
Citation: Zuo, Y.; Guan, H.; Duan, F.;

Wu, T. A Light Field Full-Focus

Image Feature Point Matching

Method with an Improved ORB

Algorithm. Sensors 2023, 23, 123.

https://doi.org/10.3390/s23010123

Academic Editor: Marc Brecht

Received: 15 November 2022

Revised: 15 December 2022

Accepted: 20 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Light Field Full-Focus Image Feature Point Matching Method
with an Improved ORB Algorithm
Ying Zuo 1,2,3, Hongliang Guan 1,3,4, Fuzhou Duan 1,3,* and Tingsong Wu 1,3

1 Engineering Research Center of Spatial Information Technology, Ministry of Education, Capital Normal
University, 105 West Third Ring North Road, Beijing 100048, China

2 School of Resource and Environment Sciences (SRES), Wuhan University, 129 Luoyu Road,
Wuhan 430079, China

3 Key Lab of 3D Information Acquisition and Application, Ministry of Education, Capital Normal University,
105 West Third Ring North Road, Beijing 100048, China

4 Beijing Imaging Technology Innovation Center, Capital Normal University, 105 West Third Ring North Road,
Beijing 100048, China

* Correspondence: duanfuzhou@cnu.edu.cn

Abstract: Most of the traditional image feature point extraction and matching methods are based on
a series of light properties of images. These light properties easily conflict with the distinguishability
of the image features. The traditional light imaging methods focus only on a fixed depth of the
target scene, and subjects at other depths are often easily blurred. This makes the traditional image
feature point extraction and matching methods suffer from a low accuracy and a poor robustness.
Therefore, in this paper, a light field camera is used as a sensor to acquire image data and to generate
a full-focus image with the help of the rich depth information inherent in the original image of the
light field. The traditional ORB feature point extraction and matching algorithm is enhanced with
the goal of improving the number and accuracy of the feature point extraction for the light field
full-focus images. The results show that the improved ORB algorithm extracts not only most of
the features in the target scene but also covers the edge part of the image to a greater extent and
produces extracted feature points which are evenly distributed for the light field full-focus image.
Moreover, the extracted feature points are not repeated in a large number in a certain part of the
image, eliminating the aggregation phenomenon that exists in traditional ORB algorithms.

Keywords: light field; full-focus image; feature point extraction; threshold adaptive; feature point matching

1. Introduction

Image feature point extraction and matching is an important task in computer vision
technology and is widely used in the fields of 3D reconstruction, visual SLAM, and face
recognition. An accurate feature point extraction and matching results are crucial for
the development of computer vision technology. Since the 1990s, intensive research on
image feature point extraction and matching has largely advanced the development of
computer vision technology. At the same time, the frontier fields of computer vision, such
as target detection, 3D reconstruction, full-scene stitching, and SLAM, have generated
tougher requirements on the accuracy and robustness of image feature point extraction and
the matching methods. Researchers have conducted numerous studies on the traditional
image feature point extraction and matching methods and have also achieved numerous
results. These include Harris [1], SIFT [2], HOG [3], SURF [4], FAST [5], BRIEF [6], and
ORB [7]. These methods are basically based on a series of the light properties of the image.
This light property easily conflicts with the distinguishability of the image’s features, which
leads to poor feature matching results. The reason for this is that the traditional light
imaging methods can record only information about the position of light at one angle in
the target scene, which can easily obscure information about the target at other locations.
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The traditional light imaging method focuses only on a fixed depth of the target scene, and
subjects at other depths are often easily blurred. Moreover, the traditional image feature
point extraction and matching methods have great challenges in dealing with scenes that
contain shadows, similar textures, and luminance variations, for example. The existence of
these problems greatly limits the development of traditional image feature point extraction
and matching algorithm research.

Light field imaging is a technology that performs imaging first and then uses algo-
rithms to calculate the imaging again [8,9]. It integrates the traditional light imaging,
signal processing, and depth extraction methods [10]. The light field acquisition device can
capture the 4D information of light and store it while acquiring subaperture images from
multiple angles with a single exposure. It has good prospects for applications in depth
extraction, 3D modeling, and virtual reality. The traditional light camera can record only
light information at one angle, while the light field camera can record both the position
information and direction information of light in the target scene, which makes it easy to
extract the depth information of the scene. The light field camera has the characteristic of
“taking pictures first, focusing later”. This allows the subsequent refocusing algorithm to
acquire images at any depth position and then obtain a light field full-focus image. Then,
the extraction and matching of the image’s feature points are realized by using the high
resolution of the light field full-focus image. This approach is expected to address the
problems in the current research of image feature point extraction and matching methods.

