 (Class).

Time B G R B2G B2R G2R B-G B-R G-R Class

0.1 161.66 145.61 152.88 111.01 105.74 95.247 16.044 8.7792 −7.265 R1
0.2 176.49 164.68 167.10 107.16 105.61 98.550 11.80 9.3847 −2.418 R1
0.3 177.40 155.90 157.11 113.78 112.90 99.229 21.494 20.283 −1.210 R1
0.6 139.56 104.14 107.77 134.01 129.49 96.629 35.419 31.797 −3.632 R2
0.7 141.98 103.23 103.83 137.53 136.73 99.416 38.749 38.144 −0.605 R2
0.8 145.31 98.691 102.02 147.23 142.43 96.735 46.621 43.291 −3.330 R2
1.1 209.18 207.37 205.55 100.87 101.76 100.88 1.8163 3.6328 1.8164 R3
1.2 209.18 207.07 205.85 101.02 101.61 100.58 2.1191 3.3300 1.2109 R3
1.3 209.18 207.37 205.85 100.85 101.61 100.73 1.8163 3.3300 1.5136 R3

4. Results and Discussions

In a first step, the data from the training and online tests 1 to 3 are evaluated and
analyzed for recognition accuracy under changing ambient light conditions. In the second
step, the focus is on the recognition accuracy with respect to the investigated activities for
HAR. Finally, the influence of changing ambient light on room localization is discussed in
more detail in Section 4.2.

4.1. Activity Recognition under Changed Ambient Light Conditions

Several options are usually available to evaluate the quality of systems like the pre-
sented approach, such as accuracy, precision, or recall. As with many other HAR systems,
we apply the accuracy measurement, which specifies the average difference between
correctly predicted and known values. The following equation for the ratio of correct
predictions to the number of all predictions is applied to determine the accuracy:

accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

True Positive (TP) refers to positive model predictions and the actual class being
positive, True Negative (TN)—both, the model prediction and the actual class are negative.
False Positive (FP) applies for a positive model prediction while the actual class is negative,
and False Negative (FN) for negative model predictions with the actual class being positive.

After a model has been created based on the training data, online tests 1 to 3 were
evaluated in a first step. Since the focus is on room localization under varying ambient light
conditions, only two activity classes are distinguished, namely walking and non-walking
activities. Table 7 summarizes the averaged results for correct detections for walking
activities during the online tests 1 to 3 and Table 8 shows the results corresponding to
no-walk activities. This evaluation includes the detection of the performed activity, the
direction of the activity, and the room localization. Further, Figure 3 visualizes the results.
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Table 7. Average of correct detections for each task during walk activity based on data from all three
online test series.

Correct Detection Average during Walk Activity (%)

Experiments Activity Direction Location

Online test-1 97.90 87.61 94.79
Online test-2 98.91 89.29 95.59
Online test-3 98.54 92.83 91.62

Table 8. Average of correct detections for each task during no-walk activity based on data from all
three online test series.

Correct Detection Average during No-Walk Activity (%)

Experiments Activity Direction Location

Online test-1 95.25 99.20 98.99
Online test-2 94.12 98.43 98.58
Online test-3 95.49 97.47 99.61
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the results.

First of all, it is clear from the results that the differences between the three online
tests conducted for walking and non-walking activities are only slight. In more detail, the
average of correct detections is a little bit higher for the no-walk activities. This is mainly
attributed to increased noise for the walk activity as the sensor devices are in motion.
Further, it must be mentioned that there are also locations inside the rooms which are
not fully covered by the luminaires during the walk activity. Especially in room 3 (see
Figure A3 in the Appendix A) the distances between the light spots on the ceiling are not
equal, so that light interruptions can occur between the sensor element and the light source,
depending on the position of the person.

For further justification, the results of the online tests are compared taking into account
the changing ambient light conditions. The difference between the average correct detec-
tions is calculated and summarized in the following Tables 9 and 10. This comparison shows
whether one of the online test series outperforms others in terms of correct detections.
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Table 9. Differences between average correct detections in the three online tests for walk activity.

