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Abstract: In recent times, we have seen a massive rise in vision-based applications, such as video
anomaly detection, motion detection, object tracking, people counting, etc. Most of these tasks are
well defined, with a clear idea of the goal, along with proper datasets and evaluation procedures.
However, perimeter intrusion detection (PID), which is one of the major tasks in visual surveillance,
still needs to be formally defined. A perimeter intrusion detection system (PIDS) aims to detect the
presence of an unauthorized object in a protected outdoor site during a certain time. Existing works
vaguely define a PIDS, and this has a direct impact on the evaluation of methods. In this paper, we
mathematically define it. We review the existing methods, datasets and evaluation protocols based
on this definition. Furthermore, we provide a suitable evaluation protocol for real-life application.
Finally, we evaluate the existing systems on available datasets using different evaluation schemes
and metrics.

Keywords: perimeter intrusion detection; video surveillance; outdoor environment; real-time analysis;
i-LIDS

1. Introduction

In the last two decades, we have seen tremendous innovation in vision-based sys-
tems [1]. The massive installations of cameras in almost all essential sites, from banks to
supermarkets and in prominent streets, have further helped in developing and testing
these systems. Visual surveillance is one of the most important and relevant domains for
intelligent vision systems [2]. Visually surveying a site can include various tasks, such as
object detection, object tracking and anomalous behaviour detection [3]. One such task is
perimeter intrusion detection (PID), which aims to detect the presence of an unauthorized
object in a protected outdoor site during a certain time [4–6]. The cameras record videos
continuously in the outdoor site to be protected. The fact that it is an outdoor environ-
ment is very important here as it comes with challenges such as changing weather and
light conditions, insects, animals, etc., contrary to an indoor environment [7,8]. The user
defines protection area on the scene, potential intruder objects and the time during which
the system needs to protect (e.g., protection during night only). Given user needs, the
perimeter intrusion detection system (PIDS) detects intrusion and sends an alarm signal to
the surveillance personnel for verification.

One of the key goals of video surveillance is to detect behaviours that can be considered
anomalous. Anomalies are patterns in data that do not follow a well-defined notion of
normal behaviour [9]. Depending on the nature of input data and context, anomalies
can refer to different patterns, such as abnormal sections in a time-series data, abnormal
patches in an image, abnormal spatio-temporal volumes in a video, etc., as illustrated in
Figure 1. Concerning video data, video anomaly detection [10,11] refers to the detection
of unusual appearance or motion attributes in the video. In [12], a dataset is proposed
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containing 13 anomalous activities, such as abuse, arrest, accident, explosion, etc., and
they used multiple instance learning to detect anomalies. Depending on the context,
video anomaly detection can be specified in different tasks, such as abandoned object
detection [13], loitering detection [14], illegally parked vehicle detection [15], etc. Perimeter
intrusion detection also falls into this category [16–18]. In fact, intrusions are a particular
type of anomalies, classified as point and contextual anomalies by (Chandola et al. [9],
Section 3.5). Moreover, the notions of perimeter, intruder movement and site protection
time are crucial for the PID task, i.e., anomalous/unauthorized objects present in the video
are intruders only if they are in movement inside the designated perimeter when the
site is being surveyed. In other words, all intrusions are anomalies but not all anomalies
are intrusions.

Figure 1. Venn diagram to illustrate the taxonomy of tasks in video anomaly detection.

In the visual surveillance literature, we find several comprehensive reviews on various
tasks, such as object detection [19,20], object tracking [21], anomaly detection [9], etc.
However, the PID task lacks such a review work. Few works define the PID task, but their
definition requires clarity [4,22,23]. It is essential to mathematically define the task as its
definition has a direct impact on the evaluation. In practice, when the PIDS detects an
intrusion, it sends a short video to the security post, where a human operator validates the
alarm as a true intrusion or otherwise. This short video, composed of several frames before
and after the suspected intrusion, must contain the intruder so that the operator can decide
to send the security team to the perimeter. The end of the intrusion event is not relevant
for this application. Consequently, the task of PID by video can be seen as the detection
of the beginning of an abnormal event in a perimeter. In the PID task, we want to detect
intrusion caused by human-based activities such as walking, driving a car, etc. To be sure
to not miss such an intrusion, the video must be acquired at between 5 and 25 frames per
second (FPS) [24]. This is the real-time constraint of this task. In practice, we would like to
detect intrusion as soon as it occurs; thus, we have time constraints. This requires a suitable
evaluation protocol that takes these particularities into account.

The intrusion detection task is closely related to other surveillance tasks and many
of these tasks, such as motion detection and tracking, can be an essential part of a PIDS
pipeline. Many existing methods address one of these auxiliary tasks in the surveillance
system. Only few methods tackle the problem of PIDS completely [22,24,25]. Since missing
intrusions in a site is considered as a major failure for a PIDS, existing methods are opti-
mized to detect as much as possible even at the cost of some false alarms [24]. Similarly,
unlike for auxiliary tasks, there is no standard protocol for evaluating a PIDS. The dataset
i-LIDS defines an evaluation protocol [26] but it is not widely adopted and has several
drawbacks, which we detail in Section 5.2.

Our main contributions are summarized as follows: (i) We propose a formal definition
of the PID task; (ii) We review the existing methods, datasets and evaluation protocols;
(iii) We provide a novel PID evaluation protocol; (iv) We compare all evaluation protocols
on a common dataset using existing methods.
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This article is organized as follows. In Section 2, we review the PID data with different
data acquisition strategies, their challenges and available datasets. Existing PID methods
are presented in Section 3. Section 4 formalizes the PID task using mathematical definitions.
In Section 5, we explain various evaluation protocols/metrics and present a new evaluation
protocol. In Section 6, we compare the evaluation protocols using existing methods. We
next provide a discussion in Section 7. Finally, we conclude in Section 8.

2. Review of PID Data

In this section, we first describe the various data acquisition systems with their associ-
ated advantages and drawbacks. Then, we identify the challenges associated with a PIDS.
Finally, we detail the existing datasets.

2.1. Data Acquisition

The area to be protected is observed with the help of cameras. These cameras acquire
the video stream in order to detect possible intrusions. The acquired data can be used as an
image sequence or as a video, depending on the system. The nature of data depends on the
type of camera used. Broadly, the following categories of video capture devices are used.

2.1.1. Visual Camera

These cameras capture the visible light in grey-scale or RGB images. Their advantage
is that they render an image visually closer to the naked eye. However, they need a certain
level of brightness in the scene and are sensitive to illumination changes [1,27]. At night,
they need additional lighting for the sensor to restore a sufficiently contrasted image [22,28].
Adverse weather conditions such as fog, rain, snow, etc., further limit observation of objects
to a short distance from the camera [22], and thus make detection difficult. Even after
all of these drawbacks, these cameras have been used extensively in video surveillance
systems as they are the standard imaging device [3,29]. They are one of the cheapest
available cameras.

2.1.2. Infrared Camera

Infrared cameras capture near-infrared emissions [30] from objects and are suitable
for environments with a low illumination level. They are coupled with infrared lighting
that can provide better contrast when an object moves past the camera [31]. It is difficult to
detect the object during rain in this camera as rain drops appear as thick stripes in front of
the camera [28]. In addition, this camera attracts flying insects and spiders that can raise
false alarms and, as a consequence, impact detection. These cameras are more expensive
than the color/visual cameras, with typical costs 1.5 to 2 times more than the color cameras.

2.1.3. Thermal Camera

Thermal cameras have passive sensors that capture the mid-wavelength infrared
radiation emitted by all objects with a temperature above absolute zero [30]. The main
advantages include no external lighting requirement [30], a lower sensibility to weather
conditions, ignoring object shadows [28] and long-range detection [32,33]. However, the
main drawback of the thermal camera is that it is difficult to distinguish an object from its
background when both of them have almost the same temperature. Thermal cameras cost
at least six times more than the color cameras.

2.1.4. Other Types of Acquisitions

All of these camera types can be used with additional sensors. The depth information
can help in determining the perspective size of an object and, thus, can help in better
intrusion detection [8,23]. However, using a depth sensor also has several problems, such
as mixed, lost and noisy pixels in the depth image [34,35].