In this paper, a light field camera is used as a sensor to acquire image data. Then, the
full-focus image is generated with the rich depth information inherent in the original light
field image. Finally, the extraction and matching of the image’s feature points are achieved
using the light field full-focus image. The main contributions of this paper are as follows.

(1) The high-quality depth information in the target scene is totally acquired by fus-
ing multiple depth cues. Then, by using this depth information as an index, the
corresponding pixel values are collocated to obtain the light field full-focus image.

(2) The feature points are extracted and matched with the full-focus image generated by
the light field depth information, and these feature points have not only a general
scale invariance and rotation invariance but also depth characteristics.

(3) A threshold adaptive method is proposed to improve the accuracy of the feature point
extraction, and a large number of duplicate feature points are eliminated by using
nonmaximal value suppression.

2. Related work
2.1. 2D Image Feature Point Extraction and Matching

Researchers have conducted much research on the feature point extraction and match-
ing methods for 2D images. Moravec proposed the earliest image feature point extraction
algorithm, the Moravec corner detector, based on the process of mobile robot motion state
estimation [11]. On this basis, Matthies implemented the extraction and tracking of the
feature points by using a binocular vision system combined with the Moravec corner detec-
tor algorithm [12,13]. The image feature point extraction and matching methods from this
period were mainly based on the corner point detection algorithms. Typical corner point
detection operators also include the Forstner [14] and SUSAN [15] operators. To extract
feature points that are not affected by image rotation and scaling, Lowe proposed the SIFT
feature extraction algorithm. The algorithm is able to select the true feature points from the
set of other candidate feature points [2]. However, the above feature extraction algorithms
have problems such as a high computational complexity and a long computation time. For
this, Rosten proposed the FAST feature extraction algorithm. The best advantage of this
algorithm is its very high computational efficiency and its ability to perform processing
in real time [5]. The FAST feature extraction algorithm greatly improves the efficiency
of the image feature point extraction but is poor in terms of its accuracy. To balance the
efficiency and accuracy of the image feature extraction, Rublee proposed the ORB feature
extraction algorithm by combining the FAST and BRIEF algorithms. The ORB algorithm
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adds a combination of rotational invariances to the combination of the two algorithms
while achieving a scale invariance with scale pyramids [7].

2.2. Light Field Image Feature Point Extraction and Matching

Light field cameras are able to record both the direction and intensity of light com-
pared to the ability of traditional cameras. This allows us to obtain some images of virtual
perspectives through computational imaging. Based on this, researchers have started to
explore the feasibility of applying light field imaging technology to image feature point
extraction and matching methods. Tosic proposed a method to detect the 3D feature points
from light field data based on the constructed depth space of the light field scale [16].
However, this method does not work well for scenes with occlusion. Texeira proposed a
feature detector for microlens light field images based on para-polar planar images (EPIs).
The detector uses the SIFT algorithm for the feature detection of light field subaperture
images and then maps the detected candidate feature points into the corresponding EPI.
Subsequently, the detector performs a line segment detection in the EPI, thereby determin-
ing the final feature points, which improves the accuracy of the feature detection [17]. To
address the challenge of a feature detection and description due to the light transmission
effect, Dansereau proposed LIFF 4D light field feature extraction and descriptors that use
the spatial angle imaging mode of light field cameras. This descriptor has a scale invariance
and is highly robust for detecting features with perspective changes [18]. To improve the
accuracy of the feature extraction, Assaad proposed a method to detect the feature points
on the original light field image by applying a feature point detector on the pseudofocused
image (PFI) [19]. However, the above methods require a high computational cost and
greatly increase the time complexity of the algorithm. Therefore, although the feature point
extraction and matching methods for 4D light field images have improved the accuracy and
precision of the image feature point extraction and matching methods to a certain extent,
the problems of a low efficiency and a high time complexity of the feature point extraction
and matching algorithms due to the large amount of data in 4D light field images still exist.

3. Methods
3.1. Light Field Full-Focus Image Generation Method Fusing Multiple Cues

The amount of original 4D light field image data captured with the light field camera is
relatively large due to its special structure and sensor, which leads to the long computation
time required for the light field image feature point extraction and matching. Therefore,
this paper proposes a light field image processing method to integrate the light field data,
which not only can obtain a higher clarity light field full-focus image but also can greatly
reduce the volume of the data. Thus, the time for a light field image feature point extraction
and matching is reduced with a guaranteed accuracy.

