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Abstract: The frequent occurrence of single-phase grounding faults affects the reliable operation of
power systems. When a single-phase grounding fault occurs, it is difficult to accurately identify the
fault type because of the weak characterization and subtle distinction between different fault types.
Therefore, this paper proposes a single-phase grounding fault type identification method based on
the multi-feature transformation and fusion. Firstly, the Hilbert–Huang transform (HHT) was used to
preprocess the fault recorded wave data to highlight the characteristics between different fault types.
Secondly, the deep learning model ResNet18 and the long short-term memory (LSTM) are designed
to extract the complex abstract features and time-series correlation features from the preprocessed
data set separately. Finally, it designs a fusion model to combine the advantages of heterogeneous
models to identify the type of single-phase grounding fault. Experiments validate that the method is
good at fully mining the characteristics of the fault types contained in the fault recorded wave data,
so it can identify multiple types of faults with strong robustness and provide a reliable basis for the
subsequent formulation of targeted fault-handling measures.

Keywords: single-phase grounding fault; multi-feature fusion; fault identification; feature transfor-
mation; deep learning

1. Introduction

The basic requirements for power system operation are safety, reliability, high quality,
and economy. Moreover, the safe and reliable operation of a power system is related to
most aspects of national production and people’s lives.

The small current grounding system is widely used in 6–66 kV low and medium volt-
age distribution networks. This includes the neutral un-rounded power system, the neutral
resonant grounded power system and the neutral resister grounded power system [1].
Single-phase grounding faults in the small current grounding system are the most common
faults in the distribution system, accounting for approximately 80% of the total number
of faults.

When a single-phase ground fault occurs, a high-impedance loop is formed by the
line-to-ground capacitance, and the short-circuit current is very small. Simultaneously, the
line voltage remains symmetrical, which will not have a certain impact on the continuous
power supply of the load in a short time, and it can run for 1–2 h with faults [1].

However, when a single-phase ground fault occurs, the phase-to-phase voltages of
non-faulted phases rises to

√
3 times higher than the original. Figure 1 shows the capacitive

current distribution diagram when a single-phase grounding fault occurs in an neutral
un-rounded power system. It can be seen from the figure that a single-phase grounding
fault occurs in phase A of line II. The current direction of the faulty phase is from the line to
the generatrix, and the current direction of normal phases is from the generatrix to the line.
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harmonics generated during high-resistance grounding faults as the judgement basis. 
Shen et al. [6] proposed a method for identifying single-phase arc grounding faults in dis-
tribution networks which proved that compared with metal grounding faults, arc ground-
ing faults have a continuous transient process. The single-phase arc ground fault can be 
identified by extracting high-frequency signal slices. Chen et al. [8] proposed a high-re-
sistance fault identification model based on the wavelet characteristic of the fault zero 
sequence variable. Chen et al. [11] analyzed the causes of high-resistance faults producing 
high-frequency components by using zero a sequence equivalent network, and proposed 

Figure 1. Capacitor current distribution diagram.

Therefore, if the power grid is still running for a long time with single-phase ground
fault, it will create a threat to the weak point of the insulation in the power system, and
even damage the equipment and disrupt the safe operation of the system. Furthermore, it
may bring about huge economic losses and negative social impacts. Thus, it is necessary to
accurately identify the fault type the first time, and provide a reliable basis for arranging
targeted fault handling measures. The flow chart from the detection of single-phase
grounding fault to fault handling is shown in Figure 2.
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At present, there are many studies on the identification of single-phase ground fault
types. According to the different methods of the application of characteristics, the existing
identification methods can be divided into two categories: one is the characteristic analysis
method [2–15] such as: Zhou et al. [5] proposes an online monitoring and identification
method for high-resistance grounding faults in distribution networks, using high-order
harmonics generated during high-resistance grounding faults as the judgement basis. Shen
et al. [6] proposed a method for identifying single-phase arc grounding faults in distribution
networks which proved that compared with metal grounding faults, arc grounding faults
have a continuous transient process. The single-phase arc ground fault can be identified
by extracting high-frequency signal slices. Chen et al. [8] proposed a high-resistance fault
identification model based on the wavelet characteristic of the fault zero sequence variable.
Chen et al. [11] analyzed the causes of high-resistance faults producing high-frequency
components by using zero a sequence equivalent network, and proposed a single-phase
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high-resistance grounding fault identification method based on the energy ratio of the zero
sequence voltage wavelet packet in the distribution network. Sheng et al. [14] proposed
a high-resistance ground fault identification method based on the difference between the
neutral point current and the line zero sequence current projection.