Another type of camera, known as the event camera, captures only the motion infor-
mation in the scene [36]. It finds its application in motion detection, object segmentation,
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pose estimation, motion tracking, etc. [37]. It cannot capture static motion and absolute
intensity, and therefore is often used together with other cameras types. Event cameras are
not used for tasks such as video anomaly detection and perimeter intrusion detection yet,
where both spatial and temporal information are essential. The main reasons for this are its
extremely high cost and inability to capture visual features, such as texture and color.

We can also have a multi-camera system with similar or different types of cameras.
Intuitively, combining multiple sensors will provide more accurate information about
the targeted object and help to overcome occlusion. A visual surveillance system using
multiple cameras has been studied extensively [19,38,39].

Recently, an intelligent PIDS was proposed using an integrated image acquisition
device that combines visual and thermal cameras [22]. However, a multi-camera system
also brings new challenges, such as camera installation, camera calibration, object matching,
automated camera switching and data fusion [19].

2.2. Open Challenges

In the context of PIDS, the cameras are generally fixed in a static position to monitor
the area to be protected [3,40]. These areas include important industrial sites, private
property or land, etc. [22]. Most of the time, little or nothing is moving in these sites.
Some animals may move or trees may shake due to wind in the area but, generally, they
should be ignored by the system. However, the system must be operational continuously
for a number of days and encounter changing light and weather [26]. Detection of the
intrusion must be carried out quickly, within a few frames after the intruder enters the
scene [24,26,41]. Therefore, PID algorithms must address this type of scenario.

In a video surveillance context, a certain number of situations make intrusion detection
difficult. Several authors [40,42,43] have identified different challenges. These challenges
have been classified in different categories on the basis of data acquisition, scene capturing
and the object of interest. We advise the reader to refer to the previously cited articles for
more details.

2.3. Datasets

Since the task of intrusion detection can include various subtasks such as detection
and tracking, historically algorithms were tested on the datasets of these subtasks. For
example, CAVIAR [44], PETS2006 [45] and AVSS2007 [46] have been used to test the
tracking module of PIDS [47–49]. However, even after the immense success of deep
learning and computer vision in recent years, there is still only one dataset that is dedicated
for intrusion detection: the i-LIDS sterile zone dataset [26]. It has been extensively used in
the literature [4,24,25,41,48].

Other than i-LIDS, most works are on private datasets. One recent work introduces
a new dataset called SIC [24], but it is available under strict conditions and, without
annotations, omissions cannot be evaluated.

i-LIDS Sterile Zone Dataset

The imagery library for the intelligent detection systems (i-LIDS) sterile zone dataset
has been published by the UK Home Office for the PID task [26]. It is carefully designed
by end users of the technology to benchmark surveillance systems. It is provided with a
clear problem definition, annotation and evaluation procedure (see Section 5.2) to ensure
relevance for industrial application.

The PID task in this dataset consists of detecting the presence of people in a sterile
zone. There are two sites monitored by two different cameras (view 1 in color/monochrome
and view 2 in monochrome) as shown in Figure 2. Each site (view) is protected by a security
fence and the aim is to detect intrusion before it passes through the fence. Intruders are
one or two people trying to breach the fence in various ways. For example, people may
walk, run, crawl or roll towards the fence and, on occasion, may be carrying climbing aids,
such as a ladder. The intruders are situated at three different distances from the camera:
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close, middle and far. The cameras record videos over many days, capturing different
times of the day, such as dawn, day, dusk and night. They further include various weather
conditions, such as cloudy, rainy, snowy and foggy. Apart from intrusions, there are various
distractions that might trigger false alerts. Possible distractions include plastic or paper
waste moving due to wind, bats, birds, foxes, insects, rabbits, squirrels, shadows through
the fence, etc. Figure 2 illustrates this with various examples. These different weather
conditions, times of the day, various distractions and numerous ways of the intruder
approaching the fence make it a very challenging and realistic dataset.

Figure 2. Some raw frames drawn from i-LIDS sterile zone dataset [26] with various intrusion
(intruders in red boxes) and non-intrusion frames. The black and white and color frames belong to
view 2 and view 1, respectively. The time of the day in four columns are night, day, dawn and dusk.
The distractions in non-intrusion row (left to right order) are fox, insect on camera, shadow on fence
and birds with rain, respectively. In intrusion row (left to right order), we have log rolling intruder,
crawling intruder, two intruders and intruder with ladder during snow, respectively.

The dataset is divided into two disks for training and testing. The train disk is for
developing the PIDS and the test disk for verifying its performance. Each disk has two
cameras views with over 20 h of video recorded in the various previously cited situations.
All videos are taken at 25 FPS with 720 × 576 frame size resolution. The annotation
provided is the time interval of each intrusion event in the video, i.e., the entry and exit
time of people in the respective scene. Table 1 summarizes the i-LIDS dataset with a number
of videos and a different intrusion count per-video.

Table 1. i-LIDS sterile zone dataset description.

Number of Videos per Intrusion Count (Average Length in Minutes)

View Set Videos Intrusions 0 1 10 13 15 17 31

View 1
train 123 113 10 (29) 113 (3) 0 0 0 0 0

test 17 113 10 (29) 0 2 (36) 1 (36) 1 (49) 2 (46) 1 (92)

View 2
train 113 103 10 (28) 103 (3) 0 0 0 0 0

test 16 103 10 (28) 0 1 (37) 1 (36) 1 (49) 2 (46) 1 (92)

3. PID Methods

Figure 3 shows the typical PIDS pipeline with various associated tasks. In order to
review PID methods, we must review methods that tackled one or several of these tasks
with the aim to improve the PIDS pipeline, as only a few methods tackle the complete
PID task.
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Figure 3. Typical pipeline of a PIDS, composed of an optional offline training (left part) and an online
detection (middle part). An illustrative example of different steps in online detection is shown in
right part of the figure.

3.1. Pre-Processing

Low quality sensors and adverse environmental conditions such as snow, fog, rain,
extreme sunshine, etc., may produce highly noisy video streams. We cannot directly feed
this noisy data into the detection algorithm. Therefore, video enhancement is needed to
remove noise and improve the visual appearance of the video.

The existing video enhancement methods can be classified into two broad cate-
gories [50,51]: spatial domain enhancement and transform domain enhancement. Spatial
domain video enhancement deals directly with pixels, i.e., it makes a direct manipulation
of pixels in video frames. It is conceptually simple and has a low time complexity, which
favors real-time implementation but lacks robustness. Some surveys on this method can be
found in [52–54]. In most PIDS, some standard spatial enhancement is carried out on raw
frames [6,25,41], such as image resizing, image normalization, mean centering, colorspace
conversion (RGB to grayscale or vice versa), histogram equalization, etc.

Transform domain video enhancement operates on the transform coefficients of the
video frame, such as Fourier transform, discrete wavelet transform and discrete cosine
transform [54,55]. The video quality is enhanced by manipulating the transform coefficients.
This category of methods has a low computational complexity with ease of manipulating
the frequency composition of the video frame. Some major examples of PIDS using these
techniques are [25,41], using fast Fourier transform (FFT) on video frame patches and
decreasing noise by removing very low or high frequencies from FFT.

Apart from video enhancement, some other pre-processing can be conducted depend-
ing on the PIDS. In [25], patches of 16-pixel squares in each video frame are defined and
two regions (grass and fence area) are further designated for segregating the scene into an
authorized/unauthorized zone. Another common pre-processing is to have a fixed spatial
perimeter in each frame of the video [6,22,24,47]. This helps the PIDS to focus only on this
region of the scene and to ignore activities outside this perimeter.

3.2. Detection

This is an important step of the pipeline as the goal of PIDS is to detect certain
categories of objects that might cause an intrusion. There are two main families of detection
in video: (i) detection of blobs, analyzing the pixel motion, and (ii) detection of objects,
analyzing the image appearance with the localization and classification of objects.
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3.2.1. Motion Detection

The act of intrusion is caused by a moving object in a protected perimeter during an
unauthorized time. Therefore, motion detection is essential in a PIDS. The main approaches
can be classified into three categories.

Optical Flow

The notion of optical flow literally refers to the displacements of intensity patterns. It
is an approximation of image motion defined as the projection of velocities of 3D surface
points onto the imaging plane of a visual sensor [56]. Optical-flow-based methods use
partial derivatives with respect to the spatial and temporal coordinates to calculate the
motion between video frames. However, most optical flow methods are computationally
complex, very sensitive to noise and tough to implement in real-time settings. Some surveys
on optical flow approaches are [56,57].

