
Citation: Gong, H.; Wang, P.; Ni, C.;

Cheng, N. Efficient Path Planning for

Mobile Robot Based on Deep

Deterministic Policy Gradient.

Sensors 2022, 22, 3579. https://

doi.org/10.3390/s22093579

Academic Editor: Gregor Klancar

Received: 11 April 2022

Accepted: 5 May 2022

Published: 8 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Efficient Path Planning for Mobile Robot Based on Deep
Deterministic Policy Gradient
Hui Gong 1, Peng Wang 1,2,* , Cui Ni 1 and Nuo Cheng 1

1 Information Science and Electrical Engineering, Shandong Jiao Tong University, Jinan 250357, China;
gh960120@163.com (H.G.); 205034@sdjtu.edu.cn (C.N.); cn17861403204@163.com (N.C.)

2 Institute of Automation, Shandong Academy of Sciences, Jinan 250013, China
* Correspondence: 205049@sdjtu.edu.cn

Abstract: When a traditional Deep Deterministic Policy Gradient (DDPG) algorithm is used in
mobile robot path planning, due to the limited observable environment of mobile robots, the training
efficiency of the path planning model is low, and the convergence speed is slow. In this paper, Long
Short-Term Memory (LSTM) is introduced into the DDPG network, the former and current states
of the mobile robot are combined to determine the actions of the robot, and a Batch Norm layer is
added after each layer of the Actor network. At the same time, the reward function is optimized
to guide the mobile robot to move faster towards the target point. In order to improve the learning
efficiency, different normalization methods are used to normalize the distance and angle between the
mobile robot and the target point, which are used as the input of the DDPG network model. When
the model outputs the next action of the mobile robot, mixed noise composed of Gaussian noise and
Ornstein–Uhlenbeck (OU) noise is added. Finally, the simulation environment built by a ROS system
and a Gazebo platform is used for experiments. The results show that the proposed algorithm can
accelerate the convergence speed of DDPG, improve the generalization ability of the path planning
model and improve the efficiency and success rate of mobile robot path planning.

Keywords: path planning; DDPG; LSTM; reward function; mixed noise

1. Introduction

With the rise and continuous development of robot technology, mobile robots are
becoming more and more widely used and are playing an important role in more and
more fields. Mobile robots can perform tasks in various scenarios, such as package pick-up
and delivery in warehouses and guiding patients in hospitals [1–3]. As one of the key
technologies of mobile robot applications, path planning has become an indispensable part
of mobile robots moving towards artificial intelligence. Its purpose is to find an optimal or
suboptimal collision-free path from the starting point of the mobile robot’s movement to
the target point in the application scenario so as to ensure the rapid and safe movement
of the robot and improve the work efficiency. Ideal path planning can greatly save the
movement time of mobile robots on the road, help mobile robots complete tasks efficiently
and accurately, and provide favorable guarantees for the applications of mobile robots in
various industries.

Algorithm design is the core of mobile robot path planning, according to the different
application environment and the degree of intelligence, and the current path planning
algorithms can be divided into traditional methods and intelligent methods [4–6]. The
traditional methods mainly include the Dijkstra algorithm, A* algorithm, Artificial Potential
Field and Genetic algorithm and so on [7]. The Dijkstra algorithm is a path planning
algorithm that was proposed very early. The algorithm takes the starting point as the
center origin and spreads layers outward until the shortest paths to all nodes are found [8].
However, the Dijkstra algorithm uses the path length as the weight factor to search for

Sensors 2022, 22, 3579. https://doi.org/10.3390/s22093579 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093579
https://doi.org/10.3390/s22093579
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4771-7984
https://doi.org/10.3390/s22093579
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093579?type=check_update&version=2

Sensors 2022, 22, 3579 2 of 20

the shortest path, which increases the movement time of the mobile robot and reduces the
work efficiency [9]. The A* algorithm is improved on the basis of the Dijkstra algorithm
with the addition of heuristic function, which is one of the direct search methods to
find the shortest path in a static environment [10]. However, when the A* algorithm
is solving the shortest path, it is easily affected by the estimated value of generation,
and the algorithm easily falls into the local optimal and has poor stability [11]. In 1994,
Khatib and Andrews et al. proposed a virtual force method—the Artificial Potential Field
Method—which regarded the movement space of the mobile robot as the potential field in
physics. Obstacles generate repulsive force on mobile robots, while target points generate
gravitational force on them, and the resultant force of the two is the final movement
direction. The algorithm has good real-time performance, a small calculation amount and
fast convergence speed, but it is not suitable for complex environments [12,13]. The genetic
algorithm was first proposed by John Holland in the 1970s. The algorithm was proposed by
simulating the biological evolutionary law in nature and had the characteristics of strong
global search ability and good robustness. However, the algorithm takes a long time to
encode, and the convergence speed is slow, so it cannot guarantee real-time performance in
complex environments [14,15]. Based on the above algorithms, many optimized algorithms
have been proposed successively, such as the convex optimization method, Bezier curve
method and the optimal-control-theory-based method [16–18]. However, most of the
traditional path planning methods have problems such as relying on maps and low real-
time performance. As the environment in which the mobile robot is located becomes more
and more complex, the traditional path planning methods have been unable to adapt to the
actual task requirements [19,20].

In recent years, with the rise of artificial intelligence, path planning methods based on
deep reinforcement learning have appeared [21,22]. Deep reinforcement learning combines
the perception ability of deep learning with the decision-making ability of reinforcement
learning. In the process of continuous interaction and trial and error between the mobile
robot and the environment, the action strategy is optimized by accumulating rewards.
It realizes the learning method from the environment state to behavior mapping, and
the computing efficiency is high [23,24]. Q-Learning is a typical reinforcement learning
algorithm used for path planning. It uses Q value tables to store and update state-action
values and updates the Q tables according to the empirical knowledge learned by mobile
robots. After convergence, the optimal path is obtained according to Q value [25]. However,
when the environment is complex, there are too many state actions in Q tables, which leads
to a sharp increase in memory consumption and dimension disaster [26]. In 2013, Google
DeepMind combined deep learning with Q-learning, used a neural network to approximate
the value function, and proposed deep Q-Learning (DQN) for the first time, which realized
an end-to-end revolutionary algorithm from perception to action, and solved the dimension
disaster problem in Q-Learning [27]. However, DQN is only applicable to discrete action
space, but not to continuous action space [28]. Google DeepMind incorporated DQN into
the Actor-Critic framework in 2015 and proposed the Deep Deterministic Policy Gradient
(DDPG) to solve the problem of continuous action space. When using DDPG for mobile
robot path planning, it can output continuous actions [29]. However, when the environment
is complex, the DDPG algorithm easily falls into the local optimum, and there are problems
such as a low success rate and slow learning speed [30]. Tai L et al. [31] propose a learning-
based mapless motion planner that takes a sparse 10-dimensional range and the position of
the target relative to the mobile robot coordinate system as input and continuous steering
commands as output, extending DDPG to the asynchronous version to improve sampling
efficiency. The results show that the planner can navigate the mobile robot to the desired
target location without colliding with any obstacles. However, this method has neither the
memory of previous observations nor the ability of long-term prediction, so the planned
path is tortuous and not optimal. Jesus J C et al. [32] propose a deep reinforcement learning
method that applies DDPG to mobile robot navigation. This method takes the mobile robot
to reach the target position in different simulated environments of the task and creates a

Sensors 2022, 22, 3579 3 of 20

good reward function. However, the training effect is not very ideal. Peng Li et al. [33]
proposed a new DDPG algorithm, which used Rectified Adam (RAdam) to replace the
neural network optimizer in DDPG and combined this with curiosity algorithm to improve
the training effect, but the convergence speed was not ideal.

Compared with traditional path planning methods, the path planning methods based
on deep reinforcement learning do not need to build the whole environment model and
can realize self-learning from the environment state to action mapping, which has high flex-
ibility. Through the continuous interaction between the mobile robot and the environment,
the deep reinforcement learning uses the corresponding action strategy to determine the
next action of the mobile robot according to the state of the robot and combines the reward
function to continuously optimize the action strategy. As one of the typical algorithms
of deep reinforcement learning applied to path planning, DDPG can train the model in
self-constructed simulation environment and be directly applied to the actual environment,
with strong generalization ability. However, due to the adoption of deterministic policy,
when the robot is in the same state, the actions given are also the same. This will lead to a
single action of mobile robots that cannot fully explore the environment and may not be
able to reach the target point with the optimal path. Especially in complex environments,
due to the limited observable range of mobile robots and the lack of previous “memory” of
DDPG, it is unable to collect enough state information to train the algorithm, resulting in
low efficiency, slow convergence speed and low success rate in the training of the algorithm.

This paper fully analyzes the advantages and disadvantages of DDPG. Based on
reference [31], the efficiency and success rate of DDPG algorithm in path planning are
further improved by introducing LSTM, optimal design reward function and mixed noise.
The main contributions are as follows: (1) The “memory” ability of LSTM is utilized to
optimize the DDPG network structure, and Batch Norm layer is added after each layer
of the Actor network to improve network stability and speed up algorithm convergence.
(2) By optimizing the reward function, the mobile robot is guided to move faster towards
the target point. (3) Different normalization methods are used to normalize the distance
and angle between mobile robot and target point to improve the learning efficiency of
the path planning model. (4) A mixed noise composed of Gaussian noise and Ornstein–
Uhlenbeck (OU) noise is designed to make the learning process of mobile robot have higher
randomness, avoid falling into local optimum, and improve the exploration efficiency of
mobile robot.