Another category of identification method is to combine the time–frequency decompo-
sition with machine learning [16–25], such as: Nakho et al. [16] proposed a model combined
discrete wavelet transform and k-nearest neighbor machine learning algorithm to detect
and classify the high-impedance single-phase grounding faults. Tong et al. [19] proposed
a method for analyzing intermittent arc overvoltage in low-resistance grounded systems
using the Hilbert–Huang transform to extract the intrinsic mode functions component of
the zero sequence voltage, and then using SVM to identify the intermittent arc ground
faults. Zhang et al. [20] used wavelet analysis to extract the features from the phase voltage
and current, and built an XGBoost model to identify the three states of the neutral point
ungrounded system, namely: no fault, ground fault and zero line fault. Liang [23] proposed
an intelligent diagnosis method for a single-phase ground fault based on the data collected
by the PMU and the deep learning theory. However, this method requires a large amount of
data to achieve high accuracy. Srikanth et al. [24] proposed a novel three-dimensional deep
learning algorithm for the classification of power system faults. The method can identify
single-phase and two-phase ground faults, but cannot identify the subdivision types of
single-phase ground faults.

The existing research results have achieved a certain effect in single-phase ground
fault identification. However, most of them only select part of the characteristics of the
distribution network, that is, the unique attributes of a certain type of fault for analysis. As
a result, the description of the fault information is insufficient. It can only identify a few
specific fault types. Most of these methods lack universality and the types of single-phase
grounding faults have not been classified comprehensively, which is not conducive enough
for the operation personnel to arrange targeted fault treatment measures.

This paper considers the comprehensive identification of seven types of single-phase
ground faults, including high-resistance ground faults, intermittent arc ground faults, etc.,
for which more comprehensive fault characteristics need to be extracted. Due to the high
dimensionality of the fault data collected on site, the number of sampling points is large and
simultaneously a typical multivariate time series. It contains a wealth of complex nonlinear
characteristics and timing correlation characteristics that are strongly related to the fault
type. Deep learning is good at automatically learning complex and useful features from
high-dimensional data sets. It compares with many excellent manual feature extractors that
have appeared in the past, including scale invariant feature transform (SIFT) [26,27], Gabor
filter [28], and oriented gradient histogram (HOG) [29,30]. Deep learning models can learn
the features of different properties and different levels by building different structures and
adjusting the number of hidden layers, and it can directly implement an end-to-end task or
extract abstract features for the downstream task [31].

In summary, this paper proposes a single-phase grounding fault types identification
method based on multi-feature transformation and fusion. The innovation of this method
includes the following parts:

• A time–frequency analysis method, Hilbert–Huang transform with strong adaptive
capability, was used in the data preprocessing part and was helpful for extracting
the transient characteristics of faults and highlighting the characteristics of different
fault types.

• The deep learning models ResNet18 and LSTM were designed to extract the complex
abstract features related to the fault type from preprocessed data set, including complex
nonlinear features and timing correlation features.

• A single-phase ground fault type identification model was constructed based on the
idea of model fusion, which combines the advantages of heterogeneous models to
enhance the overall identification accuracy and robustness of the model.
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The rest of this paper is organized as follows. In Section 2, we reviewed the principles
of the related knowledge, including the Hilbert–Huang transform, Resnet18 and long short-
term memory (LSTM). The single-phase grounding fault type identification method based
on multi-feature transformation and fusion is introduced in Section 3. Section 4 focuses on
the design and analysis of experiments. Finally, Section 5 elaborates the conclusion of this
paper and the prospect of future work.

2. Related Works
2.1. Comparison of Related Works

We compare the advantages and disadvantages of some related works with the method
proposed in this paper, and summarize them in Table 1.

Table 1. Summary table of related works.

Author Identification
Scope Advantages Disadvantages Ref. Year of

Publication

Jie Li et al. High-impedance
ground fault

Analyzing transient
process when a

high-impedance ground
fault occurs.

1. Failure to identify and
locate other types of
single-phase ground faults.

2. The fault line-section
location principle proposed
in this paper does not
consider the relationship
between features and time
series.

[3] 2020

Kangli Liu
et al.

Fault feeder
identification in

flexible grounding
system

The method combines
wavelet packet transform

and grey T-type
correlation degree to

achieve good recognition
accuracy.

1. Wavelet transform needs to
select a suitable mother
wavelet and set a feasible
number of decomposition
layers, and the adaptive
performance is insufficient.

2. The specific types of
single-phase ground faults
cannot be further divided.

[4] 2021

Yaru Sheng
et al.

Fault with
resonant grounded

neutral

Solving the problem of
difficulty in single-phase

ground fault location
under resonant grounding

mode.

1. The robustness of the model
is poor, for example, the
parameter asymmetry will
reduce the identification
accuracy of the method.

2. The specific types of
single-phase ground faults
cannot be further divided.

[14] 2019

A. Nakho et al. High-impedance
ground fault

The method combines
discrete wavelet transform

with k-nearest neighbor
machine learning

algorithm to identification
high-impedance ground

fault.

1. The proposed approach
puts forward high
requirements for the
advanced configuration and
communication conditions
of FIs.

2. Failure to identify and
locate other types of
single-phase ground faults.

[16] 2021
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Table 1. Cont.

Author Identification
Scope Advantages Disadvantages Ref. Year of

Publication

Pullabhatla
Srikanth et al.

Two-phase and
single-phase
ground faults

The proposed network is
novel and this method can
identify the power system
faults with high accuracy.