Temporal Differencing

Temporal differencing uses pixel-wise differences among consecutive video frames
to extract moving regions. It is adaptive to dynamic environments and has a low compu-
tational complexity. However, it can fail to extract all of the relevant pixels and can leave
holes in regions. Some important studies can be found in [2,24,58,59]. The studies in [25,41]
use simple inter-frame differencing followed by some morphological operations for motion
detection in their PIDS.

Background Subtraction

Background subtraction is one of the key techniques for detecting moving objects in
video. It detects moving regions by taking the difference between the current frame and the
reference frame, often referred to as the ‘background model’. The detection ability depends
on the adaptiveness of the background model. Some popular background subtraction meth-
ods are: running Gaussian average (RGA) [60], Gaussian mixture model (GMM) [61], kernel
density estimator (KDE) [62] and visual background extractor (ViBe) [63]. Background
subtraction mainly suffers from illumination changes, a dynamic background, shadows,
camouflage, video noise, etc. [40]. These effects can present a background object as a false
foreground moving object or vice-versa. Most comprehensive surveys on background
subtraction-based methods are [19,33,40].

Concerning PIDS, Refs. [25,41] use Gaussian background modeling to discriminate
people (intruder) from background. The study in [4] uses background subtraction to extract
object blobs from the video frame, which are later used for tracking. The study in [22]
detects moving objects by comparing a background model with an input video frame in
real-time. The study in [24] detects objects using the RGA method.

3.2.2. Object Detection

Object detection, i.e., object localization and classification, has been a field of intensive
research, and intrusion detection is closely related to it. In fact, intruders belong to certain
categories of objects, such as people, car, bike, etc., to be detected in a protected area. Even
though intrusion can be caused by vehicles, animals, etc., the state of art mostly focuses
on detecting people. Object detection methods can be categorized into traditional and
deep-learning-based detectors [20]. Some traditional object detectors are the Viola–Jones
detector [64], histograms of oriented gradients (HOG) detector [65] and deformable part-
based model (DPM) [66]. With the advent of deep learning, we have achieved an excellent
performance in object detection with methods such as Faster R-CNN [67] and YOLO [68].
Still human detection can be challenging, especially in scenes with an atypical human pose,
such as crawling/creeping, occluded scenes [69] and scenes with low luminosity, such
as during night. The study in [70] addresses the problem of detecting humans at night
using a consistency–constancy bi-knowledge learning network that exploits the cross-time
(day and night) scene consistency and cross-frame background constancy. In [22], a 2D
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CNN-based supervised classifier for human intruder detection is used. Similarly, Ref. [47]
uses a pre-trained YOLO v2 network for intruder object detection.

3.3. Tracking

Tracking objects can be useful for a PIDS. Perimeter protection solutions may use this
information to impose detection constraints. For example, leaving an area can be allowed,
but not entering it. We can also think of raising an intrusion alarm only if an object is inside
the area for a specified amount of time. Furthermore, an efficient tracking module can help
a PIDS to not lose an object and re-initialize its timer.

A Kalman filter is applied on the texture of objects with a motion mask to build object
tracks [41]. Particle filters can be used too to track intruders [22,24]. In [25], an intruder is
tracked by logging positions of foreground objects over time. The study in [48] proposes a
tracking algorithm based on tracklet clustering. Finally, [47] uses the simple on-line and
real-time tracking (SORT) algorithm [71] for intruder tracking.

3.4. Joint Detection and Tracking

Since a video has two components, spatial and temporal, it is usually analyzed in
two steps. The first step captures spatial patterns by using detection on each frame (see
Section 3.2), whereas the second step uses tracking to apprehend temporal coherence (see
Section 3.3). This approach creates the hypothesis that spatial and temporal dimensions are
independent and can be processed sequentially.

Recent approaches jointly model spatial and temporal dimensions using 3D convo-
lutions and improve results in video analysis [72,73]. Applied to PIDS, an implicit joint
detection and tracking is performed by a 3D convolutional autoencoder in [6], trained in an
unsupervised way.

3.5. Post-Processing

Missing intrusions in the site are considered a major failure for a PIDS; therefore,
methods try to detect as much as possible, even at the cost of some false alarms [24]. These
false alarms need to be filtered, which is why we might need some sort of post-processing.
Even though this step is crucial in a PIDS, there are few publications on this topic because
manufacturers prefer to keep their post-processing confidential. However, despite this, we
can list several post-processing techniques.

Filtering objects of interest outside the chosen perimeter is the most common post-
processing and is used in major PIDSs [22,24,47]. Sometimes, blobs are inconsistent across
time, such as rain drops, and a filter can check the coherence of the blob trajectory. Detected
objects can also be filtered with a minimum threshold on the blob size. For example,
Ref. [24] filters all of the objects with a size less than four pixels. Since foreground objects
are bigger than background ones, perspective calibration learns the dimension of object
of interest as a function of its position in the scene. This allows us to filter objects with
a size smaller than the expected size of the object of interest at the same position in the
scene [74,75].

3.6. Alarm

To transform detected and tracked objects into alarms, PIDSs apply some sensibility
thresholds to set the omissions–false alarms trade-off [4,22,41,47]. These thresholds are
usually manually tuned during the actual deployment of the PIDS.

Moreover, some high-level rules can be applied to trigger the alarm. In [25], the alarm
is triggered if the intruder shows movement towards the target for a minimum time of 2 s.
In [22,47], alarms are generated as long as the intruder is inside the protection boundary,
while [24] adds an extra constraint, where it must be tracked for at least three frames.

Interestingly, some publications evaluate PIDS in a pure machine learning approach,
using metrics that integrate performances for all possible threshold values [6,7]. However,
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they do not describe a strategy to choose the thresholds, making it difficult to use them in
practical cases.

3.7. System Deployment

The actual deployment of the system is realized in three stages: an optional offline
model training, then an online initialization of the system, and, finally, online execution.

3.7.1. Model Training

Some PIDSs require offline training on part of the dataset for their detection or tracking
steps [6,22,47]. This training can be supervised, requiring labeled videos (tagging intrusion
frames or events); or, it can be unsupervised, under the assumption that there are no
annotated data in the dataset. In [4], a classifier model is trained as a multiple instance
learning problem by employing image-based features to distinguish intruder objects from
moving vegetation and other distractions. The studies in [22,47] use supervised object
detectors for intruder detection. The study in [6] learns an unsupervised deep autoencoder
on training videos having no intrusions in order to detect intrusions in testing videos.

3.7.2. System Initialization

During real-life deployment, most of the PIDS must be initialized for several seconds
in order to set the system’s internal state of the system aligned with the new scene in
order to protect [24,25]; for example, the mean and standard deviation of a GMM. This
online initialization must not be confused with the offline model training. Moreover, a
PIDS can have sensibility thresholds, which are manually tuned by the installer during
the deployment.

3.7.3. System Execution

The last stage is the online execution of the PIDS. It includes all of the steps of the
pipeline as illustrated in the right part of Figure 3. To provide a reliable protection, most of
the PIDSs work between 5 and 25 FPS [6,24,25].

Table 2 summarizes major PIDSs with various methods used in different steps of the
pipeline and the availability of the source code. We can observe that most systems use the
visual camera for data acquisition. Only one system uses the thermal camera and just one
system is multi-camera-based. Background modeling is used in most traditional systems
for detection, whereas deep-learning-based models use 2DCNN, a YOLO detector and
autoencoders. Regarding tracking, the Kalman filter, particle filter, tracklet-based tracking
and SORT are used. For alarms, most systems have their own rules depending on the
method. Three systems use supervised training, one system uses unsupervised training
and the rest do not include a training step.

Table 2. PIDS reviewed by chronological order, where columns represent steps of the pipeline, along
with model training needs and availability of source code. 7 denotes unavailability of the step,
whereas X denotes that the step is available but not detailed.

Publication Data
Acquisition

Pre-
Processing Detection Tracking Post-

Processing Alarm Model
Training

Code
Available

Buch and
Velastin

[41]

Visual
camera

frame
patches,

FFT

inter-frame
differenc-

ing

Kalman
filter 7 rule-based none 7

Vijverberg
et al. [48]

Visual
camera X

background
subtraction

tracklet
tracking 7 7 none 7

Buch and
Velastin

[25]

Visual
camera

frame
patches,

FFT

Gaussian
back-

ground
modeling

Kalman
filter 7 rule-based none 7
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Table 2. Cont.

