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Abstract: Online multi-microphone speech enhancement aims to extract target speech from multiple
noisy inputs by exploiting the spatial information as well as the spectro-temporal characteristics
with low latency. Acoustic parameters such as the acoustic transfer function and speech and noise
spatial covariance matrices (SCMs) should be estimated in a causal manner to enable the online
estimation of the clean speech spectra. In this paper, we propose an improved estimator for the
speech SCM, which can be parameterized with the speech power spectral density (PSD) and relative
transfer function (RTF). Specifically, we adopt the temporal cepstrum smoothing (TCS) scheme to
estimate the speech PSD, which is conventionally estimated with temporal smoothing. Furthermore,
we propose a novel RTF estimator based on a time difference of arrival (TDoA) estimate obtained
by the cross-correlation method. Furthermore, we propose refining the initial estimate of speech
SCM by utilizing the estimates for the clean speech spectrum and clean speech power spectrum.
The proposed approach showed superior performance in terms of the perceptual evaluation of
speech quality (PESQ) scores, extended short-time objective intelligibility (eSTOI), and scale-invariant
signal-to-distortion ratio (SISDR) in our experiments on the CHiME-4 database.

Keywords: multi-microphone speech enhancement; speech spatial covariance matrix estimation;
temporal cepstrum smoothing; speech PSD estimation; RTF estimation

1. Introduction

Speech enhancement is essential to ensure the satisfactory perceptual quality and
intelligibility of speech signals in many speech applications, such as hearing aids and speech
communication with mobile phones and hands-free systems [1-43]. Currently, devices
with multiple microphones are popular, which has enabled multi-microphone speech
enhancement, exploiting spatial information as well as spectro-temporal characteristics of
the input signals [6—48]. One of the most popular approaches to multi-microphone speech
enhancement may be spatial filtering in the time—frequency domain, which aims to extract a
target speech signal from multiple microphone signals contaminated by background noise and
reverberation by suppressing sounds from directions other than the target direction [6-11].

There have been various types of spatial filters with different optimization criteria [6-10].
Among them, the minimum mean square error (MMSE) criterion for speech spectra es-
timation led to the multi-channel Wiener filter (MWF), which has shown decent perfor-
mance [10,12,21,22]. It has been shown that the MWEF solution can be decomposed into the
concatenation of the minimum-variance distortionless-response (MVDR) beamformer and
the single-channel postfilter [11,12]. Spatial filters often require the estimation of acoustic
parameters such as the relative transfer function (RTF) between the microphones and the
speech and noise spatial covariance matrices (SCMs), which should be estimated from the
noisy observations.

For applications such as speech communication and hearing aids, time delays are
crucial, and thus an online algorithm is required for multi-microphone speech enhance-
ment. The work in [25] extended the single-channel minima controlled recursive averaging
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(MCRA) framework [49,50] for noise estimation in the multi-channel case by introducing
the multi-channel speech presence probability (SPP) [24]. In [26], a coherence-to-diffusion
ratio (CDR) based a priori SPP estimator under the expectation and maximization (EM)
framework was proposed to improve the robustness in nonstationary noise scenarios.
In [25,26], the speech SCM was estimated with the maximum likelihood (ML) approach,
while the multi-channel decision-directed (DD) estimator was proposed in [29]. In [27],
the recursive EM (REM) algorithm, which performs an iterative estimation for the latent
variables and model parameters in the current frame, was exploited by defining the expo-
nentially weighted log-likelihood of the data sequence. The speech SCM was decomposed
into the speech power spectral density (PSD) and RTF under the rank-1 approximation,
and these components were estimated by an ML approach using the EM algorithm in [27].

In this paper, we propose an improved speech SCM estimation for online multi-
microphone speech enhancement. First, we adopt the temporal cepstrum smoothing (TCS)
approach [51] to estimate the speech PSD, which has not yet been tried in multi-channel
cases. Furthermore, we propose an RTF estimator based on time difference of arrival
(TDoA) estimation using the cross-correlation method. Finally, we propose refining the
acoustic parameters by exploiting the clean speech spectrum and clean speech power spec-
trum estimated in the first pass. The experimental results show that the proposed speech
enhancement framework exhibited improved performance in terms of the perceptual eval-
uation of speech quality (PESQ) scores, extended short-time objective intelligibility (eSTOI),
and scale-invariant signal to distortion ratio (SISDR) for the CHiME-4 database. Addition-
ally, we performed an ablation study to understand how each sub-module contributed to
the performance improvement.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
previous work on multi-microphone speech enhancement depending on various classes
of approaches and then summarizes the main contributions of our proposal. Section 3
reviews the previous MMSE multi-channel speech enhancement approach and explains the
conventional speech and noise SCM estimation. Section 4 presents the proposed speech
SCM estimation based on the novel speech PSD and RTF estimators. Section 5 outlines the
experimental results that demonstrate the superiority of the proposed method compared
with the baseline in terms of speech quality and intelligibility. Finally, a conclusion is
provided in Section 6.