1. The memory cost of model
increases compared to 2D
CNN.

2. The specific types of
single-phase ground faults
cannot be further divided.

[25] 2021

Proposed
method

Identification of
seven types of
single-phase

ground faults,
including

high-resistance
ground faults,

intermittent arc
ground faults, etc.

1. Hilbert–Huang
transform is used to
extract transient
features of faults in
data preprocessing,
which is more
adaptive than
wavelet transform.

2. The deep learning
models ResNet18
and LSTM are
designed to extract
complex nonlinear
features and timing
correlation features
of preprocessed data,
which increase the
richness and
completeness of
fault information.

3. Based on the idea of
model fusion, the
method combines
the advantages of
heterogeneous
models to enhance
the overall
identification
accuracy and
robustness.

1. The method is only based
on the recorded wave data.

This
work

The table shows that the method proposed in this paper has made innovations in
data preprocessing, feature extraction and modeling. The method can accurately identify a
variety of subdivision types of single-phase grounding faults, and has made an obvious
breakthrough in the identification scope. Refined and accurate identification results can
provide strong support for subsequent fault operation and maintenance.

2.2. Principles of the Related Knowledge

In the following, we will briefly review the related knowledge about the Hilbert–
Huang transform as well as that about the deep learning models Resnet18 and LSTM.

2.2.1. Principle of Hilbert–Huang Transform

Hilbert–Huang transform is an adaptive time–frequency analysis method, and the
result reflects the law of the frequency domain characteristics of the signal changing with
time. As an important means of analysis in the time–frequency domain, Hilbert–Huang
transform not only absorbs the multi-resolution advantages of the wavelet transform, but
also overcomes the difficulty of selecting the wavelet basis function in wavelet transform.
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It can reflect local features, which is helpful for extracting important features in complex
fault signals [32,33].

Hilbert–Huang transform includes two processes: empirical mode decomposition
(EMD) and Hilbert transformation. Empirical mode decomposition adaptively decomposes
a complex signal into a series of intrinsic mode functions (IMFs). The instantaneous
frequency of intrinsic mode functions at any point is meaningful. After empirical mode
decomposition, the Hilbert transform is performed on each intrinsic mode functions, and
then the instantaneous frequency and instantaneous amplitude of each intrinsic mode
function can be obtained.

The intrinsic mode function components decomposed by empirical mode decomposi-
tion need to meet two conditions: one is that the number of extreme points and the number
of zero-crossing points are the same or different by one in the entire signal length; and
the other is that the upper and lower envelopes are symmetrical to the time axis at any
time [34]. The process of empirical mode decomposition is shown in Figure 3.
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The analytic signal zi(t) consists of the original intrinsic mode functions component ci(t)
and its corresponding Hilbert transform result ĉi(t).

zi(t) = ci(t) + jĉi(t) = Ai(t)ejθi(t)dτ (1)

The transformation process of ĉi(t) is shown in the following formula.

ĉi(t) =
1
π

∫ ∞

−∞

ci(τ)

t− τ
dτ (2)

The instantaneous amplitude Ai(t) and instantaneous frequency ωi(t) from (1) are
expressed as:

Ai(t) =
√

c2
i (t) + ĉ2

i (t) (3)
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tanθi(t) =
ĉi(t)
ci(t)

. (4)

ωi(t) =
dθi(t)

dt
(5)

The Hilbert spectrum of feature is expressed as:

H(ω, t) = Re

[
q

∑
i=1

Ai(t)ej
∫

ωi(t)dt

]
(6)

where q represents the number of decomposed intrinsic mode function components. By
performing a Hilbert–Huang transform on fault data, the hidden local transient fea-
tures include instantaneous frequency, instantaneous amplitude and Hilbert spectrum
are extracted.

2.2.2. Principle of Resnet18 Network

The deep learning model learns more useful features by building the neural network
model with many hidden layers, thereby ultimately improving the of classification or
regression accuracy. The ability of deep learning models to extract features is mainly
achieved through convolutional layers, activation operations, pooling layers, etc., of which
the convolutional layer plays a major role. The convolution kernels in the convolution layer
are equivalent to many different filters, and the feature extraction in the data set is obtained
by using the convolution layer to “filter” the original features [35–37].

However, as the number of neural network layers increases, the problem of vanishing
gradient restricts the performance of deep learning, and shallow networks hardly learn any
knowledge. Additionally, because of the blindness of the convolution kernels parameters
and the inhibitory effect of the activation function, the execution of each convolution
operation and the corresponding activation operation will waste some information on the
basis of the feature results extracted in the previous step.

The Resnet network uses the residual connection method to solve the problem of the
vanishing gradient in the deep network [38]. Its basic structure is shown in Figure 4.
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x

F(x)

H(x)=F(x)+x

x

identity

Figure 4. Residual network structure.