Publication Data
Acquisition

Pre-
Processing Detection Tracking Post-

Processing Alarm Model
Training

Code
Available

Vijverberg
et al. [4]

Visual
camera X

background
subtraction

tracklet
tracking X rule-based supervised 7

Kim et al.
[22]

Multi-
camera:

visual and
thermal

resize,
calibration,
perimeter

2D CNN particle
filter

outside
perimeter rule-based supervised 7

Cermeño
et al. [24]

Visual
camera perimeter RGA particle

filter
object size

rule rule-based none 7

Nayak et al.
[47]

Visual
camera perimeter YOLO v2 SORT 7 rule-based supervised X

Lohani
et al. [6]

Thermal
camera

resize, nor-
malization 3D ConvAutoencoder 7 7 unsupervised X

4. Definition of PID Task for Video Surveillance

The task of perimeter intrusion detection (PID) has been defined in various ways in
the state-of-the-art. In [4], it is defined as a monitoring system that identifies the presence
of humans or devices in a pre-defined field-of-view. In [22], the PIDS is defined as a
system that detects physical intrusions on a site having a protective barrier to isolate it
from outside. In [23], it is described as a system that detects the movements of intruders
attempting to breach a security wall or region and alert security. However, all of these
definitions lack clarity and formalization; for example, the following questions need to
be addressed: “what are intruders?”, “does moving intruder cause intrusion?” and “is a
protective area necessary?”. To answer all of these questions, we mathematically define a
PIDS. Before defining a PIDS, we must define what an intrusion is.

4.1. Intrusion in the Video

To properly define an intrusion, we need to define an object in the video.

4.1.1. Object in the Video

We define a video V acquired for T frames during the interval T = [1, T] as:

V =
{

It ∈ RH×W×D
}

t∈T
, (1)

where It denotes the frame at the time instant t, with height H, width W and number of
channels D. To define an object in the video, we must first specify the object definition at
frame-level. An object in a frame or image is defined with a spatial specification and a class
that distinguishes one family of objects from another (such as humans, animals or cars).
The spatial specification can be either on pixel-level by allocating each pixel to an object or
background, or on area-level by encapsulating the object in a bounding box. We choose the
bounding box as it has been used in the literature extensively [20]. It should be noted that
the choice of spatial specification cannot have an impact on the intrusion definition. Thus,
we define an object at frame-level with a class and a bounding box. To define an object in
the video, we take into account all of the frames where it is present. Therefore, an object oi
in the video is defined as:

oi =
(
{bi,t}t∈T , ci ∈ C

)
, (2)

where ci is the class of the object from the set of object classes C, and bi,t is its bounding box
at time instant t, which is defined as:

bi,t = {gi,t, wi,t, hi,t} , (3)
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where gi,t, wi,t and hi,t are the center, width and height of the bounding box, respectively.
The center is defined by its coordinates as gi,t = (xi,t, yi,t) ∈ It. Note that, instead of the
bounding box center, it is possible to choose other points, such as the bounding box bottom,
as reference. We illustrate these definitions in Figure 4.

Figure 4. Video with T frames of height H, width W and channels D = 1. Two objects, shown in
orange and green bounding boxes, are defined as o1 = ({b1,1, b1,2, b1,3}, c1) and o2 = ({b2,3}, c2),
where c1, c2 ∈ C are the object classes. Here, {b1,1, b1,2, b1,3} are bounding boxes of object 1 on first
three frames and {b2,3} represents bounding box of object 2 at frame 3.

4.1.2. Intrusion Event and Intrusion Interval

For the protection of a site, the user must define parameters that qualify objects as
non-authorized (na), i.e., intruders.

• Sna ⊆ RH×W : the subset of the frame/image, defining the surface to protect.
• Tna ⊆ T : the time interval during which the surface must be protected (e.g., protection

during night).
• Cna ⊆ C : the set of non-authorized classes, such as person, car, truck, etc. These

classes of objects are considered as possible intruders and can be different according
to site and client demands.

Since Cna is a non-finite set (it is impossible to make the exhaustive list of non-
authorized objects, exposing the system to omissions), it is easier to ask the user to explic-
itly define the short list of authorized objects Ca (such as small animals), which leads to
Cna = C\Ca.

An object causes an intrusion event if it belongs to a non-authorized class and is
moving in a protected area during a prohibited time interval. We define the intrusion event
caused by an object oi as:

IE(oi) = { It s.t. ci ∈ Cna and t ∈ Tna and ‖grad ~gi,t‖ > 0 and gi,t ∈ Sna }t∈T ,

where ‖grad ~gi,t‖ is the gradient of object oi at instant t and it being non-zero signifies
that the object is in motion. Thus, the intrusion event caused by object oi is a collection
of all of the frames It such that t ∈ Tna, object class ci ∈ Cna, the gradient is non-zero and
the bounding box center lies in the protected area. Figure 5 illustrates the intrusion event
caused by an object. The surface to protect Sna is depicted with a pink trapezoid in each
frame, and we assume that we want to protect during the entire video. One object is present
in the video and it is shown with a rectangular bounding box plus a center. The object is in
motion from the second frame to the eighth frame. While in motion, the object’s center lies
in Sna from the fourth frame until the seventh frame, causing an intrusion event. Thus, this
object triggers an intrusion event for four frames.



Sensors 2022, 22, 3601 12 of 28

Figure 5. Illustration of an intrusion event caused by a single object. Video with T frames, where Sna

is shown with yellow surface and object with a green bounding box plus center. The object causes an
intrusion event for four frames from frame I4 to I7, colored in red.

Since a video can have more than one object causing intrusion events, we define the
intrusion event of the whole video containing j objects as:

IE(V) =
j⋃

i=1

IE(oi) . (4)

Figure 6 shows three intrusion events caused by three objects in the video. We can
observe that intrusion events of object 1 and 2 overlap for two frames, meaning that, for
those two frames, there were two objects causing intrusion events simultaneously. The
intrusion event of this video is a collection of all of the intrusion frames, marked by 1 in
the figure. In the context of video surveillance, we are concerned with whether there is
an intrusion event or not, regardless of whether one object or many objects are causing it.
Therefore, we are interested in an interval of a contiguous sequence of intrusion frames. We
term this as an intrusion interval, and the task of intrusion detection is focused on detecting
them. Formally, an intrusion interval II ⊆ IE(V) is defined on a closed interval as:

II = { It ∈ IE(V) with t ∈ [tstart, tend] s.t. Itstart−1 /∈ IE(V) and Itend+1 /∈ IE(V) } ,

where tstart and tend denote the first and last frames of an intrusion interval. In other words,
an intrusion interval is a contiguous sequence of frames of maximal size derived from
IE(V). Figure 6 depicts two intrusion intervals of the video.

Figure 6. Illustration of intrusion event of the video and intrusion intervals. Objects o1, o2 and o3

cause intrusion events IE(o1), IE(o2) and IE(o3), marked with value 1. IE(V) is collection of all of
the frames with value 1. Two intrusion intervals II1 and II2 are shown in red intervals.

4.2. PIDS

Given a precise definition of intrusion, we can now define a perimeter intrusion
detection system (PIDS). Given a video V and intrusion parameters (Sna, Tna, Cna), the
prediction of a PIDS can be defined as:

P(V ,Sna, Tna, Cna) = { p̂t ∈ {0, 1}}t∈Tna
, (5)
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where p̂t is a binary prediction for each frame t of video V for time Tna, with 1 denoting a
frame predicted as an intrusion, and 0 otherwise. Therefore, a PIDS classifies each frame
into an intrusion frame or otherwise. This type of output is useful when we want to
evaluate a PIDS at frame-level [6]. In a real-life surveillance system, the system sends an
alarm signal to surveillance personnel as soon as there is a transition from a normal to
intrusion state [26]. The output of the PIDS can be derived from P as follows:

A(P) = { p̂t ∈ P s.t. p̂t−1 ∈ P with p̂t−1 = 0 and p̂t = 1 }t∈Tna .

This is a set of intrusion alarms created by the system, marked by the rising edge,
i.e., the transition of the system state from non-alarm to alarm. These alarms alert the
surveillance personnel about a suspicious activity. For each alarm, a mini-clip is sent
containing some frames before the alarm and some frames after the alarm. The surveillance
personnel visually analyze this mini-clip and decide whether it is an actual intrusion
activity or a false alarm. Therefore, we need an evaluation scheme that takes into account
this real-life scenario.