The light field camera has the characteristic of “take a picture first, focus later”. That is,
the shutter can acquire a series of images with different focal points in one exposure. In this
paper, we use this series of images to generate a focus stack image and obtain high-quality
depth information of the target scene from the focus stack image. Then, the high-quality
depth information is used to obtain the focus area in the focus stack image, and the light
field full-focus image is obtained from this area. The light field focus stack is actually a
collection of multiple images focused at different target scene depths [20]. Notably, the
light field focus stack is not simply a series of refocused images. These refocused images
are identical in all parameters except for the depth information of the images. A series of
images in a light field focus stack each has its own depth of field. The collection of these
depths of field together makes up the depth of the field of the light field focus stack. This
allows the light field focus stack to contain rich image information, including image depth
information and spatial information. Thus, it is possible to obtain images with a greater
depth of field from the light field focus stack by fusion, which can be used as the basis for
extracting light field depth information to generate light field full-focus images.
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The light field focus stack is built on the basis of light field refocusing. The original 4D
light field image is digitally refocused and then rendered by integration to obtain images
focused at different depths. The collection of images focused at different depths is the focus
stack image. The light field refocusing model used in this paper produces the relationship
between the pixel points after changing the focus plane by the proportional relationship of
similar triangles. The principle of digital refocusing in this way is to calculate the intensity
of the obtained light field information on a new imaging plane. This new imaging plane is
calculated from the coordinates corresponding to the main lens plane and the microlens
array plane in the vertical direction. The schematic diagram is shown in Figure 1.
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The refocusing principle can be expressed as follows.
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where F is the distance between the main lens plane and the microlens array plane and F′ is
the distance between the main lens plane and the refocusing plane. Each refocused image has
a fixed α value, so the light field can be expressed as L(x, y, dr, dz). x× y represents the spatial
resolution of the light field, and each dr value corresponds to an α value, representing a depth.
dz =

( umax
2 , vmax

2
)

indicates that it is the central subaperture field of view, and L(x, y, dr, dz)
can be reduced to L{x, y, dz}max

dr=1 without considering the field of view.
The depth information of the object refers to the distance between the object and

the main lens. Commonly used image depth recovery methods include the gradient cue
recovery method, the scattered-focus cue recovery method, and the parallax cue recovery
method. The gradient method has difficulty obtaining a depth cue with a good effect in
the global range because the images are close to each other, causing the gradient value of
the images to vary less significantly. Although the scattered-focus method shows a good
stability in target scenes with repeated textures, the contrast changes in the image edge
regions due to changes in the brightness can easily lead to errors in the results, making
the depth cues in these regions unable to be accurately obtained. The parallax method
is able to reduce the error of the scattered-focus method, but due to the limitation of the
search space, matching ambiguity ensues when the image movement is large. In particular,
more matching ambiguities occur in scenes with occlusion and noise, which leads to less
accurate depth cues in these scenes. Therefore, there are many problems in using a single
method to obtain the depth information of light field images. Fusing multiple depth cues
to obtain the depth information is expected to yield a result with a high accuracy, good
quality, and robustness. The 4D light field image contains rich information about the depth
of the light field, and the degree of blurring in the unfocused region of the refocused image
in the focus stack image contains very rich clues about the depth of the scattered focus.
The multiple subaperture images of the light field images have many redundancies of the
image depth cues, which implies a very rich parallax depth cue. Based on this, in this paper,
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we break through the limitation of using only a single recovery method in the traditional
depth information acquisition method and fuse multiple depth cue recovery methods to
obtain high-quality light field depth information. This depth information is used as an
index to obtain the focus area in the focus stack image, to calculate the values of all the
pixel points in the focus area, and then to recombine these pixel values to obtain the light
field full-focus image.

The scattered-focus cue for all the depth images in the focus stack is D(x, y, α), and
the parallax cue is C(x, y, α). The calculation results of these two cues may have different
representations. To minimize the fusion error, before fusing the two depth cues, a maximum–
minimum normalization process is needed to preprocess the computed results of the two
depth cues, that is, to traverse the computed results of the two depth cues pixel-by-pixel.
Once the results are normalized, it is necessary to fuse the two depth cues of the scattered
focus and parallax. To minimize the errors due to the parameters and other reasons, we
use the confidence level to fuse the computed results of the two depth cues. The confidence
level of both depth cues can be calculated using the peak ratio method [21]. For any pixel
point in space, the scattered-focus and parallax cues of that point in the light field focus
stack image are first calculated, and the maximum and second maximum values of the
scattered-focus cues and the minimum and second minimum values of the parallax cues
are calculated. The formula for calculating the confidence level of the two depth cues is
shown below.