The structure of this paper is as follows, Section 2 describes and analyzes the correla-
tion algorithms. Section 3 introduces the core method of this paper in detail, namely the
efficient path planning algorithm for mobile robots based on DDPG, including the improve-
ment of DDPG network structure, the optimization of reward function, the preprocessing
of state information and the design of mixed noise. Section 4 is the simulation experiment
and detailed comparison and analysis of the experimental results. Section 5 is a further
summary of this paper.

2. Related Works
2.1. Deep Deterministic Policy Gradient (DDPG) Algorithm

The DDPG algorithm is based on the Actor–Critic architecture and draws on the
experience replay mechanism and target network idea of DQN to solve the continuous
action problem. Its network consists of the current network and target network of the
Actor, and the current network and target network of the Critic. The role of the experience
replay mechanism is to collect samples and sample them randomly in batches from the
experience pool at each training session to reduce the correlation between samples [34].
The target network will fix the parameters in the network within a certain period of time,
so as to eliminate the model oscillation caused by the same parameters between the current
network and the target network [35]. The DDPG algorithm has strong fitting ability and
generalization ability of deep neural network, as well as the advantage of continuous
action space. Additionally, it can learn the optimal action strategy in the current state

Sensors 2022, 22, 3579 4 of 20

through continuous training and adjustment of neural network parameters. The method
is applied to the path planning process of the mobile robot, so that the mobile robot has
more continuous action output and less decision error in the process of motion. In the
process of path planning, the mobile robot obtains the state S according to the surrounding
environment information and its own state data, and the current network of Actor outputs
the action a of the mobile robot according to S. After the mobile robot performs an action, it
will obtain the reward r from the environment. According to S and a, the current network
of Critic outputs the Q value as the evaluation of the action, and constantly adjusts its
value function. The current network of Actor continuously improves the action strategy
according to the Q value. The target network of Actor and Critic is mainly used for the
subsequent update process. The structure of the DDPG algorithm is shown in Figure 1.

Sensors 2022, 22, 3579 4 of 21

network and the target network [35]. The DDPG algorithm has strong fitting ability and
generalization ability of deep neural network, as well as the advantage of continuous ac-
tion space. Additionally, it can learn the optimal action strategy in the current state
through continuous training and adjustment of neural network parameters. The method
is applied to the path planning process of the mobile robot, so that the mobile robot has
more continuous action output and less decision error in the process of motion. In the
process of path planning, the mobile robot obtains the state S according to the surround-
ing environment information and its own state data, and the current network of Actor
outputs the action a of the mobile robot according to S . After the mobile robot per-
forms an action, it will obtain the reward r from the environment. According to S and
a , the current network of Critic outputs the Q value as the evaluation of the action, and
constantly adjusts its value function. The current network of Actor continuously improves
the action strategy according to the Q value. The target network of Actor and Critic is
mainly used for the subsequent update process. The structure of the DDPG algorithm is
shown in Figure 1.

S

a

Figure 1. The structure of DDPG algorithm.

1. Initialize the current network of Actor (|)S μμ θ and the current network of Critic

(, |)QQ S a θ , as well as the corresponding target networks 'μ μθ θ← , 'Q Qθ θ← and

experience pool D .
2. Input the current state tS of the mobile robot into the current network of Actor to

obtain action ta , receive the reward r by performing the action, and obtain the
next new state 1tS + of the next step.

3. Put 1, , ,t t tS a r S + in experience pool D . When the number of samples in the experi-
ence pool reaches a certain number, N samples will be randomly sampled from the
experience pool D for network training.

4. Calculate the current network loss function of Critic according to Formula (1),

2

1

1() ((, |))
N

Q i i i Q
i

L Y Q S a
N

θ θ
=

= − (1)

where 1 1'(, '(| ') | ')i i i i QY r Q S S μγ μ θ θ+ += + is the target value, γ is the discount coeffi-
cient, and i is the sample number of the sample.
5. Update the current network parameters of the Actor according to Formula (2),

Figure 1. The structure of DDPG algorithm.

1. Initialize the current network of Actor µ(S
∣∣θµ) and the current network of Critic

Q(S, a
∣∣θQ) , as well as the corresponding target networks θµ′ ← θµ , θQ′ ← θQ and

experience pool D.
2. Input the current state St of the mobile robot into the current network of Actor to

obtain action at, receive the reward r by performing the action, and obtain the next
new state St+1 of the next step.

3. Put St, at, r, St+1 in experience pool D. When the number of samples in the experi-
ence pool reaches a certain number, N samples will be randomly sampled from the
experience pool D for network training.

4. Calculate the current network loss function of Critic according to Formula (1),

L(θQ) =
1
N

N

∑
i=1

(Yi −Q(Si, ai
∣∣θQ))

2 (1)

where Yi = ri + γQ′(Si+1, µ′(Si+1
∣∣θµ′)

∣∣θQ′) is the target value, γ is the discount coef-
ficient, and i is the sample number of the sample.

5. Update the current network parameters of the Actor according to Formula (2),

∇θµ
J =

1
N

N

∑
i
∇aiQ(Si, ai

∣∣θQ)∇θµµ(Si
∣∣θµ) (2)

where ∇J is the gradient.

Sensors 2022, 22, 3579 5 of 20

6. According to Formula (3), the target network parameter θµ′ of Actor and the target
network parameter θQ′ of Critic are updated using the soft update strategy,{

θQ′ ← τθQ + (1− τ)θQ′
θµ′ ← τθµ + (1− τ)θµ′

(3)

where τ is the constant coefficient, which is used to adjust the soft update factor.
7. Repeat the above steps until DDPG algorithm training is complete.

As one of the mainstream algorithms of deep reinforcement learning, the DDPG
algorithm is widely used in mobile robot path planning. Since the algorithm adopts
continuous state space and action space, it is especially suitable for the actual motion
process of mobile robots, showing great potential in complex environments.

2.2. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a special kind of Recurrent Neural Network
(RNN). On the basis of fully connected neural networks, RNN adds the sequential rela-
tionship before and after and endows the network with the ability of “memory” [36]. The
output of LSTM at the current moment should take into account not only the input at
the current moment, but also the previous information. However, too much “memory”
will also increase the computing burden of the network. LSTM introduces three gating
mechanisms on the basis of RNN, namely forget gate, input gate and output gate. Through
the gating mechanisms, the information at every moment is judged and adjusted in a timely
fashion and updated to determine the retention degree of input information [37,38], thus
reducing the burden of network computing. The structure of LSTM is shown in Figure 2.

Sensors 2022, 22, 3579 5 of 21

1 (, |) (|)
N

i i i Q i
i

J a Q S a S
Nμθ μ μθ θ μ θ∇ = ∇ ∇ (2)

where J∇ is the gradient.

6. According to Formula (3), the target network parameter 'μθ of Actor and the target

network parameter 'Qθ of Critic are updated using the soft update strategy,

' (1) '
' (1) '

Q Q Q

μ μ μ

θ τθ τ θ
θ τθ τ θ
 ← + −
 ← + −

 (3)

where τ is the constant coefficient, which is used to adjust the soft update factor.
7. Repeat the above steps until DDPG algorithm training is complete.

As one of the mainstream algorithms of deep reinforcement learning, the DDPG al-
gorithm is widely used in mobile robot path planning. Since the algorithm adopts contin-
uous state space and action space, it is especially suitable for the actual motion process of
mobile robots, showing great potential in complex environments.

2.2. Long Short-Term Memory
Long Short-Term Memory (LSTM) is a special kind of Recurrent Neural Network

(RNN). On the basis of fully connected neural networks, RNN adds the sequential rela-
tionship before and after and endows the network with the ability of “memory” [36]. The
output of LSTM at the current moment should take into account not only the input at the
current moment, but also the previous information. However, too much “memory” will
also increase the computing burden of the network. LSTM introduces three gating mech-
anisms on the basis of RNN, namely forget gate, input gate and output gate. Through the
gating mechanisms, the information at every moment is judged and adjusted in a timely
fashion and updated to determine the retention degree of input information [37,38], thus
reducing the burden of network computing. The structure of LSTM is shown in Figure 2.

σ tanhσ σ
tanh

Figure 2. The structure of LSTM.

LSTM can make full use of previous information and is suitable for processing and
predicting applications with long time sequences. Mobile robot path planning is a typical
long-sequence decision-making problem. In reference [31], when the DDPG algorithm is
used to carry out path planning for mobile robots, each layer in the network structure
adopted is a fully connected layer. It can navigate the mobile robot to the desired target
position without colliding with any obstacles. However, due to the limited range of envi-
ronments that mobile robots can observe and the lack of previous “memory”, path plan-
ning can only rely on the current state of the mobile robot, resulting in the planned path
being too tortuous, which seriously affects the efficiency of the robot. In this paper, LSTM
is introduced into the DDPG network structure proposed in reference [31], and the path

Figure 2. The structure of LSTM.