By the way of the “shortcut connections”, the model directly passes the input x to the
output, and the output F(x) after two convolutional layers is expressed as follows:

F(x) = W2σ(W1x) (7)

where σ represents the activation function (Relu). Additionally, the output result F(x) of
the two convolutional layers is added to the identity mapping of the input x itself. The
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purpose of this operation is to ensure that the effect of the deep network is not weaker than
that of the shallow network. Then, through the Relu function, the output y is obtained.

y = F(x, {Wi}) + x (8)

When the output of the residual block is required to be a specific dimension, a linear
transformation Ws can be performed on x in the shortcut connections, which is expressed
as follows.

y = F(x, {Wi}) + Wsx (9)

Experiments have shown that the designed residual block usually needs to be at least
two layers or more. If there are other convolutional layers or general layers between the
two convolutional layers in the residual block, it can be expressed as:

y =
L−1

∑
i=1

F(x, {Wi}) + Wsx (10)

In the process of backpropagating to solve the model parameters, the chain derivation
process can be changed to the following form.

dloss
dx

=
dloss

dy
× dy

dx
=

dloss
dy

(
1 +

d ∑L−1
i=1 F(x, {Wi})

dx

)
. (11)

where 1 means that shortcut connections can inherit the gradient unconditionally. When
the result of formula 12 is close to 0, the model can still maintain the gradient when the
number of network layers is small. Therefore, the residual network can well solve the
problem that the model is difficult to train due to the increase in the number of network
layers [39].

Gradient =
d ∑L−1

i=1 F(x, {Wi})
dx

(12)

Therefore, this paper designs and uses the Resnet18 model to extract the complex
abstract features of the data related to the single-phase ground fault type.

2.2.3. Principle of Long Short-Term Memory (LSTM) Network

The LSTM network is a variant form of the recurrent neural network which can
learn the long-term dependence information of time series. Its basic structure is shown in
Figure 5.
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The LSTM model selectively memorizes the input information and retains the key
information by controlling the input gate, the forget gate and the output gate [40]. The
calculation process of LSTM is shown in Figure 6.
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The calculation formulas of input gate it, forget gate ft and output gate ot are given below:

it = σ(ωi·[ht−1, xi] + bi) (13)

ft = σ
(

ω f ·[ht−1, xi] + b f

)
(14)

ot = σ(ωo·[ht−1, xi] + bo) (15)

Cell state (long-term memory) is expressed as:

ct = ft·ct−1 + it·c̃t (16)

Memory (short-term memory) is expressed as:

ht = ot·tanh(ct) (17)

The candidate state, that is, the new knowledge summed up, is expressed as:

c̃t = tanh(ωc·[ht−1, xt] + bc). (18)

where it, ft, ot are the state results of the input gate, forget gate, and output gate, re-
spectively. ωi, ω f , ωo are the corresponding connection weights. bi, b f , bo are the
corresponding bias items, and σ is the activation function.

Compared with other deep learning models, the loop structure network model can
correlate the input of variables at different moments. It can extract more timing correlation
characteristics than the general deep neural network model, and it is more suitable for the
analysis of time series variables.

Since the recorded wave data of the distribution network is in the form of typical
multivariable time series, it has a great correlation in time, so consider using the LSTM
model to extract the timing correlation characteristics [41].

3. Problem Formulation and Methodology

The overall process of the single-phase grounding fault type identification method
based on multi-feature transformation and fusion proposed in this paper is shown in
Figure 7. The recorded wave data collected on the distribution network is an “electrocardio-
gram” of the real-time status and operation of the distribution network, which can provide
the most direct and accurate evidence of the type identification of single-phase ground
faults [42]. This paper therefore considers the fault recorded wave data as the original
data set. Firstly, the fault recorded wave data are divided into the key feature part and the
non-key feature part, and perform the Hilbert–Huang transform on the key feature part.
As such, the important features related to the fault type are separated from the complex
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signal to generate new features. At the same time, in order to ensure the integrity of the
fault information, the Hilbert–Huang transform result of the key feature part is spliced
with the original non-key feature part; then, two deep learning models are designed and
used: ResNet18 and LSTM models to learn the preprocessed data set, and based on the
idea of model fusion, to fuse the learning results of the two deep learning models in order
to identify the fault type.
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3.1. Data Preprocessing

In order to clarify the observation object and reduce the amount of data analyzed, only
the recorded wave data in fault state are intercepted for analysis.

For all the original features contained in the recorded wave data, since many of the
characteristics remain constant throughout the entire period, or show periodic regular
changes, it is of little significance for the identification of single-phase ground fault types.
Based on the experience of the operation personnel, all electrical characteristics contained
in the recorded wave data are divided into two parts: the key feature part and the non-key
feature part. In order to further analyze the key features, we performed the Hilbert–Huang
transform on them to obtain the corresponding time–frequency information. The data
preprocessing part involved the sparse representation of compressed sensing technology.
The original signal was transformed into a compressible time–frequency domain by Hilbert–
Huang transform, and a sparse representation of the original signal was obtained. While
reducing the feature dimension, its representation ability was improved.

The zero sequence current 3I0 of the line bus is one of the key features. Perform
empirical mode decomposition on 3I0 of several lines with different fault types and compare
the results.