Average Detection Difference between the Online Tests for Walk Activity (%)

Between Activity Direction Location

Online test-1 and 2 1.01 1.68 0.80
Online test-1 and 3 0.64 5.22 −3.16
Online test-2 and 3 −1.37 3.54 −3.96

Table 10. Differences between average correct detections in the three online tests for no-walk activity.

Average Detection Difference between the Online Tests for No-Walk activity (%)

Between Activity Direction Location

Online test-1 and 2 −1.12 −0.76 −0.41
Online test-1 and 3 0.24 −1.73 0.62
Online test-2 and 3 1.37 −0.97 1.03

This analysis also shows no major differences between changing conditions in the
three online tests. Minor differences in detection accuracy for activity and direction when
comparing walking and non-walking activities are most likely related to head movements
and whether the helmet was properly fastened. Overall, these minor differences are
considered small and negligible, and the system provides sufficient detection accuracy in
combination with the selected features.

Keeping the focus on room localization under changing ambient light conditions, it
can be stated that the three rooms are correctly detected with almost the same accuracy,
regardless of whether the blinds of a room are open or closed. This is due to the fact that
relative light features are used instead of the absolute raw data values acquired by the
PD of the VLP unit. The results show that these relative features can avoid disturbances
caused by changes in ambient light during the day, and furthermore, that these features are
robust to intensity variations with changing distances between light sources and the PD
sensor, especially during walking activity. Thus, the approach presented has been proven
to provide a system with improved reliability for correct determinations.

In a second step, the focus is on HAR with a detailed analysis concerning the activities
studied in the experimental tests. Further, the investigation focuses on the effects on
detection accuracy that may be caused by the execution of individual activities at different
places, days and times. Therefore, the recorded data are evaluated in two different ways:

• Experiment-1: evaluation includes 100 iterations measured on day 3 and site 2, i.e., this
evaluation refers to data recorded on a single day and at a single location.

• Experiment-2: evaluation includes the sum of all 140 iterations (merged data) mea-
sured on three days and at two locations. Therefore, this evaluation refers to data
comprising variations from different times and sites.

For these two experiments (evaluations), each data set is split into 70% of iterations
for training and 30% for testing (also see the last column in Table 2), which is consistent
with approaches often described in the literature.

The evaluation results are summarized in Table 11 and compared with several reported
state-of-the-art attempts in this field. Differences between other studies and the presented
results can be attributed to several issues, such as the number of samples used, the sampling
rate, the activities chosen for HAR, the number and type of time and frequency domain
features extracted, or the machine learning algorithm applied.
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Table 11. Average detection accuracy (%) for two evaluations of experimental data (Exp-1 and Exp-2)
in comparison with reported results in the literature. The accuracies are given for the combination of
time and frequency domain features and also for time and frequency separately.

Domain Exp-1 Exp-2 Study-1 [55] Study-2 [16] Study-3 [56] Study-4 [57] Study-5 [58]

Time &
frequency 96.67 91.43 - 90.89 - - -

Time 96.67 91.43 93.52 - 87.00 96.75 95.00

Frequency 62.67 94.35 94.34 - 94.00 - 92.70

In general, the results in the literature show that in most of the studies, the time
domain features perform better than the frequency domain features in almost every case.
Meaning, the classification accuracy for features generated in the time domain is higher
than that of those generated in the frequency domain. The results presented here show that
the achieved accuracies beyond 90% can definitely compete with the results from other
work. In combination with the extension of the system for direction detection and room
localization, this demonstrates the strengths of the system.

A closer look at the results from experiment-1 and 2 shows that there is a minor
decrease in the detection accuracy when comparing the results for data recorded on a
single day and at a single location (96.67%) with data from three days and two different
sites (91.43%). However, the achieved detection accuracy of over 90% is still considered as
well tolerable.