LSTM can make full use of previous information and is suitable for processing and
predicting applications with long time sequences. Mobile robot path planning is a typical
long-sequence decision-making problem. In reference [31], when the DDPG algorithm
is used to carry out path planning for mobile robots, each layer in the network structure
adopted is a fully connected layer. It can navigate the mobile robot to the desired target
position without colliding with any obstacles. However, due to the limited range of
environments that mobile robots can observe and the lack of previous “memory”, path
planning can only rely on the current state of the mobile robot, resulting in the planned
path being too tortuous, which seriously affects the efficiency of the robot. In this paper,
LSTM is introduced into the DDPG network structure proposed in reference [31], and the
path planning is carried out by making comprehensive use of the past and current states of
mobile robots.

3. The Proposed Path Planning

In order to solve the shortcomings of traditional DDPG algorithms in path planning,
LSTM is introduced to optimize the structure of DDPG network, and the reward function

Sensors 2022, 22, 3579 6 of 20

is redesigned to speed up network training. Then, the states of the mobile robot are pre-
processed by different normalization methods, such as the input of DDPG network model,
and the mixed noise composed of Gaussian noise and OU noise is added to the actions
output from the network model to improve the exploratory nature of the mobile robot.

3.1. Introduction of LSTM

When using the DDPG algorithm for path planning, the action of the mobile robot can
only be determined by the current state of the robot, which will easily lead to confusion
in the exploration trajectory. On the basis of reference [31], we take advantage of LSTM’s
ability to memorize past states of mobile robots and introduce it into the learning process
of mobile robots. To be specific, in the Actor network, the first fully connected layer is
replaced by the LSTM network. When the Actor network receives the input state of the
mobile robot, it is processed by the LSTM first, then processed by the two fully connected
layers, and finally outputs the actions of the robot. In the Critic network, we replace the
fully connected layer that processes the state with an LSTM network. When the Critic
network receives the input state and action of mobile robot, the state is processed by the
LSTM network, and the action is processed by the fully connected layer. The results of the
above two layers are processed by a fully connected layer, and then the Q value is output.
By comprehensively considering the current state and past state of the mobile robot, the
action output by Actor network can be evaluated more accurately. In this way, the actions
of the robot are controlled not only by the current state of the robot, but also by the previous
state, so that the actions of the robot have time correlation, which can effectively avoid
the planned path being too tortuous. The LSTM-DDPG network structure designed in our
paper is shown in Figure 3.

Sensors 2022, 22, 3579 6 of 21

planning is carried out by making comprehensive use of the past and current states of
mobile robots.

3. The Proposed Path Planning
In order to solve the shortcomings of traditional DDPG algorithms in path planning,

LSTM is introduced to optimize the structure of DDPG network, and the reward function
is redesigned to speed up network training. Then, the states of the mobile robot are pre-
processed by different normalization methods, such as the input of DDPG network model,
and the mixed noise composed of Gaussian noise and OU noise is added to the actions
output from the network model to improve the exploratory nature of the mobile robot.

3.1. Introduction of LSTM
When using the DDPG algorithm for path planning, the action of the mobile robot

can only be determined by the current state of the robot, which will easily lead to confu-
sion in the exploration trajectory. On the basis of reference [31], we take advantage of
LSTM’s ability to memorize past states of mobile robots and introduce it into the learning
process of mobile robots. To be specific, in the Actor network, the first fully connected
layer is replaced by the LSTM network. When the Actor network receives the input state
of the mobile robot, it is processed by the LSTM first, then processed by the two fully
connected layers, and finally outputs the actions of the robot. In the Critic network, we
replace the fully connected layer that processes the state with an LSTM network. When
the Critic network receives the input state and action of mobile robot, the state is processed
by the LSTM network, and the action is processed by the fully connected layer. The results
of the above two layers are processed by a fully connected layer, and then the Q value is
output. By comprehensively considering the current state and past state of the mobile ro-
bot, the action output by Actor network can be evaluated more accurately. In this way,
the actions of the robot are controlled not only by the current state of the robot, but also
by the previous state, so that the actions of the robot have time correlation, which can
effectively avoid the planned path being too tortuous. The LSTM-DDPG network struc-
ture designed in our paper is shown in Figure 3.

S

S

a

a

Q

Figure 3. Our designed LSTM-DDPG network structure.

In the Actor network and Critic network of DDPG, the target network has the same
structure as the current network, and both of them adopt the structure of LSTM and fully
connected layer. In the Actor network, the first layer is LSTM, the second layer is the fully

Figure 3. Our designed LSTM-DDPG network structure.

In the Actor network and Critic network of DDPG, the target network has the same
structure as the current network, and both of them adopt the structure of LSTM and fully
connected layer. In the Actor network, the first layer is LSTM, the second layer is the
fully connected layer with 400 nodes, and the third layer is the fully connected layer with
300 nodes. ReLU is used as the activation function of the fully connected layer, and Batch
Norm layer is added after each layer to ensure the stability of the algorithm. In the Critic
network, states are input to the LSTM layer, actions are input to the fully connected layer
with 400 nodes, and then both of them are processed through the fully connected layer
with 300 nodes. ReLU is also used as the activation function of the fully connected layer.

Sensors 2022, 22, 3579 7 of 20

3.2. Design of the Reward Function

The reward function is a benchmark to evaluate the action taken by the mobile robot
and plays a guiding role in the whole learning process. The design of the reward function
should not only consider that the mobile robot can reach the target point through the
optimal path, but also consider the safety of the mobile robot. After the current network of
Actor outputs the action according to the robot state, the state should be updated according
to the execution result of the action, and the reward value is calculated. If the mobile robot
reaches the target point, the maximum positive reward will be given. If the mobile robot
encounters an obstacle during its movement, it should be punished. If the mobile robot
neither encounters the obstacle nor reaches the target point, the reward value should be
calculated according to the distance between the mobile robot and the starting point and
the target point, so that the mobile robot can keep approaching the target point. In other
words, every action of the mobile robot should receive timely feedback, so as to speed up
the convergence of algorithm. To achieve this goal, the reward function designed in this
paper is shown in Formula (4),

reward =

C1 Reach target point
C2 Hit an obstacle
−rel_dis + ori_dis Other

, (4)

where C1 is a positive constant, C2 is a negative constant, rel_dis is the distance from the
mobile robot to the target point, and ori_dis is the distance from the mobile robot to the
starting point. In this paper, C1 and C2 are set to 150 and −100, respectively.

3.3. State Normalization of Mobile Robot

The state space is the feedback of the whole environment of the mobile robot and is
the basis for the mobile robot to select actions. The mobile robot mentioned in this paper
interacts with the environment through the laser sensor. The detection range of the laser
sensor is from −90 degrees to 90 degrees straight ahead, and the detection distance is at
least 0.2 m. If the distance between the mobile robot and the obstacle is less than 0.2 m, it is
considered to have collided with the obstacle. The data detected by the laser sensor contain
10 dimensions, as shown in Formula (5). The detection range of the laser sensor is shown
in Figure 4.

scan_range = [scan1, scan2, scan3, scan4, scan5, scan6, scan7, scan8, scan9, scan10], (5)

where scan_range is the detection range of the laser sensor installed on the mobile robot,
and scani is the data detected in the ith orientation.

Sensors 2022, 22, 3579 8 of 21

1scan

2scan

3scan

4scan
5scan

6scan

7scan

8scan

9scan

10scan

Figure 4. The detection range of laser sensor on mobile robot.

In order to complete the path planning of the mobile robot, it is necessary to know
whether the mobile robot will encounter obstacles, and also other states of the mobile ro-
bot, such as the action of the mobile robot at the previous time step (including linear ve-
locity and angular velocity), the relative distance and angle between the mobile robot and
the target point, the yaw angle, and the difference angle between the mobile robot and the
target point, etc. Among them, the difference angle is shown in Formula (6). In order to
improve the learning efficiency of the mobile robot, the states of the robot are prepro-
cessed in different normalization methods, as shown in Formulas (7)–(10), respectively.

_ | _ |diff angle rel eheta yaw= − , (6)

where _diff angle is the difference angle between the mobile robot and the target point,
_rel eheta is the relative angle between the mobile robot and the target point, and yaw

is the yaw angle of the mobile robot.
_ _ / _rel dis rel dis diagonal dis= , (7)

where _rel dis is the relative distance between the mobile robot and the target point, and
_diagonal dis is the diagonal length of the simulation map.

_ _ / 360rel theta rel theta= , (8)

where _rel eheta is the relative angle between the mobile robot and the target point.

/ 360yaw yaw= , (9)

where yaw is the yaw angle of the mobile robot.

_ _ / 180diff angle diff angle= , (10)

where _diff angle is the difference angle between the mobile robot and the target point.
To sum up, in the DDPG algorithm, the state space of the mobile robot is set as 16-

dimensional data and defined as the input of the neural network. The normalized state
tS can be defined as:

-1 , _ , _ , , _ , _t tS a rel dis rel theta yaw diff angle scan range= . (11)

Considering the motion smoothness of mobile robot and the continuity of output ac-
tions, the output of the DDPG network model proposed in this paper is continuous linear
velocity and angular velocity to guide the movement of the mobile robot. Since the limits
of angular velocity and linear velocity should not be too large in the simulation environ-
ment, the maximum angular velocity is set to 0.5 rad/s and the maximum linear velocity
is set to 0.25 m/s. The output action of the model is shown as Formula (12),

Figure 4. The detection range of laser sensor on mobile robot.