5. Evaluation Protocols

Given a video or set of videos, the PIDS detects intrusions. To evaluate the perfor-
mance, we need to compare the PIDS output with ground truth annotations. The manner in
which this evaluation is carried out impacts the final score metric. The following subsections
present different evaluation protocols.

5.1. Frame-Level Evaluation

As the name suggests, in this type of evaluation, we are interested in checking whether
each frame of the video is correctly classified as intrusion/normal or not. For a video V
and given intrusion parameters (Sna, Tna, Cna), the frame-level ground truth is defined as:

G(V ,Sna, Tna, Cna) = { pt ∈ {0, 1} s.t. pt = 1 if pt ∈ IE(V) }t∈Tna
,

where pt is the ground truth label for each frame t of the video V at time Tna; value 1
denotes an intrusion class, and 0 otherwise.

Given ground truth G and prediction P (see Equation (5)), the frame-level intrusion
evaluation is simply the binary classification evaluation of each frame of the video [76]. We
can calculate elements of the confusion matrix, i.e., the true positive (TP), false negative
(FN), false positive (FP) and true negative (TN), with intrusion as the objective class [6]. We
can then evaluate the performance of the PIDS depending on the choice of metric, such as
the precision, recall, F1 score, etc., as defined in Section 5.4.

In this type of evaluation, each frame contributes equally to the overall score. Thus,
it can provide the same overall score for an algorithm that gives us multiple omissions of
intrusion events versus an algorithm that gives us an omission of some intrusion frames
in multiple intrusion events. This is an undesirable evaluation in the case of intrusion
detection because we cannot afford to have omissions of intrusion events. In reality, we are
more interested in knowing if the system is able to classify the intrusion events correctly as
a whole. This demands an event-level evaluation. In other words, we want to detect all
intrusion intervals (IIs) from the video. More specifically, we are interested in evaluating
whether the beginning of these intrusion intervals are detected correctly. This is because, if
an intrusion event is detected too late, then that detection is not very useful. The idea is to
detect each intrusion interval as soon as it occurs and, thus, we need an evaluation scheme
that takes this into account.

5.2. i-LIDS Evaluation

For evaluating on the i-LIDS dataset, their user guide provides an evaluation proce-
dure [26]. It focus on evaluating intrusion at event-level rather than frame-level. To be
precise, an intrusion is considered correctly detected if there is at least one system alarm
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within 10 s from the start of the intrusion event. For an II of the video and alarms A(P),
the rules of the i-LIDS evaluation protocol are as follows:

1. TP: if there is at least one alarm within 10 s from the beginning of the II . If there are
multiple alarms candidates, the first one is taken and the rest are ignored.

2. FN: if there is no alarm within 10 s from the beginning of the II .
3. FP: if there is an alarm but not within 10 s from the beginning of the II . If there are

consecutive FPs within a 5-s gap among them, only the first one is considered and the
rest are ignored.

Apart from these, one rule is i-LIDS-dataset-specific: all IIs and alarms that start
within 5 min from the beginning of the video are ignored. This means that they wanted
to give a preparation time to the system. This evaluation scheme is not generic and has
several drawbacks, as illustrated in Figure 7. It penalizes an alarm as an FP after 10 s from
the beginning of an II without taking into account the duration of intrusion. If the II has
a long duration (such as an hour) and we have an alarm at the 11th second, it is not ideal
to mark it as an FP. From a practical point of view, the surveillance personnel will receive
a mini-clip as soon as the alarm is triggered and, if the intrusion is present, then it is not
sensible to mark this as an FP. Instead, this alarm should be ignored as it is not detected
within 10 s. Similarly, each alarm after 10 s but within II is considered as an FP, and this
strongly penalizes the system precision. Instead, these extra alarms should be counted
without assigning them as an FP.

Figure 7. Illustration of i-LIDS evaluation protocol, highlighting its drawback on an intrusion example
starting at 9th second. Since no alarm has been raised in the first 10 s of the intrusion, a FN is counted.
Following alarms, at 22nd and 37th second, are marked as FP because they do not occur within 10 s
from the beginning of the intrusion.

5.3. Edge-Level Evaluation

To appropriately evaluate a PIDS while considering the real-world aspects, we propose
a new evaluation protocol. An intrusion event begins with a transition from a non-intrusion
to intrusion state, i.e., we have a rising edge as shown in Figure 8. Similarly, an intrusion
event stops by a reverse transition, i.e., a falling edge. We are interested in detecting
intrusion within a few frames from the rising edge. Since we focus on this rising edge, we
call this the edge-level evaluation. In other words, we emphasize detecting the beginning
of intrusion intervals. We first define the following terms from an intrusion interval of the
video (see Figure 8).

The intrusion interval neighborhood IN is an expanded interval defined by npre frames
before and npost frames after the II :

IN(II , npre, npost) =
[
tpre, tpost

]
s.t. tpre = tstart(II)− npre and tpost = tend(II) + npost .

These npre and npost frames are in the range of one to five (less than 1/5 s for a video
at 25 FPS) and are added in order to take into account the error of annotation. This error is
due to the fact that it is difficult to mark the exact frame at which the intrusion starts or
ends. This tolerance further permits not strictly penalizing the system when an intrusion
event is detected a few frames before the actual event or when the system detects a few
more intrusion frames after the actual event is finished. These cases arise often when the
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intrusion object is in the scene but not inside the surface to protect. Therefore, IN is an
interval where the actual intrusion activity takes place, and an alarm given by a PIDS in
this interval can be counted as either TP or ignored. An alarm given outside IN must be a
false alarm and should be counted as an FP.

Figure 8. The top subfigure is the illustration of the definitions of edge-level evaluation terms on
ground truth, with time in abscissa and non-intrusion (0) and intrusion (1) class for each frame of the
video in ordinate. The next two subfigures represent examples of alarms and possible outcomes (TP,
FP, FN) for two different PIDSs evaluated by the edge-level protocol.

The intrusion beginning neighborhood IBN is an interval comprising npre frames
before and n frames from the beginning of II :

IBN(II , npre, n) =
[
tpre, tn

]
s.t. tpre = tstart(II)− npre and tn = tstart(II) + n .

This interval signifies the importance of the initial frames of an II , where an intruder
has just entered the protected area, and it is in this interval where we ideally want the PIDS
to raise an alarm. An alarm raised in IBN must be a TP.

For an II and alarms A(P), the possible outcomes at edge-level are defined as (see
Figure 8):

1. TP: if there is at least one alarm in IBN. For multiple alarms in IBN, only the first one
is considered, and the rest are ignored.

2. FN: if there is no alarm in IBN.
3. FP: if an alarm is outside IN. Each alarm outside of IN is counted as an FP.

In this evaluation scheme, alarms lying outside IBN but inside IN are ignored. This
means that we neither adversely penalize these alarms as an FP nor count them as a TP. In
event-level evaluation, whether i-LIDS or this scheme, we do not define a true negative
(TN). A TN is when a normal (non-intrusion) event is detected as such; in other words, how
well we are classifying a normal event as normal. However, this is not the aim of intrusion
detection; indeed, it is the opposite. Furthermore, the calculation of TN is ambiguous.
We cannot generalize what length of the non-intrusion video should be considered as a
TN. For example, a non-intrusion video clip of 5 min cannot be considered as similar to a
non-intrusion video clip of 5 days.

These rules are for individual IIs, but how we deal with scenarios where the intrusion
neighborhoods are so close that they intersect one another is another matter. If INs of two
or more II intersect one another, then we merge them into a single IN. The new IN consists
of npre frames of the first II and npost frames of the last II , and all of the frames in
between are merged as an II . Algorithm 1 summarizes the protocol to evaluate a video at
edge-level.
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Algorithm 1: Edge-Level Evaluation of a PIDS

1 Initialize variables n, npre and npost.
2 Calculate IN for all IIs of the video.
3 If two or more INs intersect, merge them into a single expanded IN.
4 Calculate intrusion beginning neighbourhood IBN for each II .
5 Obtain alarms A(P) from the PIDS.
6 Calculate TP, FN and FP.
7 Calculate precision, recall and other metrics.