For a better comparison of the activities executed on one day and on several days,
a confusion matrix is calculated showing how many examples of each executed activity
were correctly classified (diagonal values) and which were incorrectly classified by the
algorithm [16].

Table 12 shows the results for the five activities when time domain features are applied
in experiment-1 and experiment-2.

Table 12. Calculated confusion matrix for experiment-1 (left) and experiment-2 (right) when time
domain features are applied.

Exp.-1 Exp.-2

Si-st St-si Walk Sit Stand Si-st St-si Walk Sit Stand

Si-st 30 0 0 0 0 Si-st 35 7 0 0 0

St-si 1 29 0 0 0 St-si 6 36 0 0 0

Walk 1 0 29 0 0 Walk 0 0 42 0 0

Sit 0 0 0 28 0 Sit 0 0 5 37 0

Stand 0 0 0 1 29 Stand 0 0 0 0 42

The correct classified activities are shown in the diagonal elements in the green boxes,
incorrectly classified activities in the non-diagonal boxes in yellow. The percentages for
misclassified activities in experiment-1 are 0.03% (St-si with Si-st), 0.03% (Walk with Si-st),
and 1.02% (Stand with Sit), respectively. The percentages for misclassified activities in
experiment-2 are 7.03% (Si-St with St-Si), 8.36% (St-Si with Si-St), and 5.60% (Sit with
Walk), respectively.

Overall, it is assumed that the application of feature extraction methods in the time
and frequency domains will provide sufficient recognition accuracy for the intended
application scenarios.
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4.2. Discussion of Different Ambient Light Conditions

To investigate the effects of changes in external ambient lighting conditions during
the day, the illumination intensity and the spectral light distribution were measured at the
beginning of each experiment (training and online tests). To further assess the differences
between the three rooms and within each room, measurement points in the room at
different heights above the floor were defined for these measurements (see Figures A1–A3
and Table A1 in the Appendix A). Thus, different distances to windows and light sources
are covered and included in the investigations.

The results for the illumination intensities are given in Figure 4a–c. The values were
determined for each of the defined spectrum test points in the three rooms.
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defined spectrum test points S in room 1: (a) at the left with S1 to S5, room 2; (b) in the middle with
S1 to S5, and room 3; (c) at the right with spectrum test points S1 to S3.

As expected, the data show increased illuminance levels for spectrum test points near
windows or indoor light sources. Furthermore, the increased illuminance for room 1 and 2
during online test 3 (yellow bars) with the blinds open and under sunny weather conditions
(see Table 1) is also emphasized. The differences between the individual spectrum test
points are also evident, such as between S2 and S3 in room 2, which are both at similar
distances from the luminaires; however, the values for S2 near the windows are higher than
the values for spectrum test point S3 on the wall opposite the windows. Overall, the figures
also show that there were almost no differences between the training series and online
test-1 and online test-2, although online test-2 was conducted with the blinds open but in
cloudy weather conditions. The spectral light distribution was determined to be equal to
the illumination intensity at the defined spectrum test points in the three rooms. The results
for the comparison between the training and the online tests are shown in Figures 5–7.

As with illumination intensity, the results for spectral distribution show that only
online test-3 with open blinds and a clear sky has major differences from all other data.
Moreover, this applies only to rooms 1 and 2, but as expected not to room 3, which has
no windows. All other measurements show quite comparable spectra for training and
online tests.

So far, it has been shown that the proposed system provides reasonable detection
accuracy both when the blinds are closed and when they are open, and further when the
blinds are open under both cloudy and sunny weather conditions. However, what has
not been considered so far is sunlight directly entering the room. This can significantly
alter conditions, as the illumination intensities are several magnitudes larger compared to
a cloudy sky or to indoor illumination intensities. In addition, depending on the materials
present in a room, there may be reflections of the incident sunlight that, when they impinge
the PD sensing element of the VLP device, cause saturation of the signal. The saturation
makes signal evaluation impossible; however, even with less severe impairments, the
spectral distribution may be significantly altered at certain points in the room. Since the
latter has a significant impact on the extracted features, it is to be expected that in these cases
the detection accuracy will also be significantly impaired. Therefore, further investigations
were carried out.
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(b) S2; (c) S3; (d) S4; (e) S5.