2. Previous Work and Contributions

Recently, many approaches to multi-microphone speech enhancement have been pro-
posed. In [33], the estimation of the speech PSD reduces to seek a unitary matrix and the
square roots of PSDs based on the factorization of the speech SCM. The RTF estimate was
recursively updated based on these estimates. They also proposed a desmoothing of the
generalized eigenvalues to maintain the non-stationarities of estimated PSDs. Furthermore,
these parameter estimates were then exploited for a Kalman filter-based speech separa-
tion algorithm [35]. In the context of sound field analysis, ref. [34] proposed a masking
scheme under the non-negative tensor factorization model and [36] exploited the sparse
representation in a spherical harmonic domain. The work in [37] proposed a multi-channel
non-negative factorization algorithm in the ray space transform domain.

Deep-learning-based approaches have also been proposed, which can be categorized
into several types. One is the combination of deep learning with conventional beamforming
methods, in which the deep neural networks (DNNs) are employed to implement beam-
forming [38,39]. In [38], the complex spectral mapping approach was proposed to estimate
the speech and noise SCMs. In contrast, ref. [39] reformulated the MVDR beamformer as
a factorized form associated with two complex components and estimated them using a
DNN, instead of estimating the parameters of the MVDR beamformer. The other approach
is neural beamforming, in which a DNN directly learns the relationship between multiple
noisy inputs and outputs in an end-to-end way [40-43]. In [40], they defined spatial regions
and proposed a non-linear filter that suppresses signals from the undesired region while
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preserving signals from the desired region. In [41], the authors proposed an end-to-end
system to estimate the time-domain filter-and-sum beamformer coefficient using a DNN.
This approach was later replaced with implicit filtering in latent space [42]. In [43], they
built a causal neural filter comprising modules for fixed beamforming, beam filtering, and
residual refinement in the beamspace domain.

One of the popular approaches that adapt the spatial filter according to the dynamic
acoustic condition is the informed filter, which is computed by utilizing the instantaneous
acoustic parametric information [15-18]. Refs. [15,16] exploited the instantaneous direction
of arrival (DoA) estimates to find the time-varying RTF used to construct the spatial
filter, and [18] formulated a Bayesian framework under the DoA uncertainty. In [19], the
eigenvector decomposition was applied to the estimated speech SCM to extract the steering
vectors, which were used for the MVDR beamformer. The aforementioned approaches
often adopted classical techniques such as ESPRIT [52] or MUSIC [53] for DoA estimation,
which may be improved by incorporating more sophisticated sound localization [47,48].

Another set of studies focus on the estimation of the acoustic parameters. An EM
algorithm [14] was employed to perform a joint estimation of the signals and acoustic
parameters. While clean speech signals were obtained in the E-step, the PSDs of signals,
RTF, and SCMs were estimated in the M-step. As the previous EM algorithm processed all
of the signal samples at once, REM algorithms [27,28] overcame these issues by carrying out
frame-wise iterative processing to handle online scenarios. For the speech PSD estimation,
ref. [32] proposed an instantaneous PSD estimation method based on generalized principal
components to preserve the non-stationarity of speech signals. For the RTF estimation,
previous approaches mainly exploited the sample SCMs [46]. The covariance subtraction
(CS) approaches [44,45] estimated the RTF by taking the normalized first column of the
SCM obtained by the subtraction of the noisy speech SCM and noise SCM, assuming that
the rank of the speech SCM was one. On the other hand, the covariance whitening (CW)
approaches [30,54] normalized the dewhitened principal eigenvector of the whitened noisy
input SCM to obtain the RTF.

In this paper, we propose an improved speech SCM estimation method for the online
multi-microphone speech enhancement system based on the MVDR beamformer-Wiener
filter factorization. The main contributions of our proposals are as follows:

1. A speech PSD estimator based on the TCS scheme to take the knowledge on the
speech signal in the cepstral domain into account;

2. An RTF estimator based on the TDoA estimate to take advantage of the information
from all frequency bins, especially when the signal-to-noise ratio (SNR) is low;

3. The refinement of the acoustic parameter estimates by exploiting the clean speech
spectrum and clean speech power spectrum estimated in the first pass.