CD(x, y) =
Dα1(x, y)
Dα2(x, y)

(2)

CC(x, y) =
Cα1(x, y)
Cα2(x, y)

(3)

where Dα1(x, y) is the maximum value of the scattered-focus response, Dα2(x, y) is the
second maximum value, Cα1(x, y) is the minimum value of the parallax response, and
Cα2(x, y) is the second minimum value.

The confidence level used in this paper is the weight when fusing the scattered-focus
and parallax depth cues, and the higher the value of the confidence level is, the higher the
confidence level of that depth cue. The calculation formula is shown below.

C(x, y, α) = CC(x, y)λC × C′(x, y, α) + CD(x, y)λD ×
[
1− D′(x, y, α)

]
(4)

In the formula, λC is the coefficient of the contribution of the scattered-focus response
to the depth estimate, which is taken as 0.2; λD is the coefficient of the contribution of the
parallax response to the depth estimate, which is taken as 0.6.

The depth parameter used in this paper is the minimum value after a pixel-by-pixel
search for multicue fusion. The calculation formula is shown below.

d = argmin
α

C(x, y, α) (5)

We suppose the final depth map obtained by using the two-cue fusion method is d(x,
y). For each pixel (x, y), the depth map is treated as a depth index map, and according to the
depth index map, the corresponding focus region is determined from the focus stack. Then,
the full-focus image f (x, y) is generated by extracting and integrating from the focus region.
The specific formula is shown below. The final full-focus images generated in this paper
for the four experimental scenes are shown in Figures 2–5. In the following figures, the
left images are the original images of the light field, and the right images are the full-focus
images of the light field.

f (x, y) = L(x, y, dr) = L(x, y, d(x, y)) (6)
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full-focus images of the light field.
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Clarity is an important indicator to evaluate the image quality. The light field full-
focus image acquired by fusing the two depth cues in this paper has a high clarity from the
visual point of view. To show the effect of the image more intuitively, we use the image
clarity index to quantitatively evaluate the image quality. To better show the effect of the
experiment, the experimental results of the light field central subaperture images were
added as a control group.
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Figure 5. Scene 4 light field full-focus image. (a) The original images of the light field. (b) The
full-focus images of the light field.

The gradient of the image edge can often reflect the degree of sharpening and clarity
of the image. Therefore, most of the commonly used image clarity evaluation functions use
the gradient function to calculate the image edge information and use the gradient function
value to evaluate the image clarity. The commonly used gradient functions include the
Tenengrad function, the Laplace function, and the variance function, among which the
most commonly used is the Tenengrad function; thus, we use the Tenengrad function to
evaluate the clarity of the acquired light field full-focus images. The Tenengrad function
uses the Sobel operator to calculate the gradient values of a pixel point in the horizontal
and vertical directions and considers the sum of the squares of the two gradient values
as the clarity of the point, and the gradient values of each pixel point can be accumulated
to obtain the clarity of the whole image [22]. The process is as follows: we suppose the
convolution kernel of the Sobel operator is GX , Gy ; then, the gradient of image I at point
(x, y) can be expressed as Equation (7).

S(x, y) =
√

Gx × I(x, y) + Gy × I(x, y) (7)

Then, the Tenengrad value of the image is calculated as shown in Equation (8).

Ten =
1
n ∑

x
∑
y

S(x, y)2 (8)

In the formula, n is the total number of pixels in the image.
Finally, the Tenengrad values of the light field full-focus image and the light field

central subaperture image calculated in this paper are shown in Table 1.

Table 1. Image clarity evaluation Tenengrad value (Retain two decimal places).

Scene 1 Scene 2 Scene 3 Scene 4

Light field full-focus image 43.70 47.54 40.26 38.40
Light field central subaperture image 38.34 45.13 35.96 35.83

As shown in the table above, the Tenengrad values of the light field full-focus images
acquired in this paper are higher than the Tenengrad values of the light field central
subaperture images for the four experimental scenes involved. The light field full-focus
images acquired in this paper are not only clearer but also have sharper edges.

