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Abstract: Based on Mindlin’s first-order plate theory, the high-frequency vibrations of piezoelectric
bulk acoustic wave array sensors under lateral-field-excitation based on crystals with 3 m point
group are analyzed, and the spectral-frequency relationships are solved, based on which, the optimal
length–thickness ratio of the piezoelectric crystal plate is determined. Then, the dynamic capacitance
diagram is obtained by a forced vibration analysis of the piezoelectric crystal plate. The resonant
mode conforming to good energy trapping is further obtained. The frequency interferences between
different resonator units are calculated, and the influences of the spacing between two resonant units
on the frequency interference with different electrode widths and spacings are analyzed. Finally,
the safe spacings between resonator units are obtained. As the electrode spacing value of the left
unit increases, the safe spacing d0 between the two resonator units decreases, and the frequency
interference curve tends to zero faster. When the electrode spacings of two resonator units are equal,
the safe distance is largest, and the frequency interference curve tends to zero slowest. The theoretical
results are verified further by finite element method. The analysis model of high frequency vibrations
of strongly coupled piezoelectric bulk acoustic array device based on LiTaO3 crystals with 3 m point
group proposed in this paper can provide reliable theoretical guidance for size optimization designs
of strongly coupled piezoelectric array sensors under lateral-field-excitation.

Keywords: bulk acoustic wave sensor; array devices; 3 m point group crystals; lateral-field-excitation;
energy trapping

1. Introduction

The traditional electric field excitation mode for piezoelectric bulk acoustic wave
devices is thickness-field-excitation (TEF) [1–6], for which the electrodes are arranged on
the upper and lower surfaces of the crystal plate, and the direction of the electric field is
along the thickness direction of the crystal plate. Later, it was found that bulk acoustic
devices can also operate in lateral-field-excitation (LFE) mode. Initially, the electrodes of
LFE devices were arranged on either side surface of the crystal plate [7]. However, because
the crystal plate is too thin, it is difficult to place electrodes on the side surface. In recent
years, an effective method emerges, namely, the electrodes of LFE devices were placed on
the same surface (top or bottom surface) of the crystal plate [8–12], and the direction of the
electric field is perpendicular to the thickness direction of the crystal plate. LFE devices
have the following advantages: because of the electrode arrangement, it is easier to package
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the device; the unnecessary vibration modes can be eliminated by changing the orientation
of the electrodes; there is only weak vibration in the middle unelectroded region, which
reduces the aging rate of the device [9–11].

For piezoelectric bulk acoustic wave sensors with a single resonator unit, the measure-
ment accuracy is influenced by the ambient temperature and humidity [13]. In addition, in
biological detection and mixed gas composition analysis, the bulk acoustic wave sensor
with a single resonant unit cannot measure multiple components simultaneously [14]. In
recent years, piezoelectric crystal microbalance array emerged. For this type of device, there
are several resonator units made on a single crystal plate [15–17], among which, a reference
unit can be set to eliminate the influence of environmental factors. Different selective
adsorption films can be made on different units to achieve simultaneous measurement of
multiple components [16,17].

Piezoelectric bulk acoustic wave array devices excited by lateral electric fields have a
good application prospect in multi-component sensing. At present, quartz crystal is usually
the crystal plate material used in LFE piezoelectric bulk acoustic wave array device, but
the quartz crystal has low piezoelectric coupling coefficients, and is difficult to meet the
requirements of measurement with high precision, high sensitivity, and large damping [18].
Cubic 3 m point group piezoelectric crystals (LiTaO3, LiNbO3, etc.) have high piezoelectric
coupling coefficients [19,20], thus LFE bulk acoustic wave devices based on such crystal
materials have obvious advantages. However, due to its high piezoelectric coupling
coefficient, the electric field and displacement distributions of strongly coupled LFE array
devices are more complex than that base on quartz crystals, and the energy trapping
characteristics of the device are still not clear. In addition, the frequency interferences
between adjacent units are obvious, the effect of the structure parameters on which need to
be clarified.

