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Abstract: Diabetic neuropathy (DN) is one of the prevalent forms of neuropathy that involves
alterations in biomechanical changes in the human gait. Diabetic foot ulceration (DFU) is one of
the pervasive types of complications that arise due to DN. In the literature, for the last 50 years,
researchers have been trying to observe the biomechanical changes due to DN and DFU by studying
muscle electromyography (EMG) and ground reaction forces (GRF). However, the literature is
contradictory. In such a scenario, we propose using Machine learning techniques to identify DN
and DFU patients by using EMG and GRF data. We collected a dataset from the literature which
involves three patient groups: Control (n = 6), DN (n = 6), and previous history of DFU (n = 9) and
collected three lower limb muscles EMG (tibialis anterior (TA), vastus lateralis (VL), gastrocnemius
lateralis (GL)), and three GRF components (GRFx, GRFy, and GRFz). Raw EMG and GRF signals were
preprocessed, and different feature extraction techniques were applied to extract the best features
from the signals. The extracted feature list was ranked using four different feature ranking techniques,
and highly correlated features were removed. In this study, we considered different combinations of
muscles and GRF components to find the best performing feature list for the identification of DN and
DFU. We trained eight different conventional ML models: Discriminant analysis classifier (DAC),
Ensemble classification model (ECM), Kernel classification model (KCM), k-nearest neighbor model
(KNN), Linear classification model (LCM), Naive Bayes classifier (NBC), Support vector machine
classifier (SVM), and Binary decision classification tree (BDC), to find the best-performing algorithm
and optimized that model. We trained the optimized the ML algorithm for different combinations
of muscles and GRF component features, and the performance matrix was evaluated. Our study
found the KNN algorithm performed well in identifying DN and DFU, and we optimized it before
training. We found the best accuracy of 96.18% for EMG analysis using the top 22 features from
the chi-square feature ranking technique for features from GL and VL muscles combined. In the
GREF analysis, the model showed 98.68% accuracy using the top 7 features from the Feature selection
using neighborhood component analysis for the feature combinations from the GRFx-GRFz signal.
In conclusion, our study has shown a potential solution for ML application in DN and DFU patient
identification using EMG and GRF parameters. With careful signal preprocessing with strategic
feature extraction from the biomechanical parameters, optimization of the ML model can provide
a potential solution in the diagnosis and stratification of DN and DFU patients from the EMG and
GREF signals.
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1. Introduction

Diabetic neuropathy (DN) is one of the prevalent forms of neuropathy observed in
diabetic patients. It exhibits a deleterious effect on the biomechanical system of the patients,
especially showing disorder in the walking cycle, known as the gait cycle [1-4]. Diabetic
neuropathy intensifies the sensitivity loss in somatosensory nerves and dysfunctionality
in distal muscles, especially in the lower limbs, which are the prominent reason for the
alteration in the electrophysiological and biomechanical system during gait [5-10]. Due
to the changes in biomechanics during gait, a patient suffers from alteration to plantar
pressure, kinematic patterns, ground reaction forces, and muscle activities. Long-term
alteration to the biomechanics leads to foot ulceration and, in worsening cases, amputation
of the lower limb [5-7,11-16]. Foot ulceration is one of the pervasive types of long-term
chronic complications in DN patients, which indicates worsening DN [17,18].

From the literature, it can be found that due to DN, patients exhibited delayed mus-
cle activation peak of the tibialis anterior (TA), vastus lateralis (VL), gastrocnemius lat-
eralis (GL), and gastrocnemius medialis (GM) muscles in different phases of the gait
cycle [4,5,8,9,11,12,14,19-21]. The changes in lower limb muscle activities during gait of
DN patients are also related to other alterations, such as higher plantar pressure distri-
bution, greater stance phase, modified ground reaction forces (GRF), and moments of
force [6,12,13,22-24] In Akashi et al.’s study [5], they showed that DN patients with and
without a history of plantar ulceration had a delayed activation peak and a decrease in the
second peak of vertical ground reaction force comparing with the control group in VL and
GL muscles during gait. Another study by Sacco et al. [6] and Abboud et al. [22] showed
delayed muscle activation and decreased muscle amplitude of TA muscle for DN patients.
Sawacha et al. [15] found an alteration in gait in DN patients and suggested that this can be
a predictive indicator for the risk of ulceration.