3.2. Image Feature Point Extraction and Matching Method with Elimination of Aggregation

The ORB image feature extraction and matching algorithm is widely used in computer
vision technology because of its fast extraction speed and guaranteed extraction accuracy.
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However, the threshold used by the traditional ORB algorithm in the process of extracting
the feature points is a fixed value set artificially, which means that all images that have their
feature points extracted have the same value of the threshold set in the process of extracting
the feature points, which is obviously unreasonable. Since the parameters of all the images
are not identical, inconsistencies in some of the parameters of some images lead to large
errors in the feature extraction and matching results. Based on this, we propose a threshold
adaptive method to set the threshold according to the gray value of the surrounding range
of each point to be extracted so that the stability of the algorithm can be guaranteed in the
face of changes in the gray value of the image. The method is specifically calculated by
setting the coordinates of the feature point P on the image to be extracted as (x0, y0) and by
defining the threshold T with the variation in the gray values in the image. This is shown
in Equation (7).

T = k× ∑n
i=1
(

Iimax − Iimin

)
∑n

i=1
(

Iimax + Iimin

) (9)

In the formula, Iimax denotes the maximum n gray values in the square region, Iimin
denotes the minimum n gray values in the square region, and k is the scale factor; here,
k = 20 is used.

After the feature points are filtered, the filtered feature points tend to be aggregated
because there are many pixel points near the real feature point that are very similar to the
point, and the FAST algorithm sometimes cannot accurately distinguish between them. For
this, the nonmaximum suppression method is used in this paper to further filter the true
feature points. The specific steps of the method are as follows.

(1) When the FAST feature extraction algorithm identifies a pixel point (x, y) as a candidate
feature point, it calculates the absolute value of the difference between the gray value
of that point and the 16 pixel points on its corresponding circle.

(2) We sum the results for 16 absolute values.
(3) The score function is used to determine the scores for all the candidate feature points

(x, y). The specific process is shown in Equation (8).

score(x, y) =
16

∑
i=1
|I(x, y)− Ii| (10)

After the nonmaximal suppression method is used to calculate the scores of all the
candidate features, the scores of the two neighboring candidates are compared. The
pixel with the smaller score is removed from the set of candidate feature points, and the
remaining candidate feature points are the score maxima in the local area. In this way, the
problem of a feature point aggregation in the region is solved.

The traditional ORB algorithm leads to a large number of mis-matches due to the
presence of some repeated texture features in the image; the modifications made in this
paper based on this are as follows.

(1) The descriptors of the feature points are computed by the image after Gaussian
blurring.

(2) For the matched feature points, the relative rotation angle is calculated using their
orientations derived from the grayscale center of mass, and then the matches with
different rotation directions from the mainstream are rejected to weed out the mis-
matches.

(3) In the process of searching for a match, the Hamming distance of the searched pair of
optimal matches must not only be less than a set threshold but must also be signifi-
cantly smaller than the Hamming distance of the suboptimal matches. Ultimately, the
probability of feature point mis-matches is reduced.
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4. Experiments

The light field images used in this paper were captured by the light field camera Lytro
Illum, as shown in Figure 6. The light field camera Lytro Illum produces approximately
40 million effective pixels, the capture sensor is 7728 × 5368, the microlens array is 541 × 434,
the angular resolution is 15 × 15, and the number of pixels behind each microlens is 225.
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To verify the advantages of the light field full-focus image acquired in this paper
over the traditional image in terms of the feature point extraction and matching, we use
the light field central subaperture image to perform the feature extraction and matching
at the same time. Then, the improved ORB algorithm is used to extract and match the
features of the light field full-focus image obtained in this paper. The advantages of the
improved algorithm over the traditional ORB algorithm are compared and analyzed. The
experimental results of the three parts are shown in Figure 7. In the figures, the first figure
shows the experimental results of the light field central subaperture image feature point
matching using the traditional ORB algorithm, the second figure shows the experimental
results of the light field full-focus image feature point matching using the traditional ORB
algorithm, and the third figure shows the experimental results of the light field full-focus
image feature point matching using the improved ORB algorithm.