3. MMSE Multi-Microphone Speech Enhancement
3.1. Signal Model

Suppose that there is an array of M microphones in a noisy and reverberant room.
Assuming that a single speech source and noises are additive, the observed microphone
signals are given as

y(L, k) =g(l,k)S1(1, k) +v(l, k)
=s(l,k)+v(lk) (1)

where y(I,k) = [Y1(1,k), Ya(L k), ..., Y (1, K)]T, s(L k) = [S1(L k), Sa(1,k), ..., Sm(L, k)], and
v(Lk) = [Vi(L,k), Va(Lk),..., V(1 k)]T, in which Yy, (1,k), Spu(1,k), and Vi, (1, k) are the
short-time Fourier transform (STFT) coefficients of the microphone signal, clean speech,
and background noises, including reverberations at the mth microphone, respectively, and
g(Lk) = [1,82(1,k),...,gm(1,k)]T is the RTF vector for the direct path from the desired
speech source to the microphones. We assume that Sy, (1, k) and Vj, (1, k) are uncorrelated
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as in [16], although early reflections may disrupt this assumption. The SCM for the input
signal y(I, k), ®y(I, k), is given by

@y (1, k) = E[y (L, k)y" (1, k)]
= ®g(1,k) + Dy(L, k), (2)

where E[-] denotes mathematical expectation, and ®s(1, k) = E[s(I,k)s" (I, k)] and @y (I, k) =
E[v(l,k)v (1, k)] are the SCMs of s(I, k) and v(I, k), respectively.

3.2. MWF and MV DR-Wiener Filter Factorization

The objective of multi-microphone speech enhancement is to estimate clean speech
S1(1, k) from the noisy observation y(/, k), and we assume that prior knowledge on the
location of the source or RTF is not available. One of the popular approaches is the MWF,
which is a linear MMSE estimator for clean speech S; (Lk),ie.,

S1(L k) = Wi (1 K)y (LK), 3)
where w;,¢ (1, k) denotes the MWF described as [6]

O KD (1 k
W (1) — — St LRI

T (D (LK) D (LE) @)

where e; = [1 01x M,ﬂ T, in which 0 is a zero vector, and tr[-| denotes the trace of a
matrix. It is noted that only the noise and speech SCM, ®y (I, k) and ®s(/, k), need to be
estimated to implement the MWE. Previous work often adopted the multi-channel MCRA
approach for noise SCM estimation, whereas ML estimation was employed for speech SCM
estimation [25,26].

The MWF can be decomposed into the MVDR beamformer, w,,,;,, and a single-
channel Wiener postfilter, wyener, as [11,12]

Winwf = Wmodr * Wwiener, ©)

which makes it possible to consider the spatial filtering depending on the RTF g and the
energy-based postfiltering wyen.r separately. Note that the frame and frequency indices
are omitted for notational convenience.

Let the output of the MVDR beamformer be Z, i.e.,

Z= wﬁvdryr (6)
where the MVDR beamformer is given as

D, 'g

s @)
ghdy'g

Winodr =

With the distortionless constraint of the MVDR beamformer, the beamformer output can be
expressed as [27]

Z=5+0, 8
where O is assumed to follow the Gaussian distribution with variance

¢o = (gHoyg) ™. €)
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The clean speech spectrum can be obtained by applying the single-channel Wiener filter to
the beamformer output Z, as

s bs
51= s z, (10)

where ¢ = E[|51|?] is the speech PSD at the first microphone.

Figure 1 illustrates the block diagram of the multi-microphone speech enhancement
system based on the MVDR-Wiener filter factorization. The noisy speech y is processed by
the MVDR beamformer and the Wiener filter sequentially, for which acoustic parameters
Dy, g, ¢s, and ¢, need to be estimated. Existing methods for parameter estimation are
present in the next subsection.

MVDR Z Wiener
y »] beamforming »| filtering
l Eq. (6), (9) I ®o l Eq. (10)

A

Parameter
estimation

Figure 1. Block diagram of the multi-microphone speech enhancement system based on the MVDR~-
Wiener filter factorization.