Although these studies claim the relationship between the alteration of lower limb
muscles and DN, few studies reported prolonged activity in VL, GL, GM, and rectus
femoris muscles and GRF in patients without DN [5,14,20,22,24]. With these controversies
in studies regarding the biomechanical changes in lower limb muscles for patients with
and without DN, such claims are not reliable just by analyzing EMG and GRF signals. De-
pending on the variability of the population recruited for these studies, the biomechanical
changes in muscle EMG and GRF during gait can be varied among the same experimental
groups, depending on the patient’s ability to adapt to the changes in gait. Patients did not
exhibit any patterned delay in the muscle activation functions, which can cause unreliable
diagnosis [6,12]. With the help of Machine Learning (ML), EMG and GRF signal analy-
sis can be made more robust and overcome the variability in the research regarding the
patient’s identification.

Foot ulceration is the main precursor to lower limb amputation in patients with
diabetes worldwide [24]. Most foot ulcers are triggered by diabetes-associated peripheral
neuropathy (DPN) [25,26]. A study by Allen et al. [27] showed that 23% of those with a
diabetic foot ulcer had DPN, compared to only 6% of those without a foot ulcer. It can
be hypothesized that due to DPN, patients with active plantar DFUs would continue to
demonstrate similar abnormal lower limb biomechanical characteristics as displayed before
the DFU formation [17,28]. A nonhealing diabetic foot pressure ulcer could eventually lead
to amputation of the foot [29].

For the past 50 years, researchers have been using EMG signals to identify neuromus-
cular diseases by collecting the signals from the diagnosed region of interest in the human
body and analyzing them manually [30]. However, manual analysis of bio-signals such as
EMG can be challenging. As previously discussed, EMG signals in DN patients might not
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always follow any specific pattern. In such cases, the raw signal analysis does not provide
much information from the EMG signals. In such cases, from the EMG and GREF signals,
with the help of machine learning, many important features can be extracted using feature
extraction techniques [31]. In addition, the classification of different disease classes with
the help of ML by using EMG is becoming popular.

In recent literature, the use of EMG-based pattern recognition systems [32,33], human-
machine interaction [34,35], and myoelectric controller [36] with ML is becoming popular.
However, its application in disease identification is very limited, especially in DN diagnosis.
Fahmida et al. [9] proposed an adaptive neuro-fuzzy inference system-based classifier for
diabetic sensorimotor polyneuropathy (DSPN) severity classification by using features
from three lower limb muscles’ (TA, VL, GM) EMGs during gait. Their study used only two
EMG features based on the current literature time for activation peak and peak magnitude
during gait with the progression of DSPN severity. They trained two different models; in
one model, they used only the peak magnitudes from three different lower limb muscles,
and in another model, they considered both the features of all three muscles. They reported
96% and 80% accuracy for both models, respectively.

Taking this into account, the objective of this work is to contribute to the state-of-
the-art focus on the ML-based classification technique of DN and diabetic foot ulceration
(DFU) patients by using EMG and GRF. As per our knowledge, this is the first ML-based
work to classify DN and DUF patients using EMG and GRF data during gait. In this
study, we collected data from the Akashi et al. [5] study, where they took three patients’
classes, control, DN, and DFU, and observed the EMG and GRF characteristics during
gait. After the raw data preprocessing, we used the feature extraction technique on the
EMG and GREF data. For EMG data, we used the feature extraction technique previously
proposed by our team [37], where two novel time-domain features with another 17 existing
time-domain features were combined. For GRF data, we extracted 195-time, frequency,
and time-frequency domain features. For both EMG and GRA, extracted features were
ranked using different ML-based feature ranking techniques, and highly correlated data
were removed. We trained different conventional machine learning algorithms to find
the best performing algorithm. After finding the best-performing algorithm, we tuned
the hyperparameters of the ML algorithm and trained them for different cases, and their
performance was evaluated. Our main objective was to find the best performing feature
combination from EMG and GRF with the best performing ML model to accurately classify
DN and DFU patients.