In this paper, the high-frequency vibration analysis model of strongly coupled piezo-
electric bulk acoustic devices based on 3 m point group crystals excited by lateral electric
fields is established, the coupling relationships between vibration modes are clarified, and
the influence of structural parameters on the frequency interference between resonator units
are revealed, which provides reliable guidance for the size design of strongly coupled LFE
array devices based crystals with 3 m point group. The mathematical model in this work
is based on Mindlin’s first-order plate theory, which is an approximate two-dimensional
theory. The calculation error of the frequency shift is negligible [7]. Compared with the
finite element method, the method based on Mindlin’s first-order plate theory could clarify
the mechanisms of frequency interferences between different resonator units conveniently,
and the calculation time is shortened obviously.

2. Frequency Spectrum Calculation

Figure 1 shows the structure diagram of LiTaO3 LFE bulk acoustic wave array devices.
Two pairs of electrodes are placed in the top surface of the crystal plate, forming two
resonator units RU-A and RU-B. b1 and b2 are the electrode widths of RU-A and RU-B,
respectively. d1 and d2 are the electrode spacings of RU-A and RU-B, respectively. d0 is the
spacing between the two resonator units; 2 L and 2 h are the length and thickness of the
crystal plate. ρe and 2he are the density and thickness of the electrodes, respectively.

For 3 m point group piezoelectric single crystal, the motion control equation of unelec-
troded region is:

k1C65u(0)
3,11 + k2

1C66u(0)
2,11 + k2

1C66u(1)
1,1 + k1e16φ

(0)
,11 = ρ

..
u(0)

2 ,

C55u(0)
3,11 + k1C56u(0)

2,11 + k1C56u(1)
1,1 + e15φ

(0)
,11 = ρ

..
u(0)

3 ,

γ11u(1)
1,11 − 3h−2

[
k1C65u(0)

3,1 + k2
1C66u(0)

2,1 + k2
1C66u(1)

1 + k1e16φ
(0)
,1

]
= ρ

..
u(1)

1 ,

e15u(0)
3,11 + k1e16

(
u(0)

2,11 + u(1)
1,1

)
− ε11φ

(0)
,11 = 0,

(1)
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Figure 1. Structure diagram of LiTaO3 LFE bulk acoustic wave array devices. 
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Figure 1. Structure diagram of LiTaO3 LFE bulk acoustic wave array devices.

Where cpq(= cE
pq), eip and εij

(
= εS

ij

)
are elastic stiffness, piezoelectric constant, and

dielectric constant, respectively.
The motion control equation of electroded region is:

k1C65u(0)
3,11 + k

2
1C66u(0)

2,11 + k
2
1C66u(1)

1,1 = (1 + R)ρ
..
u(0)

2 ,

C55u(0)
3,11 + k1C56u(0)

2,11 + k1C56u(1)
1,1 = (1 + R)ρ

..
u(0)

3 ,

γ11u(1)
1,11 − 3h−2

[
k1C65u(0)

3,1 + k
2
1C66u(0)

2,1 + k
2
1C66u(1)

1

]
= (1 + 3R)ρ

..
u(1)

1 .

(2)

According to the standing wave hypothesis of the finite plate, the forms of displace-
ment and potential are assumed to be:

u(0)
2 = A1 sin(ξx1)eiωt,

u(0)
3 = A2 sin(ξx1)eiωt,

u(1)
1 = A3 cos(ξx1)eiωt,

φ(0) = A4 sin(ξx1)eiωt.

(3)

By substituting (3) into the governing Equation (1), a set of four-order linear equations
for amplitudes A1−A4 is obtained. Since the amplitudes has non-zero solutions, the
determinant of its coefficient matrix is zero, and a four-order polynomial about the wave
number can be obtained. Finally, four corresponding solutions are obtained by solving this
polynomial, including three non-zero solutions and one zero solution.

When
(

ξ(m)
)2

= 0, φ
(0)
,1 = −Eeiωt is assumed to be the form of electric field excitation,

and E is the voltage of excitation. φ(0) is a linear function about coordinate x1, namely
φ(0) = φ(0)(x1). After substituting that into Equation (3), displacements and electric
potential can be obtained in the form:

u(0)
2 = 0,

u(0)
3 = 0,

u(1)
1 = A3eiωt,

φ(0) = φ(0)(x1).