In order to complete the path planning of the mobile robot, it is necessary to know
whether the mobile robot will encounter obstacles, and also other states of the mobile robot,

Sensors 2022, 22, 3579 8 of 20

such as the action of the mobile robot at the previous time step (including linear velocity
and angular velocity), the relative distance and angle between the mobile robot and the
target point, the yaw angle, and the difference angle between the mobile robot and the
target point, etc. Among them, the difference angle is shown in Formula (6). In order to
improve the learning efficiency of the mobile robot, the states of the robot are preprocessed
in different normalization methods, as shown in Formulas (7)–(10), respectively.

di f f _angle =|rel_eheta− yaw|, (6)

where di f f _angle is the difference angle between the mobile robot and the target point,
rel_eheta is the relative angle between the mobile robot and the target point, and yaw is the
yaw angle of the mobile robot.

rel_dis = rel_dis/diagonal_dis, (7)

where rel_dis is the relative distance between the mobile robot and the target point, and
diagonal_dis is the diagonal length of the simulation map.

rel_theta = rel_theta/360, (8)

where rel_eheta is the relative angle between the mobile robot and the target point.

yaw = yaw/360, (9)

where yaw is the yaw angle of the mobile robot.

di f f _angle = di f f _angle/180, (10)

where di f f _angle is the difference angle between the mobile robot and the target point.
To sum up, in the DDPG algorithm, the state space of the mobile robot is set as

16-dimensional data and defined as the input of the neural network. The normalized state
St can be defined as:

St = [at−1, rel_dis, rel_theta, yaw, di f f _angle, scan_range]. (11)

Considering the motion smoothness of mobile robot and the continuity of output
actions, the output of the DDPG network model proposed in this paper is continuous linear
velocity and angular velocity to guide the movement of the mobile robot. Since the limits of
angular velocity and linear velocity should not be too large in the simulation environment,
the maximum angular velocity is set to 0.5 rad/s and the maximum linear velocity is set to
0.25 m/s. The output action of the model is shown as Formula (12),

at = [vt, ϕt], (12)

where at is the action of mobile robot at time t, while vt and ϕt are linear velocity and
angular velocity, respectively.

3.4. Mixed Noise Design

DDPG adopts deterministic policy with poor exploration of the environment. In order
to increase the randomness of the learning process, DDPG will add a certain amount of noise
to the output actions to improve the exploration ability of the mobile robot. At present,
Gaussian noise and OU noise are commonly used in DDPG. Gaussian noise produces
irrelevant exploration in a time sequence; that is, the selection of the front and rear actions
are independent. The OU noise is a random process, and its calculation formula is shown
in Formula (13). It can produce time-sequence-related exploration; that is, the action of
the next step will be affected by the action of the previous step. Different from Gaussian
noise, OU noise does not make the actions of two adjacent steps of the mobile robot very

Sensors 2022, 22, 3579 9 of 20

different, but makes the mobile robot explore near the mean of action sampling. Although
this allows the mobile robot to continuously explore in one direction, it will increase the
movement time of the robot when the action taken is not optimal in the current view.

NOU(dat) = θ(a− at)dt + δdWt, (13)

where θ is the learning rate of the random process, at is the action at time t, a is the
average value of the action sampling data, δ is the random weight of OU, and Wt is the
Wiener process.

In order to optimize the DDPG exploration policy and improve the exploration effi-
ciency of the robot, we combine Gaussian noise and OU noise to form mixed noise. The
Actor network output action at based on the mixed noise is shown in Formula (14),

at ∼ NGaussian(at + NOU(dat), var), (14)

where var is the Gaussian variance to ensure that the mobile robot has uniform and stable
detection ability in each episode. At the same time, with the progress of the training process,
the mobile robot begins to adapt to the task scene, which requires the exploration rate to be
gradually reduced, as shown in Formula (15),

var = var× 0.9999. (15)

This paper proposes a path planning algorithm for a mobile robot based on improved
DDPG, which can solve the problems of a long training time and slow convergence of
traditional path planning model. The algorithm flow is shown in Figure 5.

Sensors 2022, 22, 3579 10 of 21

Figure 5. Flow chart of the proposed path planning algorithm.

4. Experimental Results and Analysis
4.1. Environment Construction of Simulation Experiment

ROS is selected as the simulation experimental platform in this paper, Python and
TensorFlow frameworks are used to realize the proposed algorithm, and Gazebo7 is used
to establish the simulation environment, as shown in Figure 6. The black dot is the mobile
robot, the blue part is the detection range of the laser sensor, and the gray part is the ob-
stacle. Figure 6a shows the established square-shaped simulation environment without
obstacles, which is mainly used to train mobile robots to realize path planning in a limited
space. Figure 6b adds large obstacles to the environment of Figure 6a to train the mobile
robot to realize path planning in an environment with obstacles. Figure 6c adds random
small obstacles to the environment of Figure 6a, which is mainly used to test the training
effect of the mobile robot in the above two environments.

(a) (b) (c)

Figure 6. Schematic diagram of the simulation environment established by Gazebo7. (a) There are
no obstacles in the environment; (b) there are large obstacles in the environment; (c) there are ran-
domly generated small obstacles in the environment.

Figure 5. Flow chart of the proposed path planning algorithm.

Sensors 2022, 22, 3579 10 of 20

4. Experimental Results and Analysis
4.1. Environment Construction of Simulation Experiment

ROS is selected as the simulation experimental platform in this paper, Python and
TensorFlow frameworks are used to realize the proposed algorithm, and Gazebo7 is used
to establish the simulation environment, as shown in Figure 6. The black dot is the mobile
robot, the blue part is the detection range of the laser sensor, and the gray part is the
obstacle. Figure 6a shows the established square-shaped simulation environment without
obstacles, which is mainly used to train mobile robots to realize path planning in a limited
space. Figure 6b adds large obstacles to the environment of Figure 6a to train the mobile
robot to realize path planning in an environment with obstacles. Figure 6c adds random
small obstacles to the environment of Figure 6a, which is mainly used to test the training
effect of the mobile robot in the above two environments.

Sensors 2022, 22, 3579 10 of 21

Figure 5. Flow chart of the proposed path planning algorithm.

4. Experimental Results and Analysis
4.1. Environment Construction of Simulation Experiment

ROS is selected as the simulation experimental platform in this paper, Python and
TensorFlow frameworks are used to realize the proposed algorithm, and Gazebo7 is used
to establish the simulation environment, as shown in Figure 6. The black dot is the mobile
robot, the blue part is the detection range of the laser sensor, and the gray part is the ob-
stacle. Figure 6a shows the established square-shaped simulation environment without
obstacles, which is mainly used to train mobile robots to realize path planning in a limited
space. Figure 6b adds large obstacles to the environment of Figure 6a to train the mobile
robot to realize path planning in an environment with obstacles. Figure 6c adds random
small obstacles to the environment of Figure 6a, which is mainly used to test the training
effect of the mobile robot in the above two environments.

(a) (b) (c)

Figure 6. Schematic diagram of the simulation environment established by Gazebo7. (a) There are
no obstacles in the environment; (b) there are large obstacles in the environment; (c) there are ran-
domly generated small obstacles in the environment.

Figure 6. Schematic diagram of the simulation environment established by Gazebo7. (a) There are no
obstacles in the environment; (b) there are large obstacles in the environment; (c) there are randomly
generated small obstacles in the environment.

We test the proposed path planning algorithm from three aspects of convergence
speed, training time and success rate and analyze the experimental results in detail. The
convergence speed and training time are used as evaluation criteria of the training efficiency
of the algorithm, and the success rate is used to verify the effectiveness of the algorithm. In
the training process of the algorithm, the convergence speed and training time can reflect
how many episodes are needed to obtain the optimal solution. The faster the convergence
speed is, the shorter the training time is, which means the higher the training efficiency is.
The success rate refers to the percentage of mobile robots that can successfully reach the
target point from the starting point according to the path planning algorithm adopted. The
higher the success rate is, the better the performance of the algorithm.

4.2. Effect Analysis of Our Algorithm

In order to verify the performance of our algorithm, the DDPG algorithm proposed
in reference [31], our algorithm with an improved network structure (LSTM-DDPG) and
our algorithm after adding mixed noise further (MN-LSTM-DDPG) are all trained in the
simulation environment, respectively.

Firstly, 2000 episodes of training are conducted in the simulation Figure 6a, and the
reward value of the mobile robot is recorded after each episode of training, as shown in
Figure 7. The results in Figure 7a show that in an environment without obstacles, the reward
value of the algorithm proposed in [31] gradually tends to be stable with the increase in
training episodes, but it still fails to converge after 2000 episodes of training. Moreover, the
reward value fluctuates greatly in the first 800 episodes and is mostly negative, indicating
that the mobile robot is learning how to approach the target point but fails many times.
After 800 episodes, the reward value gradually tends to be positive, indicating that the
mobile robot can reach the target point through training, but it still collides with obstacles.
Figure 7b is the training result after LSTM is introduced into the network of the algorithm
proposed in [31]. As can be seen, with the increase in training time, the reward value

Sensors 2022, 22, 3579 11 of 20

obtained by the mobile robot gradually increases from a negative value to a positive value,
and finally tends to be stable, but the convergence rate is slow. After LSTM is introduced
into the algorithm, the mixed noise composed of Gaussian noise and OU noise is further
introduced into the output results of the network, and the reward function is optimized.
Figure 7c shows the training result of the algorithm. As can be seen, with the increase in
training time, the reward value obtained by the mobile robot gradually increases and finally
tends to be stable. Compared with Figure 7b, the convergence speed is significantly faster.