3.3. Speech and Noise SCM Estimation

As for the estimation of the SCM of noise, @y, the multi-channel MCRA approach [25]
is widely used, which is given as

Dy (1, k) = &o(Lk)Dy (I —1,k) + (1 — & (L k))y (L k)y" (1, k), (11)

where &, (I, k) = A+ p(H;1(1,k)|y(I,k))(1 — A) is an SPP-dependent smoothing parameter
with a constant 0 < A < 1. This method updates ®, more when the SPP is low and vice
versa. The a posteriori SPP p(Hj|y) can be obtained using Bayes’ rule as

p(Hy)p(y|Hy) (12)
p(Ho)p(y|Ho) + p(H1)p(y|H1)’

where Hy and H; denote the hypotheses for speech absence and presence, respectively,
and p(y|Hp) and p(y|H;) are modeled as complex multivariate Gaussian distributions,
as follows:

p(Hily) =

1
p(y|Ho) = TV det[®y] eXP{—YH‘D;l}’} (13)

1

eXp{*yH[% +<I>s]‘1y}, (14)

in which det[-] denotes the determinant of a matrix. Then, p(H;|y) becomes [24]

piatly) = (1420 gy (B 1) (15

where ¢ = tr(®;1®s), B = yHO, 10,0, ly, and p(H;) = 1 — p(Hy) is the a priori SPP,
which can be estimated using the CDR-based [26] or DNN-based [27] method.
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The speech SCM is usually estimated with the ML approach, which is defined as [25,26]
U = oy — @y, (16)

where Cf>y is obtained by recursive smoothing as
Dy (L, k) = A®y (I — 1,k) + (1 — M)y (L k)y" (1, k). (17)

Under the rank-1 approximation for the clean speech SCM, ® can be further refined
using the decomposition of ®s, with the speech PSD and RTF given by [8]

O, = ¢psgghl. (18)

Adopting the covariance subtraction (CS) approach, which extracts the normalized first
column vector of the ML estimator of the speech SCM &, the estimator for the RTF is
given as [46]

R Hm! e

8" = e (19)

e; Olteq

where the denominator represents the speech PSD, i.e.,

P = e Dl'ey, (20)

in which the superscript ¢ indicates the CS approach.
In the REM framework [27], the ML estimator for the RTF based on the observed noisy
speech is obtained as [27]

g1 ) — Zet AP Ry (L Ry (RS (k) o

Yoot ATp(Hi(T, k) ly (T,k))51 (7, k)55 (7, k)

where the summations in the numerator and the denominator can be computed with recur-
sive averaging. The numerator can be thought of as the estimate of the cross-correlation
between y and Sy in (10), Tys, given by

Tys(L k) = ATys(I = 1,k) + (1 = M) p(Hi (LK) |y (LK) y (1, k) S1 (1, k), (22)

and the denominator can be considered to be the estimate of the speech PSD obtained by
the recursive smoothing of the estimated clean speech power spectrum,

Fio(1,K) = AGES(I— 1K) + (1— A)[S1[2(1, k), 23)

—

where the superscript ** indicates it is a temporally smoothed estimate, and |S; |2(l, k) is the
MMSE estimator of |S; |2 under the speech presence uncertainty given by

1S1]* = E[|S1]%|Z]
= p(Fh|Z) - E[|S:1[*|Z, Hy]

s 2 2 Pspo
=p(H ((—=—)*|Z 2T ), 24
p(Hily) ((¢s+¢o) |Z| +¢S+¢O) (24)

where we let p(H;|Z) = p(Hily), as in [27]. With s in (22) and ¢° in (23), §" in (21) can

be expressed as

gl = (25)

=~
S
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4. Proposed Speech SCM Estimation

Figure 2 illustrates the block diagram of the proposed speech enhancement system.
As in [25-27], the estimation of the speech and relevant statistical parameters is performed
twice for each frame, which was shown to be effective for online speech enhancement. In
this paper, we propose an improved method for speech SCM estimation, i.e., speech PSD
estimation and RTF estimation with a rank-1 approximation, using the speech enhancement
system described in Figure 2. Note that the proposed modules are highlighted with

red boxes.
| MVDR I z I Wiener | $
y beamforming »| filtering
l Eq. (6), (9) I B0 l Eq. (10) I
T T TTTTTT T T T T T T T T TS ~

N,
’

~

a priori SPP est.
based on CDR or DNN

MCRA approach
Eq. (12), (11)

Ref. [26] or [27]

)

1

]

1

]

1

1

]

~ 1

( ¢51m TDOA-based é !
o1 Speech cross-PSD est. RTF est :
l Eq. (30) or (32) £q. 28), (29) H
]

1

1

]

1

1

]

TCs-based pies
speech PSD est.
Eq. 27) or 31)

o o

parameter estimation

Figure 2. Block diagram of the proposed multi-microphone speech enhancement system.

In the first pass, we exploit the noisy input y(/) in the current frame and the noise SCM
estimate ®y (I — 1) obtained in the previous frame to estimate the acoustic parameters in
the current frame and perform beamforming and postfiltering, as explained in Section 3.2.