(4)

Substituting (4) into (1), we obtain:

− 3h−2
[
k2

1C66u(1)
1 + k1e16φ

(0)
,1

]
= ρ

..
u(1)

1 , (5)
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where u(1)
1 = −B1Eeiωt. By solving Equation (5), we obtain:

B1 =
−k1e16

k2
1C66 − π2

12 C66Ω2
. (6)

Based on the above equation, the forms of displacement and potential solution are set
as follows:


u(0)

2

u(0)
3

u(1)
1

φ(0)

 =
3

∑
m=1
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β
(m)
1 sin

(
ξ(m)x1

)
β
(m)
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(
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)
β
(m)
3 cos

(
ξ(m)x1

)
β
(m)
4 sin

(
ξ(m)x1

)
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+ c(4)
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0
0
B1
x1

, (7)

where β
(m)
i is the amplitude ratio, namely Ari

A4i
(r = 1 − 4, i = 1 − 4), which can be deter-

mined by C66Ω2 − k2
1C66Zi

2 −k1C65Zi
2 − 2h

π k2
1C66Zi

−k1C56Zi
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− 6
πh k2

1C66Zi
2 − 6
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2 C66Ω2 − γ11Zi

2 − 12
π2 k2
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 k1e16Zi
2
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2

− 6
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. (8)

Boundary conditions are as follows:

T(0)
6 = 0, T(0)

5 = 0, T(1)
1 = 0, D(0)

1 = 0, x1 = ±L. (9)

Substituting Equation (7) into Equation (9), we obtain∣∣∣∣∣∣∣∣∣∣∣∣

H1 cos
(

πZ1
2

c
h

)
H2 cos

(
πZ2

2
c
h

)
H3 cos

(
πZ3

2
c
h

)
H4

I1 sin
(

πZ1
2

c
h

)
I2 sin

(
πZ2

2
c
h

)
I3 sin

(
πZ3

2
c
h

)
0

β
(1)
3 sin

(
πZ1

2
c
h

)
β
(2)
3 sin

(
πZ2

2
c
h
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β
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3 sin
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πZ3

2
c
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(
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2
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= 0, (10)

where

Hi = 2h
[

k1C65β
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2
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+ k2
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(
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1
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+ β
(i)
3

)
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4
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,

H4 = 2h
(

k2
1C66B1 + k1e16

)
,

Ii = 2h
[

C55β
(i)
2

πZi
2h

+ k1C56

(
β
(i)
1

πZi
2h

+ β
(i)
3

)
+ e16

πZi
2h

β
(i)
4

]
,

I4 = 2h(k1C56B1 + e15),

Ji =
2h3

3

[
−γ11β

(i)
3

πZi
2h

]
,

Wi = 2h
[

e15β
(i)
2

πZi
2h

+ k1e16

(
β
(i)
1

πZi
2h

+ β
(i)
3

)
− ε11

πZi
2h

β
(i)
4

]
W4 = 2h(k1e16B1 − ξ11).

(11)

By solving Equation (10), the spectrum diagram of the LiTaO3 crystal plate excited by
lateral electric fields can be obtained, as shown in Figure 2.

In Figure 2, the horizontal line is the main vibration mode, namely the thickness- shear
mode. The slanted curved lines in the upper part represent the bend modes, and the slanted
straight lines represent the face-shear modes. In the figure, two types of curves will form
an intersection point, which is with the strongest coupling between different modes. The
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middle point between two intersections is with the weakest coupling, such as the mode
showed by the red point.
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3. Electrically Forced Vibration

As shown in Figure 3, the device is divided into 9 regions, 1 and 3 are the unelectroded
regions of Ru-A, 2 and 4 are the electroded regions of Ru-A, 5 are the unelectroded region
between the two units, 6 and 8 are the electroded regions of Ru-B, and 7 and 9 are the
unelectroded regions of Ru-B. m0 and m9 are boundary points of the device. m1 ∼ m8 is
the junction point of unelectroded and electroded regions of two resonator units.
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Figure 3. The partition diagram of LiTaO3 array devices with lateral-field-excitation.