Sensors 2022, 22, 3579 11 of 21

We test the proposed path planning algorithm from three aspects of convergence
speed, training time and success rate and analyze the experimental results in detail. The
convergence speed and training time are used as evaluation criteria of the training effi-
ciency of the algorithm, and the success rate is used to verify the effectiveness of the algo-
rithm. In the training process of the algorithm, the convergence speed and training time
can reflect how many episodes are needed to obtain the optimal solution. The faster the
convergence speed is, the shorter the training time is, which means the higher the training
efficiency is. The success rate refers to the percentage of mobile robots that can success-
fully reach the target point from the starting point according to the path planning algo-
rithm adopted. The higher the success rate is, the better the performance of the algorithm.

4.2. Effect Analysis of Our Algorithm
In order to verify the performance of our algorithm, the DDPG algorithm proposed

in reference [31], our algorithm with an improved network structure (LSTM-DDPG) and
our algorithm after adding mixed noise further (MN-LSTM-DDPG) are all trained in the
simulation environment, respectively.

Firstly, 2000 episodes of training are conducted in the simulation Figure 6a, and the
reward value of the mobile robot is recorded after each episode of training, as shown in
Figure 7. The results in Figure 7a show that in an environment without obstacles, the re-
ward value of the algorithm proposed in [31] gradually tends to be stable with the increase
in training episodes, but it still fails to converge after 2000 episodes of training. Moreover,
the reward value fluctuates greatly in the first 800 episodes and is mostly negative, indi-
cating that the mobile robot is learning how to approach the target point but fails many
times. After 800 episodes, the reward value gradually tends to be positive, indicating that
the mobile robot can reach the target point through training, but it still collides with ob-
stacles. Figure 7b is the training result after LSTM is introduced into the network of the
algorithm proposed in [31]. As can be seen, with the increase in training time, the reward
value obtained by the mobile robot gradually increases from a negative value to a positive
value, and finally tends to be stable, but the convergence rate is slow. After LSTM is in-
troduced into the algorithm, the mixed noise composed of Gaussian noise and OU noise
is further introduced into the output results of the network, and the reward function is
optimized. Figure 7c shows the training result of the algorithm. As can be seen, with the
increase in training time, the reward value obtained by the mobile robot gradually in-
creases and finally tends to be stable. Compared with Figure 7b, the convergence speed is
significantly faster.

(a) (b) (c)

Figure 7. Changes in reward value of the improved algorithms. (a) Changes in reward value of the
algorithm proposed in [31]; (b) changes in reward value of LSTM-DDPG, (c) changes in reward
value of MN-LSTM-DDPG.

Figure 8 shows the average rewards returned every 10,000 steps by the algorithm
proposed in reference [31] and LSTM-DDPG and MN-LSTM-DDPG proposed in this pa-
per in the path planning training in simulation Figure 6a. The blue line represents the

Figure 7. Changes in reward value of the improved algorithms. (a) Changes in reward value of the
algorithm proposed in [31]; (b) changes in reward value of LSTM-DDPG, (c) changes in reward value
of MN-LSTM-DDPG.

Figure 8 shows the average rewards returned every 10,000 steps by the algorithm
proposed in reference [31] and LSTM-DDPG and MN-LSTM-DDPG proposed in this
paper in the path planning training in simulation Figure 6a. The blue line represents the
algorithm proposed in [31], the green line represents the LSTM-DDPG algorithm, and the
red line represents the MN-LSTM-DDPG algorithm. As can be seen, MN-LSTM-DDPG
has the fastest convergence speed in the path planning of mobile robots, requiring only
120,000 steps, while the algorithm proposed in [31] requires 200,000 steps to converge, and
the convergence is not stable.

Sensors 2022, 22, 3579 12 of 21

algorithm proposed in [31], the green line represents the LSTM-DDPG algorithm, and the
red line represents the MN-LSTM-DDPG algorithm. As can be seen, MN-LSTM-DDPG
has the fastest convergence speed in the path planning of mobile robots, requiring only
120,000 steps, while the algorithm proposed in [31] requires 200,000 steps to converge, and
the convergence is not stable.

Figure 8. The average rewards returned by reference [31] and the improved algorithm every 10,000
steps during training in simulation Figure 6a.

Table 1 compares the training time and the number of training steps of the three al-
gorithms mentioned above. As can be seen from the table, the training time of the path
planning of the algorithm proposed in [31] is 28.03 h, while the training time of MN-
LSTM-DDPG is only 22.75 h, which is 18.8% shorter. In terms of the number of training
steps, the number of training steps of the algorithm proposed in [31] is 484,231, while the
number of training steps of MN-LSTM-DDPG is only 417,701, which significantly im-
proves the convergence speed.

Table 1. Comparison of training time and steps of the improved algorithm in simulation Figure
6a.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [31] 28.03 484,231

LSTM-DDPG 23.68 427,956
MN-LSTM-DDPG 22.75 417,701

In order to verify the success rate and generalization ability of the model trained in
simulation Figure 6a, 200 tests are performed on the three algorithms in simulation Figure
6a and simulation Figure 6c, respectively. Figures 9 and 10 show the movement process
of the mobile robot in these two environments when MN-LSTM-DDPG is used for path
planning. The black dot is the mobile robot, the blue part is the detection range of the laser
sensor, the gray part is the obstacle, and the green circle is the final target point. As can be
seen, the mobile robot can avoid obstacles from the starting point and reach the target
point accurately with the optimal path.

Figure 8. The average rewards returned by reference [31] and the improved algorithm every
10,000 steps during training in simulation Figure 6a.

Table 1 compares the training time and the number of training steps of the three
algorithms mentioned above. As can be seen from the table, the training time of the path
planning of the algorithm proposed in [31] is 28.03 h, while the training time of MN-LSTM-
DDPG is only 22.75 h, which is 18.8% shorter. In terms of the number of training steps, the

Sensors 2022, 22, 3579 12 of 20

number of training steps of the algorithm proposed in [31] is 484,231, while the number
of training steps of MN-LSTM-DDPG is only 417,701, which significantly improves the
convergence speed.

Table 1. Comparison of training time and steps of the improved algorithm in simulation Figure 6a.

Algorithm Training Time (h) Training Steps (Step)

Algorithm in [31] 28.03 484,231
LSTM-DDPG 23.68 427,956

MN-LSTM-DDPG 22.75 417,701

In order to verify the success rate and generalization ability of the model trained
in simulation Figure 6a, 200 tests are performed on the three algorithms in simulation
Figure 6a and simulation Figure 6c, respectively. Figures 9 and 10 show the movement
process of the mobile robot in these two environments when MN-LSTM-DDPG is used for
path planning. The black dot is the mobile robot, the blue part is the detection range of
the laser sensor, the gray part is the obstacle, and the green circle is the final target point.
As can be seen, the mobile robot can avoid obstacles from the starting point and reach the
target point accurately with the optimal path.

Sensors 2022, 22, 3579 13 of 21

Figure 9. The movement process of mobile robot in simulation Figure 6a.

Figure 10. The movement process of mobile robot in simulation Figure 6c.

Tables 2 and 3 record the test results in simulation Figure 6a and simulation Figure
6c, respectively. It can be seen from Table 2 that the path planning success rate of the
algorithm proposed in [31] is only 86%, while the success rate of the MN-LSTM-DDPG
algorithm proposed in this paper can reach 100%. In terms of time, compared with the
algorithm proposed in [31], the path planning time of the MN-LSTM-DDPG algorithm
proposed in this paper is shortened by 21.48%. However, when the model trained in sim-
ulation Figure 6a is applied to simulation Figure 6c, the testing effect of each algorithm is
not ideal, as shown in Table 3. Therefore, it is necessary to train the algorithm in an envi-
ronment with obstacles.

Figure 9. The movement process of mobile robot in simulation Figure 6a.

Tables 2 and 3 record the test results in simulation Figure 6a and simulation Figure 6c,
respectively. It can be seen from Table 2 that the path planning success rate of the algorithm
proposed in [31] is only 86%, while the success rate of the MN-LSTM-DDPG algorithm
proposed in this paper can reach 100%. In terms of time, compared with the algorithm
proposed in [31], the path planning time of the MN-LSTM-DDPG algorithm proposed
in this paper is shortened by 21.48%. However, when the model trained in simulation
Figure 6a is applied to simulation Figure 6c, the testing effect of each algorithm is not ideal,
as shown in Table 3. Therefore, it is necessary to train the algorithm in an environment
with obstacles.

Sensors 2022, 22, 3579 13 of 20

Sensors 2022, 22, 3579 13 of 21

Figure 9. The movement process of mobile robot in simulation Figure 6a.

Figure 10. The movement process of mobile robot in simulation Figure 6c.

Tables 2 and 3 record the test results in simulation Figure 6a and simulation Figure
6c, respectively. It can be seen from Table 2 that the path planning success rate of the
algorithm proposed in [31] is only 86%, while the success rate of the MN-LSTM-DDPG
algorithm proposed in this paper can reach 100%. In terms of time, compared with the
algorithm proposed in [31], the path planning time of the MN-LSTM-DDPG algorithm
proposed in this paper is shortened by 21.48%. However, when the model trained in sim-
ulation Figure 6a is applied to simulation Figure 6c, the testing effect of each algorithm is
not ideal, as shown in Table 3. Therefore, it is necessary to train the algorithm in an envi-
ronment with obstacles.