In Figure 8, the first signal in each subgraph is the original signal, followed by imf1,
imf2, . . . , imfn are the decomposed intrinsic mode function components, and the res
represents the residual signal. The red rectangle emphasizes the transition stage from the
normal state to the fault state. Since the empirical mode decomposition is adaptive, the
number of decomposed intrinsic mode functions components is different. In Figure 8, (a) is
an intermittent arc ground fault; (b) is a ground fault through a 250 Ω resistance; (c) is a
ground fault through a 1000 Ω resistance; (d) is a ground fault through a 2000 Ω resistance;
(e) is a soil ground fault; and (f) is a ground fault through arc resistance.
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Figure 8 shows that there are obvious differences in the empirical mode decomposition
results of the zero-sequence current 3I0. These zero-sequence current 3I0 come from the
line bus with different fault types. The number of intrinsic mode function components,
waveforms, and residual waveforms are not the same: these can be used as the basis for
subsequent fault identification model research.

The Hilbert transform was performed on intrinsic mode function 1 of the line with
intermittent arc ground fault, as shown by (a) in Figure 8. The instantaneous amplitude
and instantaneous frequency curves with the sampling points were obtained, as shown in
Figure 9.
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The above results show that the use of the Hilbert–Huang transform is beneficial to
extract the transient characteristics of the recorded wave data and enhances the feature
difference between the different types of single-phase grounding faults.

Although the correlation between the non-key features part and the single-phase
ground fault type is weak, it still contains some fault-related information. We spliced the
result of the key feature part after the Hilbert–Huang transform with the original non-key
feature part. While keeping the feature dimension within an acceptable range, it also
guarantees the integrity of the fault information.

In order to make the preprocessed data set become an image sample set, which is
convenient for subsequent use of convolution operations to extract features, it is also
necessary to normalize the features and convert them into 2D grayscale images.

3.2. Single-Phase Ground Fault-Type Identification Model
3.2.1. The Overall Structure of the Model

The identification model proposed in this paper is Resnet18_LSTM_DT, and its frame-
work is shown in Figure 10.
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After the recorded wave data collected by the distribution network were preprocessed
based on the operation described in 3.1, a hybrid model structure was then used to identify
the type of single-phase grounding faults. The whole identification model structure consists
of two parts: the basic classifier and the secondary classifier.

The preprocessed multi-dimensional time series data set was used to train the LSTM
model, and the preprocessed data set was converted into 2D grayscale image, which was
used to train the ResNet18 model. These two deep learning models were designed to extract
the time-series-related features and complex nonlinear features of the data set, respectively.
Then, the secondary classifier was used to fuse and learn the feature results extracted by
the two basic learners, and finally identify the type of single-phase grounding fault.
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3.2.2. Extracting Complex Nonlinear Features Based on the Adjusted Resnet18 Model

According to the number of features and the hardware environment, choose the
ResNet18 model to build one of the basic learners, and its structure is shown in Figure 11.
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Figure 11. Basic structure of ResNet18.

This paper only uses ResNet18 as the feature extractor. Combined with the charac-
teristics of the fault recorded wave data, some changes were made to it on the basis of the
original structure. In order to match the dimensionality of the fault recorded wave data,
the convolution kernel of the first convolutional layer was modified to 3× 3. Since the
classification function of ResNet18 was needless at the end, the fully connected layer and
the softmax layer were removed when the feature was to be extracted after this model was
trained. The modified network parameters are shown in Table 2.

Table 2. Model parameters of ResNet18.

Name Output Size (Number of Channels, Core Size)

input 3 × 224 × 224 -
Conv1 64 × 112 × 112 64 × 3 × 3, step size = 2

the first piece: Conv2 256 × 56 × 56
[

64 × 3 × 3
64 × 3 × 3

]
× 2

the second piece: Conv3 512 × 28 × 28
[

128 × 3 × 3
128 × 3 × 3

]
× 2

the third piece: Conv4 1024 × 14 × 14
[

256 × 3 × 3
256 × 3 × 3

]
× 2

the fourth piece: Conv5 2048 × 7 × 7
[

512 × 3 × 3
512 × 3 × 3

]
× 2

ReLu 2048 × 7 × 7 -
average pool 2048 × 1 2048 × 7 × 7

3.2.3. Extracting Timing Correlation Features Based on the Adjusted LSTM Model

The model structure of LSTM was adjusted based on the fault recorded wave data
and the experimental results of modifying the hyperparameters, as shown in Figure 12.
When the number of LSTM layers was set to 2 and the number of nodes in the hidden layer
was set to 100, the model had better accuracy and faster convergence speed. Therefore, the
LSTM basic classifier built in this paper is shown in Figure 13, where xi is the multivariate
feature vector at time i, m is the number of sampling time points, and n1 is the number of
hidden nodes.
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The two basic classifiers can be trained in parallel, and the loss functions are both
cross-entropy loss functions.