The forms of the displacements and potential of the unelectroded regions are assumed
to be

u(0)
2 = A1eiξx1 eiωt,

u(0)
3 = A2eiξx1 eiωt,

u(1)
1 = A3eiξx1 eiωt,

φ(0) = A4eiξx1 eiωt.

(12)

By substituting Equation (12) into the governing Equation (1), a set of fourth-order
linear equations about amplitudes A1–A4 are obtained. Since the amplitude has non-
zero solutions, the determinant of coefficient matrix of equations is zero, and a fourth-
order polynomial about wave number can be obtained. Finally, eight frequency solutions
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corresponding to wave number are obtained by solving this polynomial, including six
non-zero solutions and two zero solutions:

u(0)
2

u(0)
3

u(1)
1

φ(0)

 =
6

∑
m=1

c̃(m)


β̃
(m)
1 eiξ(m)x1

β̃
(m)
2 eiξ(m)x1

β̃
(m)
3 eiξ(m)x1

β̃
(m)
4 eiξ(m)x1

+ c̃(7)


0
0
B̃1
x1

+ c̃(8)


0
0
0
1

 (13)

For unelectroded regions 3 and 7,

B1 =
−k1e16

k2
1C66 − π2

12 C66Ω2
. (14)

For unelectroded regions 1, 5, and 9, B2 = −B1. c(1) − c(8) are undetermined constants,
β̃
(m)
i is the amplitude ratio, namely Ari

A4i
(r = 1 − 4, i = 1 − 8), which can be determined by C66Ω2 − k2

1C66Z2
j −k1C65Z2

j i 2h
π k2

1C66Zj

−k1C56Z2
j C66Ω2 − C55Z2

j i 2h
π k1C56Zj

−i 6
πh k2

1C66Zj −i 6
πh k1C65Zj C66Ω2 − γ11Z2

j −
12
π2 k2

1C66


 β̃

(m)
1

β̃
(m)
2

β̃
(m)
3

 =

 k1e16Z2
j

e15Z2
j

i 6
πh k1e16Zj

 (15)

The forms of the displacements and potential of the electroded regions are assumed
to be

u(0)
2 = A1eiξx1 eiωt,

u(0)
3 = A2eiξx1 eiωt,

u(1)
1 = A3eiξx1 eiωt.

(16)

Substituting (16) into (2), a set of third-order linear equations with respect to A1 − A3
are obtained. When the determinant of the coefficient matrix of the equations is zero,
non-zero solutions exist. Base on that we can obtain a third order polynomial with wave
number. By solving the third-order polynomial, six wavenumber solutions are obtained,
namely three pairs of non-zero conjugate solutions.

u(0)
2

u(0)
3

u(1)
1

 =
6

∑
m=1

C(m)


β
(m)
1 eiξ(m)x1

β
(m)
2 eiξ(m)x1

β
(m)
3 eiξ(m)x1

, (17)

where C(m)
(m = 1 − 6) are undetermined constants, β

(m)
i is the amplitude ratio, which can

be determined by[
(1 + R)C66Ω2 − k

2
1C66Z2

j −k1C65Z2
j

−k1C56Z2
j (1 + R)C66Ω2 − C55Z2

j

][
β
(m)
1

β
(m)
2

]
=

[
−i 2h

π k
2
1C66Z2

j
−i 2h

π k1C56Z2
j

]
.

(18)
For m0 and m9, boundary conditions are

T(0)
5 (x1 = m0) = 0,

T(0)
6 (x1 = m0) = 0,

T(1)
1 (x1 = m0) = 0,

D(0)
1 (x1 = m0) = 0.

(19)



Sensors 2022, 22, 3596 7 of 14

T(0)
5 (x1 = m9) = 0,

T(0)
6 (x1 = m9) = 0,

T(1)
1 (x1 = m9) = 0,

D(0)
1 (x1 = m9) = 0.