This research helps to find the best performing optimized ML model with best perform-
ing EMG and GREF features for identifying DN and DFU patients. As per our knowledge,
this is the first ML-based work to classify DN and DUF patients using EMG and GRF data
during gait. This study helps to work as a secondary decision system to analyze EMG and
GREF data and accurately identify DN and DFU patients.

2. Materials and Methods
2.1. Dataset Description

The database of EMG and corresponding GRF data was collected from the
Akashi et al. [5] study. The study involved 45 adults with at least 5 years post-onset
of Type 2 diabetes, divided into three groups: A control group (n = 16), a diabetic neuro-
pathic group (n = 19), and a diabetic neuropathic group with a previous history of plantar
ulceration (n = 10). However, the available dataset consisted of a total of 21 subjects from
three different groups: control (n = 6), diabetic neuropathy (n = 6), and diabetic neuropathy
with ulceration (n = 9). The data consisted of EMG of the right vastus lateralis (VL), gas-
trocnemius lateral (GL), and tibialis anterior (TA), and the 3-dimensional components of
ground reaction force (GRFx, GRFy, GRFz) raw signals. In Figure 1, a sample of these EMG
and GREF signals collected from the study [5] is shown. The data were sampled at 1000 Hz
and collected according to the experimental procedure in [5]. The patients were examined
for neuropathy using the Michigan neuropathy screening instrument (MINSI). The detailed
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protocol of the study has been explained by the Akashi et al. [5] study. Supplementary
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Figure 1. Sample of raw EMG signals from three lower limb muscles and 3-dimensional GRF signals
Re-printed with permission from ref. [5]. Copyright Year 2022, Isabel C.N. Sacco, (Physical Therapy,
Speech, and Occupational Therapy Department, School of Medicine).

2.2. Signal Processing

The raw data were segmented using the Vertical ground reaction force (vGRF) and
evaluated semi-manually at the preprocessing stage. The EMG signals were passed through
a full-wave rectifier and band-pass Butterworth fourth-order Infinite Impulse Response
(IIR) Zero-Phase filter. To meet the Nyquist certation, the filter cutoff frequency was selected
between 25 and 499 Hz [38]. After that, the signal was passed through a digital notch filter
to remove 60 Hz noise and its harmonics. The filters were designed using MATLAB R2020a
software (MathWorks, Natick, MA, USA). After filtration, the EMG signals were segmented
using VGREF to obtain the signal during the gait cycle and normalized by the mean of the
EMG signal. The GRF signals had high-frequency noises, which could hamper the feature
extraction process. Therefore, the GRF signals were filtered using a low pass Butterworth
fourth-order Infinite Impulse Response (IIR) Zero-Phase Filter, implemented in MATLAB.
The filter cutoff frequency was chosen to be 100 Hz. Unfitted data were removed from the
3 dimensions of the GRF signals after segmentation and normalized by signal mean.

2.3. Feature Extraction
2.3.1. EMG Feature Extraction

Preprocessed EMG signals were used for feature extraction. In our previous study, we
proposed two new time—-domain features [37]: the log of the mean absolute value (LMAV)
and the nonlinear scaled value (NSV). The details regarding these two features can be found
in [37]. In this work, we showed that these time-domain features incorporated with another
17-time domain features from the existing literature exhibited better performance in the
pattern recognition problem. So, we have used the proposed feature extraction scheme to
identify diabetic neuropathic patients with and without a previous history of foot ulceration
from EMG and GREF signals. In this research, we have used nineteen time-domain features
previously reported by Islam et al. [37]. The extracted time-domain features were the
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log of the mean absolute value (LMAV), nonlinear scaled value (NSV), waveform length
(WL), Wilson amplitude (WAMP), slope sign changes (SSC), number of zero crossings
(ZC), mobility (MOB), complexity (COM), and skewness (SKW), and four autoregressive
coefficients (AR1, AR2, AR3, and AR4), Moment (Oth, 2nd, 4th, and 6th order) (m0-mé),
Amplitude Change (1 and 2) (AC1, AC2).