3.2.4. Construction of the Secondary Data Sets and Fusion Models

For the two basic learners built herein, the ResNet18 model can extract the complex
nonlinear features of the data set, and the LSTM model can extract the time series-related
features. The secondary learner fuses and learns the complementary feature results ex-
tracted by the two basic learners to generate the final classification result [43]. The secondary
classifier selected in this paper is the decision tree model.

The decision tree algorithm can recursively select the optimal features of the sample,
and segment the training data according to the feature, so that each subset of the data has
a best classification result [44,45]. Moreover, its calculation is relatively simple, and no
parameter assumptions are required. It is highly explanatory and easy to transform into
classification rules as well as suitable for high-dimensional data [46].

The type of decision tree used in our methodology as the secondary classifier is
the CART tree, which can handle continuous or discrete feature types. The criterion for
selecting features is the Gini index. The calculation method of the Gini index is given below.

G(p) =
K

∑
k=1

pk(1− pk) = 1−
K

∑
k=1

p2
k (19)

The Gini index represents the probability of a randomly selected sample being incorrectly
classified. The smaller the Gini index, the higher the purity of the separated subclass.

The output feature dimensions of LSTM and ResNet18 models are (1, n1) and (1, n2),
respectively. The two sets of features are spliced and combined with the true label of the
single-phase ground fault type (0–6, respectively, represent 7 different types of single-phase
ground fault types) to form a secondary data set, as shown in Table 3.

Table 3. Format of the secondary data set.

LSTM Resnet18 label

Index h0 h1 h2 ... hn1 hn1+1 ... hn1+n2 y
0 0.348 0.004 0.025 ... 0.102 0.007 ... 0.64 6

The secondary classifier trained through the secondary data set. The grid search
algorithm was used to find the best parameter settings of the CART model.

4. Analysis of Results
4.1. Establishment of Training Set and Testing Set

The recorded wave data used in this paper come from a real testing field in China.
By changing the grounding mode of the neutral point, the type of grounding medium,
the value of the grounding resistance, etc., different types of single-phase grounding
fault recorded wave data can be obtained. Among them, the neutral point grounding
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method covers mainstream forms such as the neutral un-grounded, the neutral 32 resonant
grounded, and the neutral resister grounded. The grounding medium includes common
fault types such as intermittent arc grounding, stable arc grounding, earth grounding, and
resistance grounding; typical values of grounding resistance are 250 Ω, 1000 Ω, 2000 Ω,
and 5000 Ω. In the three grounding operation modes, the number of 420, 600, and 240 fault
recorded wave data are generated, respectively. The sampling frequency of the recorded
wave data device is 10 kHz, the sampling period includes 12,014 sampling points, and
each recorded wave data sample contains 291 electrical characteristics. During the analysis
process, the training set and the testing set were divided into a ratio of 8:2.

The experimental environment platform conditions used were those of the Windows10
X64 operating system, Inter i5-7200. The code was implemented using the Python program-
ming language, ResNet18 and LSTM were implemented using the pytorch framework, and
the classic machine learning algorithm used in the model fusion was implemented using
the Keras framework.

4.2. Evaluation Index

In order to verify the identification performance of the model for single-phase ground-
ing faults, the evaluation index used in this paper was the accuracy rate of the testing set,
and the calculation formula is shown below:

accuracy(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

1(ŷi = yi) (20)

where ŷ represents the identification category of the fault sample, y represents the true
category of the fault sample, and nsamples is the number of testing samples.

4.3. Design and Analysis of Experiments
4.3.1. Performance Comparison of Time–Frequency Analysis Methods

This experiment compares the identification performance of the model trained on data
preprocessed by two time–frequency analysis methods, the Hilbert–Huang transform, and
wavelet transform, respectively.

According to references [46–48], the wavelet basis function of the wavelet transform
chose Daubechies (db5). The wavelet transform was performed on the key feature part
and then spliced with the non-key feature part, and the single-phase ground fault type
identification model was built in the same way. The data sets obtained by wavelet transform
or Hilbert–Huang transform were used to train the identification model separately. The
features extracted by the two basic learners were fused. Additionally, the dimensionality
of the fusion result was reduced based on principal components analysis (PCA), and the
visualization of the result are shown in Figure 14. It can be seen that compared to the
sub-figure (b), the boundaries of each fault category in the sub-figure (a) are clearer, and
the fused features can more accurately describe the fault type information. Although
there are still some overlapping points between the different categories, the reason may
be the inevitable loss of information caused by reducing the high-dimensional data to
three-dimensional data.