5.4. Metrics

Since a PIDS has a binary classification task to classify a frame or event as an intrusion
(positive) or not (negative), we can naturally apply common metrics. The following metrics
are primarily suitable for a PIDS and have been widely used in the literature.

5.4.1. Precision and Recall

The precision is the percentage of correctly predicted intrusions out of the total pre-
dicted alarms, as defined in the left part of Equation (6). It is particularly useful when
we want to measure how false alarms are affecting the system. A high value of precision
denotes that we have very low false alarms. Clients usually demand a certain minimum
precision from the system.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

. (6)

The recall is the percentage of correctly predicted intrusions out of the total intrusions,
as defined in the right part of Equation (6). It is useful when the cost of the false negative
is high, i.e., when we cannot afford to have an omission of intrusion. Usually, the clients
prefer to have the minimum omissions possible. This means that we need to ideally
maximize recall.

5.4.2. Fβ Score

To take into account both omissions (FN) and false alarms (FP), we need a way to
combine precision and recall. The Fβ score combines them with the β parameter as the bias
to give more or less importance to recall or precision.

Fβ =
(1 + β2)× Precision× Recall
(β2 × Precision) + Recall

. (7)

The most common values used for β are 0.5, 1 and 2. With β = 1, we obtain the F1 score.
The F1 score is the harmonic mean of precision and recall and it is widely used [4,48]. The
choice of the value of β depends on the client needs. For the i-LIDS dataset, they propose
two system roles with different bias values [26]. The roles are called ‘Operational Alert’
and ‘Event Recording’, with β as 0.81 and 0.87, respectively (In [26], they use α instead of
β. For equivalency, α = β2). The former role is designed for real-time intrusion detection
and, therefore, has a lower β value to give more importance to precision, as false alarms are
essential here. The latter role is for non-real-time systems, where videos are recorded and
analyzed on an offline basis. It has a higher β value, as we cannot afford omissions in this
case. Most PID systems [24,25,41] use this Fβ metric for evaluating on the i-LIDS dataset.

5.4.3. Other Metrics

The metrics listed above are threshold-based, i.e., they depend on a single chosen
threshold of the classifier. Therefore, systems tend to choose a threshold to maximize the
final score, e.g., the study in [25] chooses a high detection threshold to eliminate false
alarms, as the metric used is Fβ with β = 0.81, which favors precision. Thus, the results
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from these metrics tend to overfit the dataset, the choice of metric hyperparameters such
as β, etc.

Alternatively, PIDS can be compared over a range of all possible thresholds, avoiding
bias evaluation by the choice of a given threshold. For this, we can either build the receiver
operating characteristic (ROC) curve or the precision–recall (PR) curve [76,77]. The area
under the curve (AUC) of ROC or PR curves gives an overall score between 0 and 1, where
1 is the best possible score. Since intrusions are rare events in videos, it is frequent to have
PID datasets with a very low number of abnormal (intrusion) frames compared to the
normal (non-intrusion) frames. When classes are highly imbalanced, such as in PID, AUC-
PR (AUPR) must be used to compare methods [6,77], rather than AUC-ROC (AUROC),
which gives inconclusive results. Then, when deploying the PIDS in a real site, the value of
the threshold must be defined and the results can be finally reported with precision, recall
and Fβ scores.

6. Comparison of Evaluation Protocols for PIDS

In this section, we will compare the different evaluation protocols to evaluate the
existing PID systems.

6.1. Experimental Setup
6.1.1. Data

We used the i-LIDS sterile zone dataset with the two cameras views as described
in Table 1. We also considered the three intrusion distances (close, middle and far) pro-
vided with the dataset. We resampled the dataset to 5 FPS and manually verified and
adjusted annotations.

6.1.2. Methods

We compared the methods for which the source code is available (see Table 2): [47],
used as is, and [6], completed with output alarm in order to be comparable.

The first method [47] follows the typical PIDS pipeline (see Figure 3), along with some
deep-learning-based components. Given a video, frames are extracted and the user is
asked to draw a perimeter in the frame for protection. Then, the user is asked to choose
a potential intruder from pre-defined classes, such as person, car, etc. The system detects
the intruder object with bounding box using the pre-trained YOLO v2 network [68] and a
detection threshold of 0.25, only for class human. If the detected intruder object is inside
the pre-defined perimeter, then it is considered as an intrusion. Finally, the object is tracked
using simple online and real-time tracking (SORT) algorithm [71]. For testing it in i-LIDS,
we first drew a protection perimeter following the fences for each view. We then chose
person as an intruder class. Then, frames of each video are fed into the system and we
obtained a binary intrusion/non-intrusion class for each frame.

The second method [6] is an unsupervised deep-learning-based approach where a
3D convolutional autoencoder is trained on normal videos (without intrusion). While
testing, intrusion detection is conducted by marking video frames with high reconstruction
error. Since model requires grayscale video frames as input, i-LIDS dataset is converted
in grayscale before utilization. For each video frame, a pre-processing is performed with
histogram equalization. UpSampling architecture is trained on frames of original i-LIDS
dimensions (720 × 576), with same number of layers, but with (32,16) and (16,32) filters
in encoder and decoder, respectively. This neural architecture contains 60,889 trainable
parameters. Using only non-intrusion videos, model was trained on view 1 of i-LIDS
training set and tested on view 1 of i-LIDS test set (same procedure for view 2). Test uses
the same protection perimeter as defined for first method above. Finally, Ref. [6] presents
their results in terms of AUPR (see Section 5.4), which is threshold-independent. In real-life
PIDS, thresholds and other parameters must be fixed in order to decide whether the current
frame of video has intrusion or not. Therefore, we added an online z-score threshold [78],



Sensors 2022, 22, 3601 18 of 28

applied on window-level reconstruction error score and updated after each frame, allowing
us to compare results with [47].

6.1.3. Evaluation Protocols

We used the three evaluation protocols studied in Section 5: frame-level (FL), i-LIDS
and edge-level (EL) evaluations. For edge-level evaluation, we set the tolerance variables
npre and npost to 3, i.e., less than 1 s of tolerance. For variable n, the following values were
chosen: 5, 10 and 50. This signifies that we tested the methods to detect within 1, 2 and
10 s from the beginning of intrusion. The parameters for 1 and 2 s were selected to satisfy
the demands of a real-time PIDS, whereas the parameter for 10 s was chosen in order to be
comparable with i-LIDS evaluation protocol. For each evaluation protocol, we present the
results in terms of precision, recall and F1 score as defined in Section 5.4.

6.2. Results

We will first present the overall results on view 1, then results at different distances on
view 1, and finally conclude with results on view 2. To avoid repetition in this section, we
will refer to the methods of Nayak et al. [47] and Lohani et al. [6], with online z-scores as
Nayak2019 and Lohani2021+zscore, respectively.

6.2.1. Overall Results for View 1

Figure 9 shows the results of two methods on view 1 of the i-LIDS test dataset through
different evaluation protocols (see Appendix B, Table A1 for tabular results). To better
understand these results, we must comprehend how these two methods predict intrusions.

Figure 9. The results on view 1 of i-LIDS test set for two methods: [47] (in blue) and [6] with z-score
(in orange). The abscissa represents three evaluation protocols: frame-level (FL) (on left subfigure),
i-LIDS and edge-level (EL) (on right subfigure). i-LIDS is evaluated by default for 10 s whereas, for
EL, we show results for 1, 2 and 10 s. The ordinate represents values of three metrics: precision, recall
and F1 score.

Figure 10 shows predictions using these methods on a portion of the video taken from
the i-LIDS test dataset. It can be observed that Nayak2019 has a higher number of correct
frame predictions in intrusion intervals compared to Lohani2021+zscore. We can also see
that Nayak2019 has a smaller number of false detections than Lohani2021+zscore. These
two observations have a direct consequence on the frame-level results as shown in the
left subfigure of Figure 9. We see that Nayak2019 has a higher recall and precision than
Lohani2021+zscore.
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(a)

(b)

Figure 10. Example of per-frame predictions of two methods on a portion of video taken from i-LIDS
test dataset. The intrusion intervals are shown in light red strips, the abscissa represents frames
and ordinate shows prediction, where 1 signifies intrusion and 0 otherwise. (a) Nayak et al. [47].
(b) Lohani et al. [6] with z-score.