The ML estimate of the speech PSD at the first microphone using an instantaneous
estimate of the PSD of input noisy signal can be obtained as

G (1, k) = max( i (LK) = go(l = 1,k), ¢, (26)

where ¢, (I — 1,k) is the (1,1)th component of ®y (I — 1,k), and ¢ is a certain minimum
value for the speech PSD estimate, which is set as ¢ ¢, (I — 1,k) with a tunable parameter
&min_ To estimate the speech PSDs, the ML estimation with temporal smoothing has been
commonly used as described in (16) and (17) [25-27]. However, this approach occasionally
results in undesired temporal smearing of speech [51]. In this paper, we propose to apply
TCS [51] to (,5;”1 in (26). TCS is a selective temporal smoothing technique in the cepstral
domain motivated by the observation that, although the excitation component resides in
a limited number of cepstral coefficients dependent on the pitch frequency, the speech
spectral envelope is well-represented by the cepstral bins with low indices [55]. Specifically,
the TCS consists of the following procedure: First, the cepstrum of ML speech PSD estimate

~

cp;"l’cgp °(1,q) is computed by the inverse discrete Fourier transform (IDFT) of ¢/. Next,
the selective smoothing is applied to ¢ eeps (1,9), in which the cepstral bins that are less
relevant to speech are smoothed more and those representing the spectral envelope and
fundamental frequency are less smoothed. Finally, the discrete Fourier transform is used to
convert ¢5 (1, q) into the TCS-based speech PSD estimate in the spectral domain ¢! (I, k).
The bias compensation for the reduced variance due to the cepstral smoothing can be

found in [56], and a detailed description of the adaptation of the smoothing parameters
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and the fundamental frequency estimation is given in [51]. In this paper, we denote the
aforementioned procedure of TCS as an operation:

P (1) = TCS(@ (1)), 27)

in which the superscript / indicates that this is the estimate in the first pass.

In this paper, we model the RTF vector g as a relative array propagation vector, which
depends on the DoA [16]. Note that the conventional approaches in [27,44] estimate the
RTF for each frequency using the input statistics in the frequency bin, ignoring the inter-
frequency dependencies. In the presence of heavy noise, the accurate estimation of the RTF
may become difficult, and thus it would be beneficial to estimate TDoA by utilizing the
input signal in all frequency bins and to reconstruct the RTF using the simplest model. The
TDoA for the desired speech can be obtained from the estimate of the cross-PSD of the
desired speech, ¢s,, (I, k) = E[S1(l,k)S;,(1, k)], using the cross-correlation method [57]. The
TDoA estimate T, between the first and the mth microphones is given by

T (l) = arg max Y1 (T),
K o
1m(T) £ Y Psy,, (LK) - 2K, (28)
k=1

in which @, (1, k) is the estimate of ¢, (I, k). Then, the TDoA-based RTF estimator can be
obtained as
g% (1,k) = exp{j2rkt(1)/K}, (29)
where T = [11, T2, ..., Tm] .
In the first pass, the cross-PSD estimate ¢, can be obtained by taking the (1, ) element
of the ML speech SCM estimate o (1,k) in (16) as

9L, (1K) = LB (1, k)ey, (30)

where ey = [0,—1) 1 O(p1—p)] " in which 0, is an all-zero vector of length n; §/4°*f can

be computed using (28) and (29) with cﬁflm, and CTDJSf can be obtained as in (18) using @écs’f )
in (27) and g'%*f. The noise SCM is estimated with the multi-channel MCRA approach
in (11) utilizing p(H;|y) in (15) computed with &DJ; and ®y. Then, we can compute the
beamformer output Z in (6) and ¢, in (9), and the estimate for the speech spectrum, $;, can
be obtained as in (10).

In the second pass, we estimate the acoustic parameters again by additionally utilizing
the estimates for the clean speech spectrum, clean speech power spectrum, and a posteriori
SPP, computed in the first pass. These refined parameters are in turn used to estimate the
clean speech once again.