The data sets preprocessed by these two time–frequency analysis methods were used
to train the hybrid model ResNet18_LSTM_DT separately, and the final identification
effect comparison is shown in Figure 15. This shows that the effect of the hybrid model
obtained by combining with the Hilbert–Huang transform is significantly better than that
of combining with the wavelet transform. After the model converges, their identification
accuracy is 98.8% and 81.3%, respectively.
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4.3.2. Performance Analysis of the Preprocessing Methods

This experiment analyzed the effectiveness of Hilbert–Huang transform on the key
features of the fault recorded wave data to improve the final classification accuracy of
the model. The ResNet18-LSTM-DT hybrid model was trained by the data obtained by
the three preprocessing methods, and then the recognition performance of the model
was compared. The comparison results are shown in Table 4. The analysis shows that
method b does not perform any feature preprocessing operations in advance, and that the
classification accuracy is the lowest at 83.0%. In method a, the Hilbert–Huang transform is
only performed on the key feature parts, and the remaining 286 original electrical quantities
are directly discarded. It loses part of the fault-related information, but it decomposes
and transforms the key features to extract new features that are more conducive to the
identification of the fault type, so the classification accuracy is better than method b. The
method c used in this paper combines the advantages of method a and method b. It extracts
new features that are more conducive to fault type identification. Additionally, it also keeps
the feature dimension within an acceptable range while ensuring the integrity of the fault
information. The accuracy of fault type identification is also optimal.
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Table 4. Comparison of the identification effects of the hybrid model trained on the recorded wave
data obtained by the three preprocessing methods.

Recorded Wave Data Preprocessing Methods Feature Dimension Acc

Method a Hilbert–Huang transform results of key features part (185, 600) 0.879

Method b No preprocessing (291, 600) 0.830

Method c Hilbert–Huang transform results of key features part
+ remaining original features (471, 600) 0.988

4.3.3. Performance Analysis of Fusion Process

This experiment analyzed the relationship between the feature dimensions extracted
by the basic learners and the final prediction classification accuracy. Additionally, it is
verified that the decision tree algorithm used in the model fusion process has the highest
classification accuracy. This experiment used two different feature splicing methods, as
shown in Figure 16.
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Splicing method 1: Two basic learners used the preprocessed data set for training,
spliced the feature extraction results of the penultimate layer of the two models and the
true type label of the single-phase ground fault to form the secondary data set. The feature
dimension after splicing is (1, 2148).

Splicing method 2: Two basic learners used the preprocessed data set for training and
performed single-phase grounding fault type identification. The two models outputted
predicted classification results in the form of attribution probabilities of seven single-phase
ground fault types. These two sets of classification probability and the true type labels of the
single-phase grounding faults constituted the secondary data set. The feature dimension
after splicing is (1, 14).

In this experiment, four machine learning algorithms were compared, namely: support
vector machine, naive Bayes, logistic regression, and decision tree. They were separately
used to train the secondary data set. Due to the small number of samples, in order to
prevent the model from overfitting, the pruning operation was added when training the
decision tree model, and the regularization term of the Logistic regression model was
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adjusted. The final classification accuracy results are shown in Table 5. The analysis shows
that the prediction classification effect of the four machine learning models trained based
on feature splicing method 1 are significantly better than that trained based on feature
splicing method 2. Additionally, when using SVM and decision tree algorithms, there are
few misclassifications. When using decision tree algorithms, the predictive classification
effect is the best, with an accuracy of 98.8%. It is proved that the secondary data set obtained
by the first feature splicing method can more fully express the information related to the
single-phase ground fault type, and combining decision trees as secondary classifiers can
achieve better predictive classification results.

Table 5. Comparison of the classification effects using different splicing methods and different
secondary classifiers.

Classic Machine
Learning Algorithms SVM Naive Bayes Logistic

Regression Decision Tree

Splicing Method 1 0.979 0.935 0.863 0.988
Splicing Method 2 0.872 0.928 0.687 0.908

4.3.4. Performance Analysis of the Fusion Model and Single Model

This experiment compared and analyzed the prediction classification effect of the fusion
model proposed in this paper and the effect of using the ResNet18 or LSTM model alone.

The number of training epochs was set to 500, and the classification effect comparison
of LSTM, ResNet18, and the hybrid model ResNet18_LSTM_DT is shown in Figure 17. It
shows that the accuracy of using the LSTM model alone is the lowest. After 200 epochs,
there is no significant increase, remaining at approximately 58%, but the fluctuations are
relatively smooth after convergence. When using the ResNet18 model alone, because the
model contains more parameters, the convergence speed of the model is slow. Moreover,
the fluctuation of the model accuracy is relatively large, and the maximum change range
of adjacent epochs is 46%. At the same time, due to the depth of the neural network and
the huge amount of parameters, the ResNet18 model has a strong ability to fit the complex
nonlinear relationship between the input and the output. After the model converges, the
accuracy remains at approximately 90%. The hybrid model ResNet18_LSTM_DT performs
the best in terms of model training speed, stability, and accuracy after model convergence.
It combines the advantages of LSTM and ResNet18 to extract timing-related features and
nonlinear features related to single-phase grounding fault type. After the model converges,
the accuracy remains at approximately 98%, and at best can reach 98.8%. This experiment
verifies the effectiveness of the hybrid model for the identification of the single-phase
ground fault type.
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4.3.5. Comparison with AlexNet

As a classic CNN model, AlexNet is widely used in the field of image classification
and recognition, and has achieved satisfactory results. Many tricks and methods in the
AlexNet model have been used to this day, and it also provides ideas for the generation of
subsequent classic neural networks.