Since an intrusion alarm is raised as soon as a system changes its state from 0 to 1, it
is important to take these state changes into account. For the i-LIDS evaluation protocol,
if there is at least one alarm in the first 10 s of intrusion, it is counted as a TP. However,
alarms after 10 s are counted as an FP, as already explained in Section 5.2. It can be
observed that Nayak2019 has a high number of intrusion alarms from the beginning to
end of each intrusion interval. These alarms at the end are considered as false detections.
This explains the poor precision score of Nayak2019 in the i-LIDS evaluation protocol as
shown in Figure 9. Since this method rarely misses producing alarms within the first 10 s,
we have a very low number of FNs, and this is depicted with a high recall score in Figure 9.
Lohani2021+zscore has a lower number of alarms, and most of them occur at the beginning
of intrusions as shown in Figure 10. This leads to a smaller FP due to fewer late predictions,
and we have a good precision value as seen in Figure 9. This method also has few omissions
within the first 10 s; therefore, we observe a good recall value in terms of i-LIDS evaluation.

In the edge-level evaluation protocol, if an alarm is not raised within the first n frames
or seconds of an intrusion, then it is considered as an omission or false negative. Since it
is a difficult task to raise the alarm in 1st second of an intrusion, EL (1 s) has a low recall
for both methods (Figure 9). As we evaluate for 2 and 10 s, both methods have more time
to raise an alarm and we observe an increase in recall. Nayak2019 has a lower recall than
Lohani2021+zscore in EL (1 s) and EL (2 s) because the former sometimes raises an alarm
too late as shown in the rightmost intrusion interval of Figure 10. Regarding precision, here,
the excessive late alarms of Nayak2019 are not penalized as FPs. Therefore, in contrast
to i-LIDS evaluation, we observe a better precision value for Nayak2019 in edge-level
evaluation. Lohani2021+zscore raises fewer false alarms than Nayak2019 and, thus, has a
better precision in edge-level evaluation.

Overall, we observe that Nayak2019 fluctuates frequently between non-intrusion and
intrusion prediction, thus producing a high number of alarms. This is because it is focused
on human detection and it often loses track of the human from one frame to another, and
then re-detects it. Furthermore, it has very few predictions outside intrusions. That is why
we have a good precision and recall value at frame-level. However, as we go to i-LIDS
and edge-level, we observe that we have a low precision value. This is because, from this
high number of alarms, only few are relevant, i.e., the ones at the beginning of intrusions.
Other alarms are either treated as false alarms or discarded depending on the protocol.
The aim of intrusion detection is to detect the intrusion as soon as possible and not just
to classify each frame; therefore, it is important to use the right protocol that emphasizes
it. For Lohani2021+zscore, we observed that it has a lower number of alarms. It focuses
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more on the beginning of intrusion events and, due to the z-score, it quickly adapts itself,
thus producing intrusion predictions for only a few frames. This is why we have a poorer
frame-level score. However, in both i-LIDS and at edge-level, we have a good score because
this method raises the alarm as soon as the intrusion occurs, and this is what we expect
from a PIDS.

To understand where these methods struggle, we now present results based on the
intruder distance from cameras.

6.2.2. Results for Intrusions at Different Distances from Camera for View 1

Figures 11–13 present results of the two methods at close, middle and far distances
from the camera using different evaluation protocols on the i-LIDS test dataset for view 1.
We observe that, regardless of protocols or methods, we have the best performances when
the intruder is close to the camera and the worst performances when the intruder is far.

Figure 11. The results of two methods: Nayak et al. [47] (in blue) and Lohani et al. [6] with z-score (in
orange), tested on view 1 of i-LIDS test set with intruder at close distance from camera. The abscissa
represents three evaluation protocols: frame-level (FL) (on left subfigure), i-LIDS and edge-level (EL)
(on right subfigure). i-LIDS is evaluated by default for 10 s whereas, for EL, we show results for 1, 2
and 10 s. The ordinate represents values of three metrics: precision, recall and F1 score.

We also observe in these three figures that the frame-level evaluation follows the same
trend as the overall results and does not add significant information to draw conclusions.
Therefore, we focus on i-LIDS and edge-level results for interpretation.

Edge-level results of Nayak2019 at three distances show that the recall increases
rapidly as we move from 1 s towards 10 s. Visual inspecting revealed that these events
consisted of intrusions where the intruder was not standing straight, i.e., the intruder was
crawling, body dragging, log rolling, etc. Given 1 or 2 s, Nayak2019 was not able to detect
these intrusions. Nayak2019 uses YOLO trained on VOC2012 [79], a dataset containing
only standing humans. Since it can only detect what it has learned on the dataset, YOLO
fails to detect intrusions performed by non-standing humans. However, eventually, these
intruders stood up and, if it happened within the first 10 s, then they were detected. We
can see that these recall scores decrease with an increased distance from the camera, the
reason being a smaller intruder object size, along with activities such as crawling. The
precision scores remain almost similar with time. This is because the false positives remain
detected regardless of time. The FPs were caused by a vertical sign board being detected as
an intruder. Since these false positives were predicted more when the distance is farther
away from camera, the precision decreases with an increase in the intruder distance. The
i-LIDS-level evaluation does not reveal this information explicitly.
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Figure 12. The results of two methods: Nayak et al. [47] (in blue) and Lohani et al. [6] with z-score (in
orange), tested on view 1 of i-LIDS test set with intruder at mid distance from camera. The abscissa
represents three evaluation protocols: frame-level (FL) (on left subfigure), i-LIDS and edge-level (EL)
(on right subfigure). i-LIDS is evaluated by default for 10 s whereas, for EL, we show results for 1, 2
and 10 s. The ordinate represents values of three metrics: precision, recall and F1 score.

Figure 13. The results of two methods: Nayak et al. [47] (in blue) and Lohani et al. [6] with z-score
(in orange), tested on view 1 of i-LIDS test set with intruder at far distance from camera. The abscissa
represents three evaluation protocols: frame-level (FL) (on left subfigure), i-LIDS and edge-level (EL)
(on right subfigure). i-LIDS is evaluated by default for 10 s whereas, for EL, we show results for 1, 2
and 10 s. The ordinate represents values of three metrics: precision, recall and F1 score.

The edge-level results of Lohani2021+zscore at three distances also show that the recall
increases rapidly as we move from 1 s towards 10 s. By visual inspecting, we found that
these events consisted of intrusions where either the background of the video frame was
similar to the intruder (camouflage), and/or the intruder was not standing straight, and/or
there was a light flickering. Given more time (1 to 10 s), most of these intrusions at close
and middle distances were detected, but the method was still not able to detect intrusions
at a far distance due to the smaller object size. The three figures depict this phenomenon.
Here, too, the precision scores remain almost constant with time. The FPs here were caused
by different reasons, such as a flying bird, sudden light change and light flickering during
night. These false positives were predicted more when the distance is farther away from
camera; therefore, the precision decreases with an increase in the intruder distance. Again,
the i-LIDS-level evaluation fails to reveal this information explicitly.
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6.3. Overall Results for View 2

The results of view 2 are shown in Figure 14 (see Appendix B, Table A2 for tabular
results). We can observe that Lohani2021+zscore has a similar trend of results like in view 1
in all evaluation protocols, but with a slight decrease in metric values. This slight decrease
in values is due to an increase in FPs and FNs, which is linked to more videos of light
fluctuation and intrusion at a far distance in monochrome videos of view 2. For Nayak2019,
we obtain similar results to view 1 in frame-level and i-LIDS-level evaluation. In edge-level
evaluation, we observe a perfect precision score of 1. This is because this method did not
predict any false detection outside the intrusion interval in view 2. This perfect precision
score augments the overall score of Nayak2019 in edge-level evaluation. This important
detail of no false detection was not captured by the i-LIDS-level protocol and we observe a
poor value of precision. We found similar observations to view 1 for the results of these
two methods on view 2 with the intruder at different distances from the camera and, for
sake of space, we provide these results in the Appendix A.

Figure 14. The results on view 2 of i-LIDS test set for two methods: Nayak et al. [47] (in blue) and
Lohani et al. [6] with z-score (in orange). The abscissa represents three evaluation protocols: frame-
level (FL) (on left subfigure), i-LIDS and edge-level (EL) (on right subfigure). i-LIDS is evaluated by
default for 10 s whereas, for EL, we show results for 1, 2 and 10 s. The ordinate represents values of
three metrics: precision, recall and F1 score.