Figure 10. The movement process of mobile robot in simulation Figure 6c.

Table 2. Comparison of test results of the improved algorithm in simulation Figure 6a.

Algorithm Success Rate (100%) Testing Time (h)

Algorithm in [31] 172/200 = 0.86 1.35
LSTM-DDPG 194/200 = 0.97 1.21

MN-LSTM-DDPG 200/200 = 1 1.06

Table 3. Comparison of test results of the improved algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)

Algorithm in [31] 108/200 = 0.54 1.88
LSTM-DDPG 133/200 = 0.665 1.71

MN-LSTM-DDPG 146/200 = 0.73 1.69

In order to verify the effect of the proposed algorithm in an obstacle environment,
the algorithm proposed in [31], the LSTM-DDPG algorithm and the MN-LSTM-DDPG
algorithm proposed in this paper were respectively trained for 2000 episodes in simulation
Figure 6b, and the average reward returned by the mobile robot every 10,000 steps was
recorded, as shown in Figure 11. As can be seen from the figure, the improved MN-LSTM-
DDPG algorithm in this paper can achieve convergence after 110,000 steps of training in
the path planning of mobile robots in the simulation Figure 6b However, the algorithm
proposed in [31] needs 200,000 training steps to converge, and the convergence is unstable;
the convergence speed is significantly slower than the algorithm proposed in this paper.
Additionally, from the training results in Table 4, it can be seen that the path planning
training time of the algorithm proposed in the [31] is 21.73 h, while the path planning
training time of the improved MN-LSTM-DDPG algorithm in this paper is only 19.70 h,
and the training speed shows a significant improvement. In terms of the number of training
steps, the number of training steps of the algorithm proposed in [31] is 374,316, while the
number of training steps of the improved MN-LSTM-DDPG algorithm in this paper is only
346,667, which significantly improves the convergence speed of the algorithm.

Sensors 2022, 22, 3579 14 of 20

Sensors 2022, 22, 3579 14 of 21

Table 2. Comparison of test results of the improved algorithm in simulation Figure 6a.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [31] 172/200 = 0.86 1.35

LSTM-DDPG 194/200 = 0.97 1.21
MN-LSTM-DDPG 200/200 = 1 1.06

Table 3. Comparison of test results of the improved algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [31] 108/200 = 0.54 1.88

LSTM-DDPG 133/200 = 0.665 1.71
MN-LSTM-DDPG 146/200 = 0.73 1.69

In order to verify the effect of the proposed algorithm in an obstacle environment,
the algorithm proposed in [31], the LSTM-DDPG algorithm and the MN-LSTM-DDPG
algorithm proposed in this paper were respectively trained for 2000 episodes in simula-
tion Figure 6b, and the average reward returned by the mobile robot every 10,000 steps
was recorded, as shown in Figure 11. As can be seen from the figure, the improved MN-
LSTM-DDPG algorithm in this paper can achieve convergence after 110,000 steps of train-
ing in the path planning of mobile robots in the simulation Figure 6b However, the algo-
rithm proposed in [31] needs 200,000 training steps to converge, and the convergence is
unstable; the convergence speed is significantly slower than the algorithm proposed in
this paper. Additionally, from the training results in Table 4, it can be seen that the path
planning training time of the algorithm proposed in the [31] is 21.73 h, while the path
planning training time of the improved MN-LSTM-DDPG algorithm in this paper is only
19.70 h, and the training speed shows a significant improvement. In terms of the number
of training steps, the number of training steps of the algorithm proposed in [31] is 374,316,
while the number of training steps of the improved MN-LSTM-DDPG algorithm in this
paper is only 346,667, which significantly improves the convergence speed of the algo-
rithm.

Figure 11. Average reward returned by reference [31] and the improved algorithm every 10,000
steps during training in simulation Figure 6b.

Figure 11. Average reward returned by reference [31] and the improved algorithm every 10,000 steps
during training in simulation Figure 6b.

Table 4. Comparison of training time and steps of the improved algorithm in simulation Figure 6b.

Algorithm Training Time (h) Training Steps (Step)

Algorithm in [31] 21.73 374,316
LSTM-DDPG 21.20 365,164

MN-LSTM-DDPG 19.70 346,667

After training the model in an environment with obstacles, 200 tests were performed
in simulation Figure 6b and simulation Figure 6c, respectively, to verify the generalization
ability of the model. The test process is shown in Figures 12 and 13. The two figures
respectively show the process of mobile robot avoiding obstacles from the starting point to
reach the target range.

Sensors 2022, 22, 3579 15 of 21

Table 4. Comparison of training time and steps of the improved algorithm in simulation Figure
6b.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [31] 21.73 374,316

LSTM-DDPG 21.20 365,164
MN-LSTM-DDPG 19.70 346,667

After training the model in an environment with obstacles, 200 tests were performed
in simulation Figure 6b and simulation Figure 6c, respectively, to verify the generalization
ability of the model. The test process is shown in Figures 12 and 13. The two figures re-
spectively show the process of mobile robot avoiding obstacles from the starting point to
reach the target range.

Figure 12. The motion process of the mobile robot in simulation Figure 6b.

Figure 12. The motion process of the mobile robot in simulation Figure 6b.

Sensors 2022, 22, 3579 15 of 20

Sensors 2022, 22, 3579 15 of 21

Table 4. Comparison of training time and steps of the improved algorithm in simulation Figure
6b.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [31] 21.73 374,316

LSTM-DDPG 21.20 365,164
MN-LSTM-DDPG 19.70 346,667

After training the model in an environment with obstacles, 200 tests were performed
in simulation Figure 6b and simulation Figure 6c, respectively, to verify the generalization
ability of the model. The test process is shown in Figures 12 and 13. The two figures re-
spectively show the process of mobile robot avoiding obstacles from the starting point to
reach the target range.

Figure 12. The motion process of the mobile robot in simulation Figure 6b.

Figure 13. The motion process of the mobile robot in simulation Figure 6c.

Tables 5 and 6 record the test results in simulation Figure 6b and simulation Figure 6c,
respectively. As can be seen from Table 5, in terms of success rate, the success rate of
the algorithm proposed in [31] is 76%, while the success rate of the MN-LSTM-DDPG
algorithm proposed in this paper can reach 87%, which is significantly higher than that
in reference [31]. In terms of time, the test time of the algorithm in this paper is also
17.96% faster than the algorithm in [31]. It can be seen from Table 6 that the test effect of
each algorithm in simulation Figure 6c is better than that in simulation Figure 6b. This is
because when the obstacle is too large, the number of steps that the mobile robot needs to
move increases. Since the maximum number of steps of the mobile robot is limited in the
simulation environment, when the maximum number of steps has not reached the target
point, it is regarded as a failure.

Table 5. Comparison of test results of the improved algorithm in simulation Figure 6b.

Algorithm Success Rate (100%) Testing Time (h)

Algorithm in [31] 152/200 = 0.76 2.06
LSTM-DDPG 165/200 = 0.825 1.55

MN-LSTM-DDPG 174/200 = 0.87 1.69

Table 6. Comparison of test results of the improved algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)

Algorithm in [31] 168/200 = 0.84 1.53
LSTM-DDPG 172/200 = 0.86 1.32

MN-LSTM-DDPG 181/200 = 0.905 1.29

4.3. Comparison and Analysis with Other Algorithms

In order to fully evaluate the performance of the proposed algorithm, experiments
are conducted to compare the proposed algorithm with those in references [32,33]. In
the simulation Figure 6a, each algorithm is trained for 2000 episodes, and the average
reward returned by the mobile robot every 10,000 steps is recorded. The results are shown
in Figure 14. As can be seen from the figure, in the barrier-free environment, when the
algorithm proposed in [32] carries out path planning training, it tends to converge at
about 110,000 steps, but the reward value after convergence still shows a downward trend,

Sensors 2022, 22, 3579 16 of 20

and the training effect is not good. The algorithm proposed in [33] tends to stabilize
after 210,000 steps of training. However, the algorithm proposed in this paper can con-
verge and become stable after 120,000 steps of training, and the training effect is the best.
Table 7 records the comparison of training time and the number of steps of each algorithm.
As can be seen from the table, in terms of training time, the training time of the algorithm
proposed in [32] is 39.63 h. The training time of the algorithm proposed in [33] is 24.67 h.
However, the training time of the algorithm proposed in this paper is only 22.75 h, which is
significantly faster than the algorithm proposed in [32] and better than the algorithm pro-
posed in [33]. In terms of the number of training steps, the training steps of the algorithm
proposed in references [32,33] are 395,344 and 446,596, respectively, while the training steps
of the algorithm proposed in this paper are 417,701. The algorithm proposed in [32] will fall
into local optimum during training, which leads to the mobile robot turning in place, and in
this paper, the proposed algorithm can effectively avoid the phenomenon. Compared with
reference [32], this paper proposed that although the algorithm steps of training increased,
the training time is significantly reduced, and the training speed is still faster than the
algorithm in [32]. However, the algorithm proposed in this paper can effectively avoid
this phenomenon. Compared with the algorithm proposed in [32], although the number
of training steps is increased, the training time is significantly reduced, and the training
speed is still faster than the algorithm proposed in [32]. This indicates that the training
effect of the algorithm proposed in this paper is better than the algorithm proposed in the
references [32,33] in a barrier-free environment.