Therefore, in order to verify the effectiveness of the Resnet18_LSTM_DT model in the
identification of single-phase ground fault types, AlexNet was used for comparison. The
same data set was fed to each network and the trained network was subsequently tested
using the same testing set. Table 6 presents the testing results.

Table 6. Average correct identification rate of single-phase grounding fault types (%).

Fault Type Resnet18_LSTM_DT AlexNet

Intermittent arc grounding fault 95.3 92.2
Stable arc grounding fault 100 93.5

Earth grounding fault 96.7 94.0
Ground fault through 250 Ω resistor 100 100

Ground fault through 1000 Ω resistor 100 100
Ground fault through 2000 Ω resistor 97.8 98.1
Ground fault through 5000 Ω resistor 96.2 94.3

Average 98.0 95.9

From the data in the above table, it is clear that the average accuracy of AlexNet for
single-phase grounding fault type identification is 95.9%, while the average accuracy of the
Resnet18_LSTM_DT model is 98.0%. Only in the 2000 Ω resistor ground fault did AlexNet
work slightly better than the Resnet18_LSTM_DT model, and in other fault types, the
identification accuracy of the Resnet18_LSTM_DT model is better than or equal to AlexNet.

4.3.6. Robust Performance

The robustness of the model was verified by adding noise to the data set. This
experiment directly added noise to the recorded wave data, and then used the methods
mentioned in this paper to perform feature preprocessing and subsequent model training.
The influence of noise on the single-phase ground fault identification method was analyzed
by adding different types and different proportions of noise.

The noise added in this experiment included two types: Gaussian noise and salt and
pepper noise. Gaussian noise may originate from the noise and mutual influence of circuit
components, while the salt and pepper noise usually is bright and dark noise generated
by transmission channels and decoding processing. The average value of Gaussian noise
generated in this experiment is 0. Different noise signals were generated by adjusting the
noise ratio of salt and pepper noise and the standard deviation of Gaussian noise, which
were superimposed with the recorded wave data collected by the distribution network.
Among them, the results of adding salt and pepper noise with a noise ratio of 0.02 or
Gaussian noise with standard deviation of 0.002 to the sample data are shown in Figure 18.

The effect of the identification model trained on the data set obtained by superimposing
different noises is shown in Table 7. Although the classification effect of the model decreases
with the increase in the noise ratio or standard deviation, the overall effect of the model is
still relatively good, which proves that the model has a certain robust performance.

Through the analysis and demonstration of the above six experiments, it was proven
that the single-phase grounding fault type identification method based on multi-feature
transformation and fusion has advantages in feature preprocessing and model building.
Combined with Hilbert–Huang transform, it alleviates the problems of weak fault char-
acteristics and insignificant difference between the fault types when single-phase ground
faults occur. The hybrid model ResNet18_LSTM_DT designed in this paper combines the
advantages of each component model, can fully extract and utilize the information related
to the fault type, and can accurately identify multiple types of single-phase grounding
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faults. Comparison experiments, ablation experiments, and noise experiments prove that
this method has good accuracy, versatility, and robustness.
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Table 7. Comparison of the final classification effect of adding noise to the data set.

Noise Type Noise Ratio/Standard Deviation Acc

Salt and pepper noise

0.02 0.976
0.05 0.969
0.1 0.925
0.2 0.871
0.3 0.762

Gaussian noise

0.002 0.985
0.005 0.967
0.01 0.933
0.02 0.857
0.03 0.804

5. Conclusions and Future Work

This paper proposes a single-phase grounding fault type identification method based
on multi-feature transformation and fusion. Firstly, this method used the Hilbert–Huang
transform for the preprocessing of the recorded wave data of the distribution network to
highlight the characteristics of different fault types; and then used LSTM and ResNet18
models to train the preprocessed data set; the decision tree model was used to fuse and
learn the feature extraction results of the two basic classifiers to generate the final single-
phase ground fault type identification result. Through the identification method proposed
in this paper, the hidden features that reflect the difference of fault types are extracted
and highlighted, and a variety of single-phase grounding fault types can be identified
with high accuracy and robustness. In the application of the power system, the model
trained well can be deployed in the 10 kV switch cabinet in the station, the ring main unit
and sub-section post outside the station or pole-mounted switch. The control signal of
the equipment was generated according to the model identification result and provided a
reliable basis for the subsequent formulation of targeted fault handling measures.

In view of the single-phase grounding fault type identification method proposed in
this paper, the following prospects are made:

• The method proposed in this paper is only based on the fault recorded wave data
collected by the wave recorder for analysis. With the improvement of information
collection devices and transmission systems in power systems, more characteristic
data related to single-phase ground fault types can be obtained, such as: ledger data,
attribute data, external data including environmental data and weather data, etc. It
can also be included on the basis of fault type identification for analysis.
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• The single-phase grounding fault has the problem of imbalance between the fault data
and the normal data, and the imbalance between the various fault types, which will
affect the classification accuracy of the identification model. Follow-up research may
analyze and consider this.
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