7. Discussion

It is clear that detecting intrusions should be evaluated at a higher level than frame-
level. That is why almost all methods in the state of the art use i-LIDS evaluation [24,25,41].
However, the major problem with this evaluation is that it penalizes all alarms after 10 s,
even if they are well within the intrusion interval. It is indeed too strict in counting FPs,
and this hits the overall score negatively, regardless of the fact that the system has detected
intrusion well within 10 s. To address the issue, we have proposed the edge-level evaluation.
Here, we can parameterize the time after intrusion beginning for the evaluation. This helps
in testing the system for different practical time settings and testing its robustness. More
importantly, the alarms after a specified time are not counted as an FP if they are within the
intrusion space. Thanks to this, we can evaluate a PIDS to check whether it has detected
intrusions in the first few seconds without penalizing it for extra alarms.

These evaluation protocols further helped in understanding the two PIDSs. The
method of Nayak et al. [47] had better frame-level scores than the method based on Lohani
et al. [6], but this does not necessarily indicate that the former is a better PIDS. As we saw
in edge-level scores, the latter method was better at detecting intrusion events and sending
alarms quickly. In fact, EL(1 s) and EL(2 s) show that the latter method detected intrusions
within 1 and 2 s, with a better performance than the former method. When we compare
edge-level evaluation at 10 s with i-LIDS evaluation, we see that the former method has a
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very poor performance, while it performs similar to latter method at edge-level. This shows
that i-LIDS evaluation is not able to capture this gain in performance. This ambiguity in
scores shows that it is important to choose the right metric when evaluating a PIDS. The
task here focuses on intrusion event and alarms; therefore, we must evaluate systems with
a metric suitable for it. The edge-level evaluation should be used for this purpose with 1 or
2 s as time constraints in order to evaluate a PIDS in real-life conditions.

Although we have extensive real-life elements in the i-LIDS dataset, it has some major
drawbacks. Firstly, it contains only humans as intruders, and not other objects, such as cars,
bikes, trucks, etc. This is crucial because intrusions can also be caused by some other objects
that the user has not thought of, as explained in Section 4.1.2, because Cna is non-finite.
Using a YOLO detector with supervised training on the VOC2012 dataset [79], the PIDS of
Nayak et al. [47] explicitly defines Cna as the single class human. Consequently, it gives very
few false positives on the i-LIDS dataset, but there is a risk of omissions when this PIDS
will protect sites with unexpected intruders, because it has a bias on the target class. On
the contrary, the unsupervised PIDS of Lohani et al. [6] implicitly defines Ca as all objects
contained in the training set without intrusions. This approach seems to be more coherent
with the definition of the PID task. The second crucial limitation is that we have only
two views with very similar settings. This makes it easy for the algorithms (particularly
supervised-learning-based) to learn the scene. A multi-view dataset would have added
an additional difficulty in the PID task, allowing us to assess cross-view transfer learning.
Therefore, we have a strong requirement of a new challenging dataset in this community,
with multiple classes for intruders and several views.

In video surveillance, PID can be performed at different levels depending on the client
requirements: on the edge device, on a server situated at the surveyed site or on the cloud. A
PID running on the edge requires a computing device powered by a CPU or a GPU [47,59].
Most clients prefer the classical server-based analysis [4,6,22,24,25,41,48]. While these two
solutions keep videos locally, the cloud analysis is not a widespread solution for the PID
task because it requires a stable and secure network connection to stream videos in real-
time, and it is not easy to ensure data privacy [2]. In our experiments, the methods have
been tested on a single-camera dataset at the server. They can be deployed on the edge
given appropriate devices, and they can also be scaled with more cameras given necessary
computing resources and multi-camera datasets.

8. Conclusions

In this paper, we explored the task of perimeter intrusion detection in video surveil-
lance. We first explained the typical PIDS pipeline and provided a review of major PIDS
methods. We found that there are very few PIDSs that perform a full intrusion detection.
We then provided a clear mathematical definition of an intrusion in an outdoor perimeter.
In relation to the definition of intrusion, we revisited various existing evaluation protocols.
We found that no existing evaluation protocol is suitable for the task and, therefore, we pro-
posed a novel edge-level evaluation protocol. This protocol takes into account the real-life
PIDS constraints, such as detecting intrusion in the first few seconds of its occurrence.

We also reviewed the existing PIDS datasets. We found that only the i-LIDS dataset is
currently available for this task. This dataset was found to be challenging as it has different
weather conditions, animals and intruder-approaching scenarios. It does have some major
drawbacks, such as only person as the intrusion and just two camera views. Indeed, this
community requires new datasets to develop and test intrusion detection systems.

Finally, we used two recent PIDSs to assess proposed definitions and evaluation
protocols. We found that the frame-level evaluation does not give many details about
the intrusion detection. The frames were poorly classified by both methods, giving us
no finer details on which intrusion events were correctly detected. The i-LIDS evaluation
protocol focused on evaluating intrusions at an event-level and thus helped in the better
understanding of detections. However, it had a major drawback of penalizing system
alarms as false detections, which made it difficult to compare the PIDSs. Finally, the edge-
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level evaluation overcame this drawback. It focused on evaluating the start of the intrusion
event, which is completely coherent with the proposed intrusion definition and real-life
constraints. As a result, the edge-level evaluation helped in the better understanding and
comparison of the two PIDSs.

In the future work, we would like to further strengthen the unsupervised learning
work for the PIDS. We hope that this work will result in motivating the community to
propose methods with open-source codes and open-access challenging intrusion datasets
in order to move reproducible research forward.
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Appendix A. Results for Intrusions at Different Distances from Camera for View 2

Figures A1–A3 present the results of the two methods at close, middle and far distances
from the camera on the i-LIDS test dataset for view 2. These results are auto-explanatory as
they follow a similar trend to the view 1 results (See Section 6.2.2).

Figure A1. The results of two methods: [47] (in blue) and [6] with z-score (in orange), tested on view 2
of i-LIDS test set with intruder at close distance from camera. The abscissa represents three evaluation
protocols: frame-level (FL) (on left subfigure), i-LIDS and edge-level (EL) (on right subfigure). i-LIDS
is evaluated by default for 10 s whereas, for EL, we show results for 1, 2 and 10 s. The ordinate
represents values of three metrics: precision, recall and F1 score.
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Figure A2. The results of two methods: [47] (in blue) and [6] with z-score (in orange), tested on view 2
of i-LIDS test set with intruder at mid distance from camera. The abscissa represents three evaluation
protocols: frame-level (FL) (on left subfigure), i-LIDS and edge-level (EL) (on right subfigure). i-LIDS
is evaluated by default for 10 s whereas, for EL, we show results for 1, 2 and 10 s. The ordinate
represents values of three metrics: precision, recall and F1 score.

Figure A3. The results of two methods: [47] (in blue) and [6] with z-score (in orange), tested on view
2 of i-LIDS test set with intruder at far distance from camera. The abscissa represents three evaluation
protocols: frame-level (FL) (on left subfigure), i-LIDS and edge-level (EL) (on right subfigure). i-LIDS
is evaluated by default for 10 s whereas, for EL, we show results for 1, 2 and 10 s. The ordinate
represents values of three metrics: precision, recall and F1 score.

Appendix B. Results in Tabular Form

Tables A1 and A2 show the results of the two methods on view 1 and view 2 of
the i-LIDS test dataset through different evaluation protocols. These results are a tabular
representation of Figure 9 and Figure 14, respectively. The columns FL, i-LIDS, EL (1 s) and
so on represent different evaluation protocols, whereas P, R and F1 denote precision, recall
and F1 scores.

Table A1. Results as percentage on view 1 of i-LIDS test set.

FL i-LIDS EL (1 s) EL (2 s) EL (10 s)

Method P R F1 P R F1 P R F1 P R F1 P R F1

Nayak2019 99 46 63 26 92 41 62 52 57 70 74 72 74 93 83

Lohani2021+zscore 64 27 38 80 82 81 90 73 80 92 88 90 92 91 92
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Table A2. Results as percentage on view 2 of i-LIDS test set.

FL i-LIDS EL (1 s) EL (2 s) EL (10 s)

Method P R F1 P R F1 P R F1 P R F1 P R F1

Nayak2019 99 49 66 28 94 43 99 47 64 99 69 82 99 94 96

Lohani2021+zscore 59 26 37 68 85 76 83 58 69 87 76 81 89 90 89
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