Sensors 2022, 22, 3579 17 of 21

speed is still faster than the algorithm proposed in [32]. This indicates that the training
effect of the algorithm proposed in this paper is better than the algorithm proposed in the
references [32,33] in a barrier-free environment.

Figure 14. Average reward returned by reference [32,33] and our proposed algorithm every 10,000
steps during training in simulation Figure 6a.

Table 7. Comparison of training time and steps of each algorithm in simulation Figure 6a.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [32] 39.63 395,344
Algorithm in [33] 24.67 446,596

Our proposed 22.75 417,701

To verify the success rate and generalization ability of the model trained in simula-
tion Figure 6a, 200 tests were conducted each in simulation Figure 6a and simulation Fig-
ure 6c, and the results are shown in Tables 8 and 9. It can be seen from Table 8 that the
path planning success rate of the algorithm proposed in [32] is 87.5%, and that of the al-
gorithm proposed in [33] is 90%. However, the path planning success rate of the algorithm
proposed in this paper can reach 100%, which is significantly higher than that in refer-
ences [32,33]. In terms of time, the algorithm proposed in this paper takes the same time
as the algorithm proposed in [33], which is significantly shorter than that in [32]. However,
it can be seen from the test results in Table 9 that the model trained by each algorithm in
a barrier-free environment is not ideal when tested in an obstacle environment, but the
algorithm proposed in this paper still performs better than the other two algorithms.

Table 8. Comparison of test results of each algorithm in simulation Figure 6a.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [32] 175/200 = 0.875 1.06
Algorithm in [33] 180/200 = 0.90 1.87

Our proposed 200/200 = 1 1.06

Table 9. Comparison of test results of each algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)
Algorithm in [32] 123/200 = 0.615 1.66
Algorithm in [33] 135/200 = 0.675 1.23

Our proposed 146/200 = 0.73 1.69

Figure 14. Average reward returned by reference [32,33] and our proposed algorithm every
10,000 steps during training in simulation Figure 6a.

Table 7. Comparison of training time and steps of each algorithm in simulation Figure 6a.

Algorithm Training Time (h) Training Steps (Step)

Algorithm in [32] 39.63 395,344
Algorithm in [33] 24.67 446,596

Our proposed 22.75 417,701

To verify the success rate and generalization ability of the model trained in simulation
Figure 6a, 200 tests were conducted each in simulation Figure 6a and simulation Figure 6c,
and the results are shown in Tables 8 and 9. It can be seen from Table 8 that the path
planning success rate of the algorithm proposed in [32] is 87.5%, and that of the algorithm
proposed in [33] is 90%. However, the path planning success rate of the algorithm proposed
in this paper can reach 100%, which is significantly higher than that in references [32,33].

Sensors 2022, 22, 3579 17 of 20

In terms of time, the algorithm proposed in this paper takes the same time as the algorithm
proposed in [33], which is significantly shorter than that in [32]. However, it can be seen
from the test results in Table 9 that the model trained by each algorithm in a barrier-
free environment is not ideal when tested in an obstacle environment, but the algorithm
proposed in this paper still performs better than the other two algorithms.

Table 8. Comparison of test results of each algorithm in simulation Figure 6a.

Algorithm Success Rate (100%) Testing Time (h)

Algorithm in [32] 175/200 = 0.875 1.06
Algorithm in [33] 180/200 = 0.90 1.87

Our proposed 200/200 = 1 1.06

Table 9. Comparison of test results of each algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)

Algorithm in [32] 123/200 = 0.615 1.66
Algorithm in [33] 135/200 = 0.675 1.23

Our proposed 146/200 = 0.73 1.69

In order to verify the advantages of the algorithm in this paper in an environment with
obstacles, the algorithm in this paper and the algorithm proposed in references [32,33] were
trained for 2000 episodes in simulation Figure 6b. The average rewards returned by the
mobile robot every 10,000 steps were recorded, and the results are shown in Figure 15. As
can be seen from the figure, when the algorithm proposed in [32] performs path planning in
simulation Figure 6b, it needs 240,000 steps of training to converge. The algorithm proposed
in [33] needs 140,000 training steps to become stable, while the algorithm proposed in this
paper can achieve convergence after 110,000 training steps, and the convergence effect is
obviously better than that in references [32,33]. It can also be seen from Table 10 that the
training time and number of training steps taken by the algorithm proposed in this paper
are significantly less than those in references [32,33].

Sensors 2022, 22, 3579 18 of 21

In order to verify the advantages of the algorithm in this paper in an environment
with obstacles, the algorithm in this paper and the algorithm proposed in references [32]
and [33] were trained for 2000 episodes in simulation Figure 6b. The average rewards re-
turned by the mobile robot every 10,000 steps were recorded, and the results are shown
in Figure 15. As can be seen from the figure, when the algorithm proposed in [32] performs
path planning in simulation Figure 6b, it needs 240,000 steps of training to converge. The
algorithm proposed in [33] needs 140,000 training steps to become stable, while the algo-
rithm proposed in this paper can achieve convergence after 110,000 training steps, and the
convergence effect is obviously better than that in references [32,33]. It can also be seen
from Table 10 that the training time and number of training steps taken by the algorithm
proposed in this paper are significantly less than those in references [32] and [33].

Figure 15. Average reward returned by references [32,33] and our proposed algorithm every 10,000
steps during training in simulation Figure 6b.

Table 10. Comparison of training time and steps of each algorithm in simulation Figure 6b.

Algorithm Training Time (h) Training Steps (Step)
Algorithm in [32] 21.03 365,978
Algorithm in [33] 21.67 379,379

Our proposed 19.70 346,667

In order to verify the success rate of the trained model in the obstacle environment,
each algorithm was tested 200 times each in simulation Figure 6b and simulation Figure
6c, and the results are shown in Tables 11 and 12. As can be seen from the test results in
Table 11, in terms of success rate, the algorithm proposed in [32] is 82.5%, the algorithm
proposed in [33] is 81%, and the algorithm proposed in this paper can reach 87%, which
is significantly higher than the algorithm proposed in references [32,33]. In terms of test
time, the test time of the algorithm proposed in this paper is longer than that proposed in
[33]. In the testing process, since the starting and ending points of the mobile robot are
randomly selected, their relative positions will have a certain influence on the testing time.
It can be seen from Table 12, in simulation Figure 6c, the success rate of the algorithm
proposed in this paper can reach 90.5%, higher than the algorithm proposed in references
[32,33], which indicates that the algorithm proposed in this paper has obvious advantages
in path planning in an environment with obstacles.

Figure 15. Average reward returned by references [32,33] and our proposed algorithm every
10,000 steps during training in simulation Figure 6b.

Sensors 2022, 22, 3579 18 of 20

Table 10. Comparison of training time and steps of each algorithm in simulation Figure 6b.

Algorithm Training Time (h) Training Steps (Step)

Algorithm in [32] 21.03 365,978
Algorithm in [33] 21.67 379,379

Our proposed 19.70 346,667

In order to verify the success rate of the trained model in the obstacle environment,
each algorithm was tested 200 times each in simulation Figure 6b and simulation Figure 6c,
and the results are shown in Tables 11 and 12. As can be seen from the test results in
Table 11, in terms of success rate, the algorithm proposed in [32] is 82.5%, the algorithm
proposed in [33] is 81%, and the algorithm proposed in this paper can reach 87%, which is
significantly higher than the algorithm proposed in references [32,33]. In terms of test time,
the test time of the algorithm proposed in this paper is longer than that proposed in [33]. In
the testing process, since the starting and ending points of the mobile robot are randomly
selected, their relative positions will have a certain influence on the testing time. It can
be seen from Table 12, in simulation Figure 6c, the success rate of the algorithm proposed
in this paper can reach 90.5%, higher than the algorithm proposed in references [32,33],
which indicates that the algorithm proposed in this paper has obvious advantages in path
planning in an environment with obstacles.

Table 11. Comparison of test results of each algorithm in simulation Figure 6b.

Algorithm Success Rate (100%) Testing Time (h)

Algorithm in [32] 165/200 = 0.825 1.71
Algorithm in [33] 162/200 = 0.81 1.35

Our proposed 174/200 = 0.87 1.69

Table 12. Comparison of test results of each algorithm in simulation Figure 6c.

Algorithm Success Rate (100%) Testing Time (h)

Algorithm in [32] 167/200 = 0.835 1.31
Algorithm in [33] 166/200 = 0.83 1.29

Our proposed 181/200 = 0.905 1.29

5. Conclusions

Since LSTM has the ability of “memory”, this paper uses LSTM to optimize the
DDPG network structure. By designing mixed noise and more reasonable reward function,
mobile robot path planning models can be rapidly trained. This effectively improves the
exploration efficiency of a mobile robot in a complex environment and ensures that the
mobile robot can reach the target point in a shorter time and by a better path. However, the
algorithm in this paper only considers static obstacles in the environment, and dynamic
obstacles are also important factors to be considered in many application scenarios. How
to effectively avoid the impact of dynamic obstacles on path planning is important research
content for the future.