The number of feature point matching pairs achieved on the light field central sub-
aperture image by using the traditional ORB algorithm is 112. The number of feature point
matching pairs achieved on the light field full-focus image by using the traditional ORB
algorithm is 190. The number of feature point matching pairs achieved on the light field
full-focus image by using the improved ORB algorithm is 739. With the same method, more
matching pairs are achieved using the light field full-focus image than using the light field
central subaperture image. For the same image, more matching pairs are also achieved
using the improved ORB algorithm than using the traditional ORB algorithm. Figure 6
shows that for the traditional ORB image feature point extraction and matching algorithm,
the light field full-focus image obtained in this paper has more feature point matching
results and more matching pairs than the light field central aperture image. Especially in
the edge part of the image, most of the feature points extracted using the light field central
subaperture are in the center part of the image, and the number of the edge parts is smaller,
while the feature points extracted using the light field full-focus image basically cover the
edge part of the image. For the improved ORB image feature point extraction and matching
algorithm, the light field full-focus image feature point matching results are also richer than
the image feature point matching results obtained using the traditional ORB algorithm, and
the number of matched pairs is also greater. Moreover, the improved ORB image feature
point extraction and matching algorithm extracts not only most of the features in the target
scene but also covers the edge part of the image to a greater extent, so that the extracted
feature points are evenly distributed, and the extracted feature points are not repeated in
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a large number in a certain part of the image; this approach eliminates the aggregation
phenomenon that exists in the traditional ORB algorithm.
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To further verify the effectiveness of the improved ORB algorithm in this paper,
experiments are conducted on three other scenes. The experimental results are shown in
Figures 8–10.
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The final feature point matching pairs for the light field central subaperture images
and light field full-focus images in the four scenes are shown in Table 2 below.

Table 2. Number of matching pairs of image feature points.

Scene 1 Scene 2 Scene 3 Scene 4

Traditional ORB algorithm
light field central subaperture image 112 109 109 113

Traditional ORB algorithm
light field full-focus image 190 172 125 179

Improved ORB algorithm
light field full-focus image 739 578 466 659

As seen from Figures 7–10 and Table 2, more matching pairs are achieved using
the light field full-focus image than using the light field central subaperture image in all
four different experimental scenes with the same method. The number of matching pairs
achieved using the improved ORB algorithm is also greater than that achieved using the
conventional ORB algorithm for the same image. The method in this paper achieves a good
matching effect in the edge part of the image, while the other method performs poorly in
this aspect, further verifying the effectiveness of the improved ORB algorithm.

The traditional light imaging methods can focus only on a fixed depth of the target
scene, and the subject is often blurred at other depths, so most of the feature points that
can be extracted from traditional 2D images are gathered at their depth of focus, and some
feature points at other depths are often easily missed. This leads to a reduction in the
number of final feature matches. The light field full-focus image acquired in this paper is
processed on the original image of the light field, which contains rich depth information
in the scene, so more feature points can be extracted from the image. This method also
increases the number of final feature matches. In addition, the improved ORB algorithm
adopts the adaptive threshold method to adjust the restricted range of the feature point
extraction and uses the nonmaximal value suppression method to eliminate the shortcom-
ing of the aggregation phenomenon in the extracted feature points in the traditional ORB
algorithm. Thus, the extracted feature points are abundant, evenly distributed, and have a
large number of matching pairs.

In summary, we improve the ORB image feature extraction and matching algorithm to
totally extract the feature points at various depths in the target scene with the help of the
rich depth information contained in the light field full-focus image and its robustness in
dealing with challenging scenes. The extracted feature points not only have a general scale
invariance and rotation invariance but also have unique depth information of the light field
image, which makes the number of matching image features more numerous and more
evenly distributed.

5. Conclusions

Based on the fact that light field imaging technology can obtain a series of images focused
at different depths by only one exposure process, in this paper, an in-depth study on the
generation of light field full-focus images is conducted using the original light field images.
The traditional ORB feature point extraction and matching algorithm is enhanced with the
goal of improving the number and accuracy of the feature point extraction for light field
full-focus images. The improved ORB algorithm extracts not only most of the features in the
light field full-focus image but also covers the edge part of the image to a greater extent so
that the extracted feature points are evenly distributed in all parts of the image. Moreover,
the extracted feature points are not repeated in a large number in a certain part of the image,
eliminating the aggregation phenomenon that exists in the traditional ORB algorithm.

The shortcomings of this paper are as follows.

(1) Due to the limitation of the topic and space, for the light field full-focus images
acquired by the method in this paper, only a relatively simple image sharpness
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evaluation function is used to evaluate their quality, and a more comprehensive image
quality evaluation method is not used to evaluate them.

(2) Due to the specificity of the built-in sensor of the light field camera, the method in
this paper has not been tested on the existing open dataset.

In future research, we will investigate this in more detail and take more light field images
of scenes to establish a dataset to verify the generalizability of the method in this paper.
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