(20)

For m1~m8, continuous conditions are

u(0)
2
(

x1 = m−
1
)
= u(0)

2
(

x1 = m+
1
)

u(0)
3
(

x1 = m−
1
)
= u(0)

3
(

x1 = m+
1
)

u(1)
1
(

x1 = m−
1
)
= u(1)

1
(

x1 = m+
1
)

T(0)
5
(

x1 = m−
1
)
= T(0)

5
(
x1 = m+

1
)

T(0)
6
(
x1 = m−

1
)
= T(0)

6
(
x1 = m+

1
)

T(1)
1
(
x1 = m−

1
)
= T(1)

1
(
x1 = m+

1
)

φ(0)(x1 = m−
1
)
= −Veiωt

(21)

u(0)
2
(
x1 = m−

2
)
= u(0)

2
(
x1 = m+

2
)

u(0)
3
(
x1 = m−

2
)
= u(0)

3
(
x1 = m+

2
)

u(1)
1
(
x1 = m−

2
)
= u(1)

1
(
x1 = m+

2
)

T(0)
5
(
x1 = m−

2
)
= T(0)

5
(
x1 = m+

2
)

T(0)
6
(
x1 = m−

2
)
= T(0)

6
(
x1 = m+

2
)

T(1)
1
(
x1 = m−

2
)
= T(1)

1
(
x1 = m+

2
)

φ(0)(x1 = m−
2
)
= −Veiωt

(22)

u(0)
2
(
x1 = m−

3
)
= u(0)

2
(
x1 = m+

3
)

u(0)
3
(
x1 = m−

3
)
= u(0)

3
(
x1 = m+

3
)

u(1)
1
(
x1 = m−

3
)
= u(1)

1
(
x1 = m+

3
)

T(0)
5
(
x1 = m−

3
)
= T(0)

5
(

x1 = m+
3
)

T(0)
6
(
x1 = m−

3
)
= T(0)

6
(

x1 = m+
3
)

T(1)
1
(
x1 = m−

3
)
= T(1)

1
(

x1 = m+
3
)

φ(0)(x1 = m−
3
)
= Veiωt

(23)

u(0)
2
(
x1 = m−

4
)
= u(0)

2
(
x1 = m+

1
)

u(0)
3
(
x1 = m−

4
)
= u(0)

3
(
x1 = m+

1
)

u(1)
1
(
x1 = m−

4
)
= u(1)

1
(
x1 = m+

1
)

T(0)
5
(
x1 = m−

4
)
= T(0)

5
(

x1 = m+
1
)

T(0)
6
(
x1 = m−

4
)
= T(0)

6
(

x1 = m+
1
)

T(1)
1
(
x1 = m−

4
)
= T(1)

1
(

x1 = m+
1
)

φ(0)(x1 = m−
4
)
= Veiωt

(24)

u(0)
2
(
x1 = m−

5
)
= u(0)

2
(
x1 = m+

5
)

u(0)
3
(
x1 = m−

5
)
= u(0)

3
(
x1 = m+

5
)

u(1)
1
(
x1 = m−

5
)
= u(1)

1
(
x1 = m+

5
)

T(0)
5
(
x1 = m−

5
)
= T(0)

5
(

x1 = m+
5
)

T(0)
6
(
x1 = m−

5
)
= T(0)

6
(

x1 = m+
5
)

T(1)
1
(
x1 = m−

5
)
= T(1)

1
(

x1 = m+
5
)

φ(0)(x1 = m−
5
)
= −Veiωt

(25)



Sensors 2022, 22, 3596 8 of 14

u(0)
2
(

x1 = m−
6
)
= u(0)

2
(

x1 = m+
6
)

u(0)
3
(

x1 = m−
6
)
= u(0)

3
(

x1 = m+
6
)

u(1)
1
(

x1 = m−
6
)
= u(1)

1
(

x1 = m+
6
)

T(0)
5
(

x1 = m−
6
)
= T(0)

5
(
x1 = m+

6
)

T(0)
6
(
x1 = m−

6
)
= T(0)

6
(
x1 = m+

6
)

T(1)
1
(
x1 = m−

6
)
= T(1)

1
(
x1 = m+

6
)

φ(0)(x1 = m−
6
)
= −Veiωt

(26)

u(0)
2
(
x1 = m−

7
)
= u(0)

2
(
x1 = m+

7
)

u(0)
3
(
x1 = m−

7
)
= u(0)