To refine the estimate of the speech PSD, we apply the TCS to the clean speech power

spectrum estimate |S1|% in (24) as

Fiesr (1) = TCS(181 (1)), (31)

in which the superscript " indicates it is the refined estimate in the second pass. As |S; |2
would be less affected by the noise compared with the ¢ by virtue of beamforming
and the MMSE estimation, $:°*" (1) would be more accurate than (fécs’f (). As for the RTF
estimation, Tys in (22) is evaluated with $1in (10), as in [27]. Instead of using Tys divided
by the estimate of the speech PSD in the first microphone to obtain the RTF, as in [27], we
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again estimate the RTF based on the TDoA; ¢s,, can be computed by extracting the mth
element of Tys as

@glm (Ik) = e,ﬂ?ys(l,k), (32)

in contrast to (30). The TDoA-based RTF estimate in the second pass, g//°*", can be obtained
through (28) and (29) with 4A>§1m. As in the first pass, @ is computed with $i*" in (31) and
gioe” and p(Hy|y) in (15) is updated with ®.. Then, p(H;|y) and ®y are obtained again
using (15) and (11), and then the beamformer output Z and ¢, are updated using (6) in (9).
The final clean speech estimate $; is obtained by (10) using g“°*", ®,, and ¢i*”. The
whole procedure of the proposed online multi-microphone speech enhancement method is
summarized in Algorithm 1.

Algorithm 1 Proposed multi-microphone speech enhancement algorithm with improved
speech SCM estimation.

1: Inputs: y for all frames

2: Output: $; for all frames

3: Initialize variables and parameters

4: for each frame do

Compute p(Hp) using CDR-based [26] or DNN-based [27] method
(First pass)

Compute 43;65’]( via (26) and (27)

Compute g'%%f via (16), (28)~(30)

Estimate p(H;|y) and ®y, via (11), (15) and (18)
10: Beamformer: Compute Z and ¢, via (6) and (9)
11: Postfilter: Compute 1 via (10)

12: (Second pass)

13 Compute $.*" via (24) and (31)

14: Compute gtd"” via (22), (28), (29) and (32)

15: Estimate p(H;|y) and ®y via (11), (15) and (18)
16: Beamformer: Compute Z and ¢, via (6) and (9)
17: Postfilter: Compute Sy via (10)

18: end for

R N AN

5. Experiments
5.1. Experimental Settings

To demonstrate the superiority of the proposed algorithm, we conducted a set of
experiments to evaluate the performance of the multi-microphone speech enhancement on
the simulated set in the CHiME-4 database [58]. In this database, a mobile tablet device
with six microphones was used for recording, of which the three microphones numbered 1,
2, and 3 were located in the top left, center, and right with an inter-microphone distance of
approximately 10 cm each, while the other three microphones numbered 4, 5, and 6 were
placed in the bottom left, center, and right, respectively [58]. The vertical distance between
pairs of microphones was approximately 19 cm [58]. All microphones were located on
the frontal surface, except for microphone 2. The bus (BUS), cafe (CAF), pedestrian area
(PED), and street junction (STR) types of noise were used, and the SNR was between 0 and
15 dB. The training set consisted of 7138 utterances spoken by 83 speakers, whereas the
development and evaluation sets were 1640 utterances and 1320 utterances, respectively,
from 4 different speakers. The sampling rate for the signals used in the experiments was
16 kHz, and the square-root Hann window was applied to a 32 ms signal with a 16 ms
frame shift. The 512-point DFT was applied to the windowed signal. The reference channel
for the algorithms and evaluations was microphone 5, located at the bottom center of
the device.

We set the a posteriori SPP, p(H; |y ), to zero for the first 10 frames instead of computing
it using (15) based on the assumption that the speech would be absent in the initial periods,
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which helped the fast stabilization of the algorithm, as in [27]. To mitigate speech distortion
at the expense of increased residual noise [59], the lower bounds for the p(H |y) to compute

|S1 \2 in (24) and the Wiener gain in (10) were configured to 0.5 and —18 dB, respectively.
The parameter values for A and &™" were set to be 0.9 and —10 dB, respectively. For
the TCS schemes in (27) and (31), we followed the procedure in [51], employing the
same parameter values except for the constant smoothing parameter, 8™, which was
determined empirically as

01 ifge{0,..,2}
am™t(g) =05 ifge {3,..,19} (33)
095 if g€ {20,...,256},

in which g is the quefrency index.

For the DNN-based a priori SPP estimation, we adopted the DNN architecture in [27],
which consisted of a uni-directional long short-term memory (LSTM) layer of 512 dimen-
sions, followed by three fully-connected layers of 256 dimensions. The activation functions
were the rectified linear unit (ReLU) for the first three layers and sigmoidal activation for
the last layer, which produced a 257-dimensional output vector. The number of dimensions
of the DNN output is 257. The input for the DNN was the noisy log magnitude spectrum
at the reference microphone, and the training target was binary for each bin, which was set
by thresholding the instantaneous SNR [13].