Author Contributions: Conceptualization, H.G. and P.W.; methodology, H.G. and P.W.; software,
H.G. and N.C.; validation, H.G., P.W. and C.N.; formal analysis, H.G., P.W. and N.C.; investigation,
H.G. and P.W.; resources, H.G. and P.W.; data curation, H.G. and P.W.; writing—original draft
preparation, H.G. and P.W.; writing—review and editing, H.G., P.W. and N.C.; visualization, H.G.;
supervision, H.G., P.W. and C.N.; project administration, H.G. and P.W.; funding acquisition, H.G.,
P.W. and C.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the China Postdoctoral Science Foundation (Grant
No. 2021M702030) and Science and Technology Project of Shandong Provincial Department of
Transportation (Grant No. 2021B120).

Sensors 2022, 22, 3579 19 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
DDPG Deep Deterministic Policy Gradient
LSTM Long Short-Term Memory
OU Ornstein–Uhlenbeck
DQN Deep Q-Learning
RAdam Rectified Adam
RNN Recurrent Neural Network
MN Mixed Noise

References
1. Bai, X.; Yan, W.; Ge, S.S. Distributed Task Assignment for Multiple Robots Under Limited Communication Range. IEEE Trans.

Syst. Man Cybern. Syst. 2021, 1–13. [CrossRef]
2. Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D.D.; Stuckey, P.J. Integrated task assignment and path planning for capacitated

multi-agent pickup and delivery. IEEE Robot. Autom. Lett. 2021, 6, 5816–5823. [CrossRef]
3. Bai, X.; Yan, W.; Cao, M.; Xue, D. Distributed multi-vehicle task assignment in a time-invariant drift field with obstacles. IET

Control. Theory Appl. 2019, 13, 2886–2893. [CrossRef]
4. Chen, X.; Zhao, M.; Yin, L. Dynamic Path Planning of the UAV Avoiding Static and Moving Obstacles. J. Intell. Robot Syst. 2020,

99, 909–931. [CrossRef]
5. Gao, J.; Ye, W.; Guo, J.; Li, Z. Deep reinforcement learning for indoor mobile robot path planning. Sensors 2020, 20, 5493. [CrossRef]
6. Zhang, L.; Chen, Z.; Cui, W.; Li, B.; Chen, C.; Cao, Z.; Gao, K. Wifi-based indoor robot positioning using deep fuzzy forests. IEEE

Internet Things J. 2020, 7, 10773–10781. [CrossRef]
7. Lu, H. Artificial Intelligence and Robotics; Springer: Cham, Switzerland, 2021.
8. Sun, Y.; Fang, M.; Su, Y. AGV Path Planning based on Improved Dijkstra Algorithm. J. Phys. Conf. Series 2021, 1746, 012052.

[CrossRef]
9. Zhu, D.D.; Sun, J.Q. A New Algorithm Based on Dijkstra for Vehicle Path Planning Considering Intersection Attribute. IEEE

Access 2021, 9, 19761–19775. [CrossRef]
10. Chai, H.; Li, J.; Yao, M. Improved A* Algorithm for Mobile Robot Path Planning. Electron. Devices 2021, 44, 362–367.
11. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-star Algorithm: An improved A-star Algorithm for AGV Path

Planning in a Port Environment. IEEE Access 2021, 9, 59196–59210. [CrossRef]
12. Bounini, F.; Gingras, D.; Pollart, H.; Gruyer, D. Modified artificial potential field method for online path planning applications.

In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 180–185.
13. Chen, J.; Tan, C.; Mo, R.; Wang, Z.; Wu, J.; Zhao, C. Path Planning for Mobile Robot Based on Artificial Potential Field A*

Algorithm. Comput. Sci. 2021, 48, 327–333.
14. He, C.; Mao, J. AGV optimal path planning based on improved ant colony algorithm. MATEC Web Conf. 2018, 232, 3052.

[CrossRef]
15. Wang, H.; Zhao, X.; Yuan, X. Robot path planning based on improved adaptive Genetic Algorithm. Electron. Opt. Control 2014,

166, 255–260.
16. Sil, M.; Bhaumik, S.; Barai, R.K. Convex Optimization Based Path Planning Algorithm for Robot Motion in Constrained Space.

In Proceedings of the 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 October 2020; pp. 188–192.
17. Bai, X.; Yan, W.; Ge, S.S.; Cao, M. An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift

field. Inf. Sci. 2018, 453, 227–238. [CrossRef]
18. Bai, X.; Yan, W.; Cao, M. Clustering-based algorithms for multivehicle task assignment in a time-invariant drift field. IEEE Robot.

Autom. Lett. 2017, 2, 2166–2173. [CrossRef]
19. Wang, J.; Yang, Y.; Li, L. Reinforcement learning based on improved depth of mobile robot path planning. J. Electron. Meas.

Technol. 2021, 44, 19–24.
20. Chang, L.; Shan, L.; Jiang, C.; Dai, Y. Reinforcement based mobile robot path planning with improved dynamic window approach

in unknown environment. Auton. Robot. 2020, 45, 51–76. [CrossRef]
21. Lei, X.; Zhang, Z.; Dong, P. Dynamic path planning of unknown environment based on deep reinforcement learning. J. Robot.

2018, 2018, 1–10. [CrossRef]

http://doi.org/10.1109/TSMC.2021.3094190
http://doi.org/10.1109/LRA.2021.3074883
http://doi.org/10.1049/iet-cta.2018.6125
http://doi.org/10.1007/s10846-020-01151-x
http://doi.org/10.3390/s20195493
http://doi.org/10.1109/JIOT.2020.2986685
http://doi.org/10.1088/1742-6596/1746/1/012052
http://doi.org/10.1109/ACCESS.2021.3053169
http://doi.org/10.1109/ACCESS.2021.3070054
http://doi.org/10.1051/matecconf/201823203052
http://doi.org/10.1016/j.ins.2018.04.044
http://doi.org/10.1109/LRA.2017.2722541
http://doi.org/10.1007/s10514-020-09947-4
http://doi.org/10.1155/2018/5781591

Sensors 2022, 22, 3579 20 of 20

22. Guo, S.; Zhang, X.; Zheng, Y.; Du, Y. An autonomous path planning model for unmanned ships based on deep reinforcement
learning. Sensors 2020, 20, 426. [CrossRef]

23. Li, B.; Wu, Y. Path planning for UAV ground target tracking via deep reinforcement learning. IEEE Access 2020, 8, 29064–29074.
[CrossRef]

24. Low, E.S.; Ong, P.; Cheah, K.C. Solving the optimal path planning of a mobile robot using improved Q-learning. Robot. Auton.
Syst. 2019, 115, 143–161. [CrossRef]

25. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
26. Maoudj, A.; Hentout, A. Optimal path planning approach based on Q-learning algorithm for mobile robots. Appl. Soft Comput.

2020, 97, 106796. [CrossRef]
27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement

learning. arXiv 2013, arXiv:1312.5602.
28. Li, J.; Chen, Y.; Zhao, X.; Huang, J. An improved DQN path planning algorithm. J. Supercomput. 2021, 78, 616–639. [CrossRef]
29. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.
30. Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep

reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350. [CrossRef]
31. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation.

In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 31–36.

32. Jesus, J.C.; Bottega, J.A.; Cuadros, M.A.S.L.; Gamarra, D.F. Deep deterministic policy gradient for navigation of mobile robots in
simulated environments. In Proceedings of the 2019 19th International Conference on Advanced Robotics (ICAR), Belo Horizonte,
Brazil, 2–6 December 2019; pp. 362–367.

33. Li, P.; Ding, X.; Sun, H.; Zhao, S.; Cajo, R. Research on Dynamic Path Planning of Mobile Robot Based on Improved DDPG
Algorithm. Mob. Inf. Syst. 2021, 2021, 5169460. [CrossRef]

34. Bouhamed, O.; Ghazzai, H.; Besbes, H.; Massoud, Y. Autonomous UAV navigation: A DDPG-based deep reinforcement
learning approach. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain,
12–14 October 2020; pp. 1–5.

35. Du, Y.; Zhang, X.; Cao, Z.; Wang, S.; Liang, J.; Zhang, F.; Tang, J. An Optimized Path Planning Method for Coastal Ships Based on
Improved DDPG and DP. J. Adv. Transp. 2021, 2021, 7765130. [CrossRef]

36. Zhao, J.; Huang, F.; Lv, J.; Duan, Y.; Qin, Z.; Li, G.; Tian, G. Do RNN and LSTM have long memory. In Proceedings of the
International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 11365–11375.

37. Staudemeyer, R.C.; Morris, E.R. Understanding LSTM–a tutorial into long short-term memory recurrent neural networks. arXiv
2019, arXiv:1909.09586.

38. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

http://doi.org/10.3390/s20020426
http://doi.org/10.1109/ACCESS.2020.2971780
http://doi.org/10.1016/j.robot.2019.02.013
http://doi.org/10.1007/BF00992698
http://doi.org/10.1016/j.asoc.2020.106796
http://doi.org/10.1007/s11227-021-03878-2
http://doi.org/10.1016/j.compag.2021.106350
http://doi.org/10.1155/2021/5169460
http://doi.org/10.1155/2021/7765130
http://doi.org/10.1016/j.physd.2019.132306

	Introduction
	Related Works
	Deep Deterministic Policy Gradient (DDPG) Algorithm
	Long Short-Term Memory

	The Proposed Path Planning
	Introduction of LSTM
	Design of the Reward Function
	State Normalization of Mobile Robot
	Mixed Noise Design

	Experimental Results and Analysis
	Environment Construction of Simulation Experiment
	Effect Analysis of Our Algorithm
	Comparison and Analysis with Other Algorithms

	Conclusions
	References