3
(
x1 = m+

7
)

u(1)
1
(
x1 = m−

7
)
= u(1)

1
(
x1 = m+

7
)

T(0)
5
(
x1 = m−

7
)
= T(0)

5
(
x1 = m+

7
)

T(0)
6
(
x1 = m−

7
)
= T(0)

6
(
x1 = m+

7
)

T(1)
1
(
x1 = m−

7
)
= T(1)

1
(
x1 = m+

7
)

φ(0)(x1 = m−
7
)
= Veiωt

(27)

u(0)
2
(
x1 = m−

8
)
= u(0)

2
(
x1 = m+

8
)

u(0)
3
(
x1 = m−

8
)
= u(0)

3
(
x1 = m+

8
)

u(1)
1
(
x1 = m−

8
)
= u(1)

1
(
x1 = m+

8
)

T(0)
5
(
x1 = m−

8
)
= T(0)

5
(

x1 = m+
8
)

T(0)
6
(
x1 = m−

8
)
= T(0)

6
(

x1 = m+
8
)

T(1)
1
(
x1 = m−

8
)
= T(1)

1
(

x1 = m+
8
)

φ(0)(x1 = m−
8
)
= Veiωt

(28)

Substitution of (13), (17) to (19)–(28) results in 64 non-homogeneous linear equations,
then 64 undetermined constants can be solved. The charge Qe on the electrode and the
motion capacitance C could be obtained as

Qe = −D(0)
3 (x3 = j) · 2w,

C = Qe
2V ,

C0 = 4ε33hw/(2L),
(29)

where C0 is the static capacitance. The curve of C/C0 with respect to the frequency could
be used to determine the resonance modes.

4. Results and Discussion
4.1. Resonance Modes

According to the theoretical model established above, the forced vibration analysis of
the device is carried out through an example. Structural parameters of the array device are
shown in Table 1 below.

Table 1. Parameter setting.

Parameter Value Description

ω 10 MHz Fundamental frequency
2 h 0.01755 mm Thickness of the crystal plate
L 239.6 h Length of the crystal plate

2 w 119.8 h Width of the crystal plate
R 0.05 Mass ratio (Electrode/crystal)
b 30 h Width of the electrode
d 5 h Space of the two electrodes
d0 15 h Space of the two resonator units



Sensors 2022, 22, 3596 9 of 14

Substituting of (13), (17) to (29) results the according non-homogeneous linear equa-
tions, based on which the capacitance ratio vs. frequency of the device are obtained, which
is shown in Figure 4. In Figure 4, the abscissa and ordinate are the normalized resonance
frequency and the absolute value of capacitance ratio of the device, respectively. For Mode
1, Mode 2, and Mode 3, the displacement distribution curves of thickness-shear, bending
and face-shear modes are presented in Figures 5–7, respectively.
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Figure 7. Face-shear strain distribution near resonance (u(0)
3,1 ).

As can be seen from Figure 5, for Mode 1, strong vibrations exist in the electroded
regions of the two resonator units, and the vibrations become weaker obviously in the
unelectroded regions of the two resonant units. In the electroded region, the acoustic wave
can transmit normally [7]. When the acoustic wave meet the unelectroded region, the wave
number become an imaginary number, thus the amplitude of the acoustic wave decrease
exponentially, which is the energy-trapping effect [7]. Although Modes 2–3 also have the
energy trapping characteristics, their vibration intensity are obviously lower than that of
Mode 1. It is shown in Figure 6, the bending vibration intensity of Mode 2 and Mode 3 is
much larger than that of Mode1, namely for Mode 1, parasitic modes can be effectively
suppressed. As can be seen from Figure 7, for face-shear mode, the vibration of Mode
1 is very weak, and the vibrations of Mode 2 and Mode 3 are stronger, which meets the
requirement of parasitic mode suppression of the device. Therefore, Mode 1 is an ideal
operating frequency of the device. There are two units in the array device, the approximate
operating mode obtained in this work cannot applied to multi-units devices. However, the
method used in this work is suitable for multi-units devices.