5.2. Experimental Results

To demonstrate the superior performance of the proposed speech enhancement
method, we evaluated the wideband PESQ score [60], eSTOI [61], and SISDR [62]. As
we focused on the online framework in which the algorithm only uses the current and
previous audio samples for frame-wise processing, the online algorithms designed in
this way were chosen for the baseline methods. Depending on the a priori SPP estimator,
we compared the performance of the proposed method using the ML framework with
the MWF in [26] when the CDR-based a priori SPP estimator [26] was adopted, whereas
the REM approach [27] was used for performance comparison when the DNN-based a
priori SPP estimator [27] was employed for the proposed algorithm. As in [27], two ver-
sions of the REM approach using the Wiener postfilter and Kalman postfilter, denoted by
DNN-REMWEF and DNN-REMKE, were included in the experiment. The configuration
parameters for the compared methods were set as in the original papers.

Tables 1-3 show the average PESQ score, eSTOI, and SISDR for each method depend-
ing on the noise type, respectively. The proposed method with the CDR-based a priori SPP
estimator, CDR-Proposed, outperformed the previous approach in [26] by 0.39 in terms of
the average PESQ score, 0.022 in terms of the eSTOI, and 4.3 dB in terms of the SISDR on
average, respectively. With the DNN-based a priori SPP estimator, the proposed method,
DNN-Proposed, improved the performance of DNN-REMKEF by 0.21 in terms of the aver-
age PESQ score, 0.017 in terms of the eSTOI, and 1.2 dB in terms of the SISDR on average,
respectively. Table 4 shows the PESQ scores, eSTOIs, and SISDRs for the baselines and the
proposed method depending on the SNR. As the SNRs for the utterances in the evaluation
set of the CHiME-4 database are distributed as in Figure 3, we divided the evaluation
set into three groups depending on the SNR: low SNR less than 6.5 dB, medium SNR
between 6.5 and 8.5 dB, and high SNR over 8.5 dB. It can be seen that all the measures were
improved in all SNR ranges, and the performance improvements were more pronounced
in low SNRs. From the results, we may conclude that the proposed speech SCM estimation
approach could improve the performance of the multi-microphone speech enhancement
method, regardless of the adoption of the DNN for the a priori SPP estimation.
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Table 1. The average PESQ scores for the different algorithms depending on the noise type.

Noise Type

Avg.
Method BUS CAF PED STR Ve
Noisy 1.32 1.24 1.26 1.28 1.27
CDR-MWEF [26] 1.93 1.74 1.86 1.74 1.82
CDR-Proposed 2.35 2.15 2.18 217 2.21
DNN-REMWEF [27] 2.10 2.01 2.12 2.03 2.07
DNN-REMKEF [27] 2.13 2.03 2.15 2.07 2.10
DNN-Proposed 243 2.24 2.28 2.29 2.31

Table 2. The average eSTOIs (x100) for the different algorithms depending on the noise type.

Noise Type

Avg.
Method BUS CAF PED STR Ve
Noisy 71.0 66.0 68.8 67.2 68.2
CDR-MWEF [26] 83.1 79.7 82.4 80.2 81.4
CDR-Proposed 85.1 83.4 83.7 824 83.6
DNN-REMWE [27] 83.7 82.0 83.9 83.2 83.2
DNN-REMKEF [27] 84.3 82.6 84.5 83.9 83.8
DNN-Proposed 86.0 85.3 85.9 85.0 85.5

Table 3. The average SISDRs (in dB) for the different algorithms depending on the noise type.

Noise Type
Avg.
Method BUS CAF PED STR Ve
Noisy 6.79 7.77 8.60 6.85 7.51
CDR-MWEF [26] 9.68 9.44 10.69 9.75 9.89
CDR-Proposed 14.25 14.55 14.56 13.40 14.19
DNN-REMWE [27] 14.40 14.18 14.96 14.64 14.54
DNN-REMKE [27] 14.71 14.42 15.25 14.99 14.84
DNN-Proposed 15.90 16.07 16.34 15.83 16.04
0.25 7
(|
0.2 .
0.15 .
0.1 .
0.05 .
0 - N
0 5 10 15 20 25

SNR [dB]

Figure 3. Normalized histogram of the SNRs in dB scale for the utterances in the evaluation set of the
CHiME-4 database.
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Table 4. The PESQ scores, eSTOIs, and SISDRs for the baselines and the proposed method depending
on the SNR.