An additional online test was performed with the interior lighting switched on, the
blinds open, and—this is new—sunlight shining directly into room 1 (spreading over an
area of approximately 2.5 m from the windows into the room). For this test, a walking
activity was chosen in which the test person walked along the defined path L3, which
describes a straight path below the indoor lighting with varying perpendicular distances to
the window (see Figure A1 in the Appendix A). Table 13 shows the evaluation results for
this experiment.
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Table 13. Results for an additional experiment with walking activity in room 1 and direct sunlight.

Time R1 R3 D3 D4 Walk No-walk Rooms ADL

1 0 100 0 0 100 0 R1 Walk
2 0 100 100 0 66.66 33.33 R1 Walk
3 0 100 100 0 85.71 14.29 R1 Walk
4 0 100 100 0 100 0 R1 Walk
5 85.71 14.29 100 0 83.33 16.67 R1 Walk
6 100 0 100 0 100 0 R1 Walk
7 100 0 100 0 100 0 R1 Walk
8 100 0 100 0 100 0 R1 Walk
9 100 0 100 0 100 0 R1 Walk

Ave. 53.97 46.03 98.14 0 92.86 7.14 - -

The results in Table 13 show that a person walks on the path L3 from the window
towards the wall (direction D3—100%). However, in about the first half of the experiment
(time ~1–5 s), instead of room 1, room 3 was incorrectly detected (R3—100%), which is
attributed to the interference from the direct sunlight. Only in the second half of the
experiment (time ~5–9 s), which refers to the part of L3 being closer to the wall and
more distant from the window, does the algorithm correctly detect room 1 (R1—100%),
as there is no interference from direct sunlight in this area. To support this interpretation,
additional measurements regarding the illumination intensity and spectral distribution
were performed. Figure 8a–c show the visible light spectrum of the three rooms, R1, R2
and R3. These measurements were taken directly under one luminaire in a room and at
a height of 105 cm above the floor. The blinds of the room were closed and the interior
lighting was on. Thus, the determined spectra refer to the characteristic properties of the
lighting in each room.

The differences between the spectra of the three rooms are explained by the installed
lighting systems, which were not modified in any way for the experiments performed.
Room 1 is equipped with Osram LuxiLED 1200 × 300, 4000 K, 32 W luminaires, room 2 is
equipped with Osram Lumiluix cool white FQ 54 840 W fluorescent lighting tubes, and
room 3 is equipped with Philips CorePro LED Spots 4.6 W.

Next, illumination intensities and spectral distributions were measured at points
located more or less in the center of the rooms R1 (S1) and R2 (S1). The blinds were open
and the interior lights were off to collect data related to the external ambient light conditions
on a foggy day and under a partly cloudy sky. Figure 9 shows the corresponding results;
λp refers to the peak wavelength within the spectral distribution, and λpV refers to the
irradiance at the peak wavelength [50]. There are only minor differences in the spectral
distributions but significantly increased illumination intensities for a partly cloudy sky
compared to foggy weather conditions.
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Results at the top refer to foggy weather conditions (a,b); results in the bottom line to a partly cloudy
sky (c,d).

From these data, it can be inferred that the spectral distribution in the case of the
dominance of sunlight from outside room 1 is more similar to the distribution in Figure 9c
(sunlight spectra from outside of room 1) than to the distribution in Figure 8a (characteristic
distribution for room 1). In addition, the distribution in Figure 9c appears to be more
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similar to the characteristic spectrum for room 3 (Figure 8c), which does not reflect the
characteristic peak in the blue range of the room 1 illumination. Thus, the misclassification
in certain areas of the experiment—identifying room 3 instead of room 1—can be explained
by direct sunlight from outside interfering with the evaluation algorithm.