4.2. Frequency Interferences between Two Resonator Units

When the adsorption mass is increased on RU-B, the change of resonant frequency of
RU-A reflects the frequency interference of two units. Theoretically, when two resonant
units are far enough apart, the frequency interference approaches zero [15]. This spacing is
defined as safety spacing. It is necessary to analyze the influence of electrode parameters
on the safe spacing.

Tables 2 and 3, respectively, show the safe spacing d0 between two resonator units un-
der different electrode widths. Figures 8 and 9, respectively, show the frequency interference
curves when changing the spacing d0 between two resonator units under different elec-
trode widths of RU-A and RU-B. Finite element simulation using COMSOL Multiphysics
(Burlington, MA, USA), a commercially available modeling package, was performed to
obtain the resonance frequency of the array device. This model is a three-dimensional
model and the model size parameters are the same as the theoretical model parameters. A
frequency domain analysis is carried out to simulate the wave propagation. The calculation
results obtained by FEM are slightly higher than the theoretical ones. The observed errors
may be due to the differences between the Mindlin plate theory with two-dimensional
approximations and the three-dimensional model in the FEM method.
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Table 2. The safe distance d0 between the two resonant units under different electrode width b1

of Ru-A.

b1
20 h 25 h 30 h 35 h

Theoretical FEM Theoretical FEM Theoretical FEM Theoretical FEM

d0 45 h 50 h 40 h 45 h 60 h 65 h 35 h 40 h

Table 3. The safe distance d0 between the two resonator units under different electrode width b2

of Ru-B.

b2
20 h 25 h 30 h 35 h

Theoretical FEM Theoretical FEM Theoretical FEM Theoretical FEM

d0 35 h 40 h 40 h 45 h 60 h 65 h 45 h 50 h
Sensors 2022, 22, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 8. Influences of RU-A’s electrode width on the frequency interference. 

 
Figure 9. Influences of RU-B’s electrode width on the frequency interference. 

It can be seen from Tables 2 and 3, as well as Figures 8 and 9, that, with the increase 
in electrode width of RU-A b1 or the decrease in electrode width of RU-B b2, the faster the 
frequency interference curve tends to 0, the safe distance d0 between two resonator units 
also decreases. When the electrode width of RU-A increases, the effective electric field is 
enhanced, and the vibration intensity of RU-A region is also enhanced, so the an-
ti-interference ability of RU-A becomes stronger. When the electrode width of RU-B de-
creases, its effect on RU-A is weakened due to the weakening of the effective electric 
field. When the electrode widths of two resonator unit are equal, the decreasing speed of 
the frequency interference is smallest, and the safe distance d0 is maximum. 

Tables 4 and 5 show the safe spacing d0 of the two resonator units with different 
electrode spacing of RU-A d1 and electrode spacing of RU-B d2. Figures 10 and 11, re-
spectively, show the frequency interference curves under different electrode spacings of 
RU-A and RU-B, respectively. 

Table 4. The safe distance 0d  between the two resonator units with different electrode gap of 
RU-A. 

1d  
4 h 5 h 6 h 7 h 

Theoretical FEM Theoretical FEM Theoretical FEM Theoretical FEM 

0d  55 h 60 h 60 h 65 h 45 h 50 h 35 h 40 h 

Figure 8. Influences of RU-A’s electrode width on the frequency interference.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 8. Influences of RU-A’s electrode width on the frequency interference. 

 
Figure 9. Influences of RU-B’s electrode width on the frequency interference. 

It can be seen from Tables 2 and 3, as well as Figures 8 and 9, that, with the increase 
in electrode width of RU-A b1 or the decrease in electrode width of RU-B b2, the faster the 
frequency interference curve tends to 0, the safe distance d0 between two resonator units 
also decreases. When the electrode width of RU-A increases, the effective electric field is 
enhanced, and the vibration intensity of RU-A region is also enhanced, so the an-
ti-interference ability of RU-A becomes stronger. When the electrode width of RU-B de-
creases, its effect on RU-A is weakened due to the weakening of the effective electric 
field. When the electrode widths of two resonator unit are equal, the decreasing speed of 
the frequency interference is smallest, and the safe distance d0 is maximum. 