Method PESQ Score eSTOI (x100) SISDR (in dB)
(—00,6.5) (6.58.5) (8.50) (—o0,5) (6.58.5) (8.5,00) (—00,6.5) (6.58.5) (8.5,00)
Noisy 1.22 1.26 1.33 63.3 67.1 74.2 5.04 7.48 9.74
CDR-MWE [26] 1.66 1.83 1.95 76.7 80.7 86.5 8.81 9.80 10.97
CDR—PrOposed 2.07 2.22 2.33 80.6 83.2 86.9 12.35 13.95 16.14
DNN-REMWEFE [27] 1.84 2.07 2.26 79.3 82.8 87.2 12.80 14.41 16.28
DNN-REMKEF [27] 1.87 2.10 2.29 80.0 83.4 87.7 13.07 14.70 16.60
DNN—PrOposed 2.15 2.32 2.44 82.7 85.2 88.5 14.38 15.83 17.78

5.3. Ablation Study

Additionally, we carried out an ablation study to analyze how much each module in
the proposed system contributed to the performance improvement. We propose the speech
PSD estimator, $:*° in (31), and the RTF estimator, g'%°%* in (29). The previous approaches
were the speech PSD estimator using recursive smoothing, ¢° in (23), and the ML estimator
of the RTF g™ in (25). The performances of the systems replacing the proposed modules
one by one with conventional modules are summarized in Table 5. DNN-REMWF is also
included, which uses ¢!*, "/, and the Wiener postfilter, but adopts a different noise SCM
estimator, derived from the EM framework.

Table 5. The PESQ scores, eSTOls, and SISDRs averaged over all noise types for the proposed method
with DNN-based a priori SPP estimation by replacing the proposed sub-modules with conventional
ones, one by one.

Method PESQ eSTOI SISDR
DNN-REMWEF [27] 2.07 83.2 14.54
oL +gm 2.07 84.5 15.79
PLs + gldoas 212 85.4 16.07
P+ g 2.19 83.8 15.52
P17 + gtdoas (DNN-Proposed) 2.31 85.5 16.04

The proposed system with conventional speech PSD and RTF estimators, $'* + g,
showed the same average PESQ score and improved eSTOI and SISDR compared with
DNN-REMWEF [27]. Among the systems in the same framework, the introduction of the
proposed speech PSD estimator improved the average PESQ scores by relatively large
differences of 0.12 and 0.19, whereas it did not result in increased eSTOIs and SISDRs. On
the other hand, employing the proposed RTF estimator improved all three metrics. From
the results, we may conclude that both the proposed speech PSD and the RTF estimators
contributed to the performance improvement.

5.4. Computational Complexity

Additionally, we have compared the computational complexity of the baseline and
proposed methods in terms of the normalized processing time for the MATLAB imple-
mentation of the methods. The processing times for each algorithm, normalized by the
processing time of the proposed algorithm, are given in Table 6. In this experiment, the a
priori SPP was estimated by a DNN for all cases. As they depend on implementation details
and settings such as the number of microphones, sampling frequency, and the dimensions
of the DFT, the numbers given in the table should only be used as a rough indication. To
see how much the refinement in the second pass incurred additional computational burden,
the proposed method without the second pass (denoted as woSP) is included. From the
table, it can be seen that the computational complexity of the proposed method was higher
than those for MWF [26] and REMWF [27], but less than that of REMKEF [27].
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Table 6. Comparison of the normalized processing time when the a priori SPP was obtained by
a DNN.

MWEF [26] REMWEF[27] REMKEF[27] Proposed (woSP) Proposed
Process. time 0.614 0.692 1.132 0.704 1.000

6. Conclusions

Multi-microphone speech enhancement exploits spatial information and spectro-
temporal characteristics to reduce noise from the input. The online algorithms are required
for the applications sensitive to time delays such as speech communication and hearing
aids. In this paper, we propose an improved estimator of the speech SCM for online multi-
microphone speech enhancement. Using the decomposition of the speech SCM under a
rank-1 approximation, we propose an improved estimator for the speech PSD and RTF. For
speech PSD estimation, we adopt the TCS scheme, which exploits knowledge on the speech
signal in the cepstral domain to provide a better estimate of the speech PSD compared with
the ML estimate. The RTF is estimated based on the TDoA estimate summarizing the infor-
mation from all frequency bins. These estimators are evaluated once with input statistics
and refined with an estimated clean speech spectrum and power spectrum obtained in
the first pass. Our proposed speech enhancement method showed an improved speech
enhancement performance in terms of the PESQ score, eSTOI, and SISDR in various noise
environments for the CHiME-4 dataset, compared with other online multi-microphone
speech enhancement algorithms.

Future work may include the incorporation of other spatial cues such as the inter-
channel level differences on top of the inter-channel phase differences [47] into the RTF
estimation without resorting to the far-field assumption. We may also investigate a deep
learning approach to estimate acoustic parameters such as the speech and noise PSDs and
RTF in a causal manner in the MVDR-Wiener filter factorization framework.
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