Figure 10 shows more measurements that show the influence of direct sunlight on the
illumination intensity and the spectral distribution in room 1. The measurements were
taken with the blinds open and the interior lighting switched on at a time when direct
sunlight was shining into room 1. The comparison with the previous results without
direct sunlight shows a clear increase in light intensities, which is also more pronounced at
the measurement points near the window than at those near the wall. Furthermore, the
characteristic peak of the room illumination in the blue frequency range also disappears
more and more in the background of the solar spectrum.
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Last but not least, the influence of temperature fluctuations, which are to be expected
especially after switching on the lighting, when the light sources start to warm up, was
investigated. This effect was found to have a negligible influence and the corresponding
results can be found in Appendix B.

In summary, the presented approach is able to correctly identify different rooms under
different conditions such as open or closed blinds as well as under different external weather
conditions; however, it is compromised when direct sunlight interferes with the evaluation.

5. Conclusions and Outlook for Future Work

Monitoring human physical activities allows sophisticated applications in industrial
scenarios. In addition, indoor localization and positioning is gaining high attention in
recent years due to the wide availability of IoT applications in smart environments. A
microsystem containing an NGIMU device and an in-house developed VLP unit was
evaluated for HAR in combination with room identification for industrial applications.
Several series of online tests were conducted for various physical activities, including basic
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and transitional activities ranging between sitting and standing, which are considered
more difficult to detect with sensors. The results of this work were compared with a few
previously published works in the field. Implementing time and frequency domain features
in the evaluation algorithm demonstrated a stable performance of the approach for different
environmental conditions in the three different investigated rooms. The results also show
that the signal evaluation is only affected by interference from direct sunlight. Overall,
the investigated system is considered to provide sufficient activities and room detection
accuracies for various targeted industrial application scenarios.

Based on the achieved results, it is planned to extend the current presented approach
for activity recognition and room identification by localizing a person within the respective
rooms. In view of the application scenarios in the field of Ambient Assisted Living, activities
such as lying down on a bed or lying on the floor will be also investigated. This needs to
be accompanied by studying different positions for the placement of sensor devices on a
person. Finally, additional evaluation metrics can be tested to increase detection accuracy,
and the effects of having activities performed by different people also will be investigated.
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Appendix A

Appendix A shows the floor plan of the three rooms involved in the test procedures of
this study. These three rooms are on the same floor and adjoin each other (see Figure A4).
The geographical direction is indicated by corresponding compasses.

White areas in the floor plan represent free space in the rooms, while the gray shaded
areas indicate furniture such as tables and cabinets. Room 1 contains eight light sources,
with light sources 7 and 8 located near the glass window. Room 2 contains ten light sources,
with light sources 6 to 10 located towards the windows. Room 3 contains six light sources
with no windows.

The green dots represent the test points for static tasks in each room, while the red lines
represent the defined paths for walking activities (Figures A1–A3). The blue dots represent
spectrum test points where the local light spectrum was experimentally determined and
Table A1 below summarizes the respective heights of the spectrum test points from the floor.

Figure A4 gives the top view of the three rooms with a compass. Further, the definition
of the four directions D1 to D4, which were used in the experiments, is also indicated in
this figure.
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Table A1. Height above the floor for the spectrum test points in the three rooms (R1 to R3).

Height (cm)

Room S1 S2 S3 S4 S5

R1 118 180 40 180 118
R2 180 142 193 180 140
R3 185 180 140 N/A N/A

Appendix B

The temperature of one of the LEDs in room 3 was measured for eight hours after the
LED was switched on. The temperature was acquired with a temperature sensor K-type
UT TF-K [59] and Figure A5 shows the resulting temperature profile. It can be seen that a
constant temperature is established after about one hour and remains stable thereafter.

Thus, the spectral light distributions are compared at three times within this first
hour when the LED luminaires are warming up. As can be seen in Figure A6, the spectral
distribution remains more or less unchanged despite small changes in illumination intensity.
Therefore, the influence on the evaluation algorithm can be neglected, since relative signal
features are used in this approach.
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