Tables 4 and 5 show the safe spacing d0 of the two resonator units with different 
electrode spacing of RU-A d1 and electrode spacing of RU-B d2. Figures 10 and 11, re-
spectively, show the frequency interference curves under different electrode spacings of 
RU-A and RU-B, respectively. 

Table 4. The safe distance 0d  between the two resonator units with different electrode gap of 
RU-A. 

1d  
4 h 5 h 6 h 7 h 

Theoretical FEM Theoretical FEM Theoretical FEM Theoretical FEM 

0d  55 h 60 h 60 h 65 h 45 h 50 h 35 h 40 h 

Figure 9. Influences of RU-B’s electrode width on the frequency interference.

It can be seen from Tables 2 and 3, as well as Figures 8 and 9, that, with the increase
in electrode width of RU-A b1 or the decrease in electrode width of RU-B b2, the faster
the frequency interference curve tends to 0, the safe distance d0 between two resonator
units also decreases. When the electrode width of RU-A increases, the effective electric
field is enhanced, and the vibration intensity of RU-A region is also enhanced, so the
anti-interference ability of RU-A becomes stronger. When the electrode width of RU-B
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decreases, its effect on RU-A is weakened due to the weakening of the effective electric
field. When the electrode widths of two resonator unit are equal, the decreasing speed of
the frequency interference is smallest, and the safe distance d0 is maximum.

Tables 4 and 5 show the safe spacing d0 of the two resonator units with different elec-
trode spacing of RU-A d1 and electrode spacing of RU-B d2. Figures 10 and 11, respectively,
show the frequency interference curves under different electrode spacings of RU-A and
RU-B, respectively.

Table 4. The safe distance d0 between the two resonator units with different electrode gap of RU-A.

d1
4 h 5 h 6 h 7 h

Theoretical FEM Theoretical FEM Theoretical FEM Theoretical FEM

d0 55 h 60 h 60 h 65 h 45 h 50 h 35 h 40 h

Table 5. The safe distance d0 between the two resonator units with different electrode gap of RU-B.

d2
4 h 5 h 6 h 7 h

Theoretical FEM Theoretical FEM Theoretical FEM Theoretical FEM

d0 35 h 40 h 60 h 65 h 45 h 50 h 55 h 60 h
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As can be seen from Table 4 and Figure 10, as the electrode spacing value d1 of RU-A
increases, the safe spacing d0 between the two resonator units decreases, and the frequency
interference curve tends to zero faster. As can be seen from Table 5 and Figure 11, as the
electrode spacing value d2 of RU-B increases, the safe spacing d0 between the two resonator
units increases, and the frequency interference curve tends to zero with a lower speed.
When the electrode spacings of two resonator unit are equal, the safe distance d0 is largest,
and the frequency interference curve tends to zero slowest.

5. Conclusions

In this paper, a theoretical model for analyzing the high-frequency vibration of the LFE
bulk acoustic wave array devices based on 3 m point group crystals excited is established,
the coupling relationships between vibration modes are clarified, and the influences of
structural parameters on the frequency interference between resonator units are revealed.
The following conclusions have been obtained: (1) With the increase in electrode width
of RU-A or the decrease in electrode width of RU-B, the faster the frequency interference
curve tends to 0, the safe distance d0 between two resonator units also decreases; (2) when
the electrode widths of two resonator units are equal, the decreasing speed of the frequency
interference is smallest, and the safe distance d0 is maximum; (3) as the electrode spacing
value of RU-A increases, the safe spacing d0 between the two resonator units decreases,
and the frequency interference curve tends to zero faster; (4) when the electrode spacings
of two resonator unit are equal, the safe distance is largest, and the frequency interference
curve tends to zero slowest. When the electrode structure parameters of the two units
are closer, the resonance frequencies of the two units are more similar, thus the frequency
interferences are more obviously. There are two units in the array device, the approximate
operating mode obtained in this work cannot applied to multi-units devices. However,
the method used in this work is suitable for multi-units devices. The theoretical model
proposed in this work can provide reliable theoretical basis for parameter optimization
designs of strongly coupled array sensors under lateral-field-excitation.
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