2.3.2. GRF Feature Extraction

A detailed investigation was done for extracting features from GRF signals. We
extracted time (TD) [39], frequency (FD) [40,41], time—frequency (TFD) domain [42] features
from the three GRF component signals. In this study, we extracted TFD features using
discreet wavelet decomposition (DWT) [43,44] techniques. The DWT coefficient (detailed
D1-D8§, and their composed cD, Approximation A6-A8, and cA8) was then used to obtain
band different TFD features. In this study, we extracted 50 TA, 24 FD, and 121 TFD
features. In total, 195 features were calculated. The details of these features are indexed in
Supplementary Table S2.

2.4. Feature Selection

A large number of attributes may confuse the model. Feature selections allow further
dimensionality reduction. In this study, the forward feature selection approach was fol-
lowed by adding one feature at a time and then checking the performance. To ensure using
the best feature, the feature matrix was reordered according to feature importance. In this
study, we mainly used filter type feature selection algorithms provided by MATLAB, which
were Chi-square [45], minimum redundant maximum relevant (mrmr) [46], neighborhood
component analysis (fscnca) [47], and Relieff [45] algorithms.

The Chi-square feature ranking method was first introduced to measure the goodness
of fit by British statistician Karl Pearson. This algorithm is generally used in statistics to
check the independence between two events [45]. For feature selection/feature ranking
applications, we used it to test whether the occurrence of a specific term and the occurrence
of a specific class were independent or not.

Minimum redundant maximum relevant (mrmr) is a method for feature selection [46].
The algorithm consists of two components: minimal redundancy and maximum relevance.
The minimum redundancy selects the feature which has the least redundancy in the
residual of features, while the maximal relevance selects the feature which has the strongest
relevance to the target class.

Feature selection using neighborhood component analysis (fscnca) [47] learns feature
weights with regularization to measure the average leave-one-out classification loss over
training data. Based on the classification loss, the features’ importance was identified.

The Relieff feature ranking method uses a filter-based method, sensitive to feature
interaction [45]. It calculates the score for each feature which is used to rank the features
based on the score in ascending order. Relieff uses feature value difference between two
nearest neighbors to generate those scores. If the difference is higher for the two-neighbor
pair of the same class, the feature score decreases, indicating a less important feature.

2.5. Dimensionality Reduction

Higher feature dimensions can add computational complexity and time to the ML
models. Dimension reduction is the process of finding independent and relevant dimen-
sions or degrees of freedom in data [31]. There are many dimensionality reductions, such
as Principal component analysis and locally linear embedding [47]. In this study, high
correlation feature elimination was performed before feature ranking not to impact the
feature ranking algorithm. The correlation matrix between features was calculated using
pairwise linear correlation. A threshold of 0.9 was considered a highly collated feature, and
one of them was dropped from the feature vector. This helped to reduce the dimension of
the features. After removing highly correlated features, a dataset was prepared for three
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individual lower limb muscles (GL, VL, and TA) and three-dimensional GRF (GRFx, GRFy,
and GRFz).

2.6. Machine Learning Models and Hyperparameter Tuning

For classification of the control, diabetic neuropathic (DN), diabetic neuropathic pa-
tients with a previous history of ulceration (DFU), we aimed to use machine learning
algorithms. To develop the ML models, extracted features from EMG and GRF signals
were used as input for the model. The output of the models was three classes: control,
DN, and DFU. To find the best performing algorithm, we trained 8 different algorithms:
Discriminant analysis classifier (DAC), Ensemble classification model (ECM), Kernel clas-
sification model (KCM), k-nearest neighbor model (KNN), Linear classification model
(LCM), Naive Bayes classifier (NBC), Support vector machine classifier (SVM), and Binary
decision classification tree (BDC) using the EMG, and GRF features. After identifying the
best-performing algorithm, we optimized the algorithm to tune the hyperparameters of
the algorithm by using Bayesian optimization. In the Bayesian optimization technique, a
prediction model was developed to calculate the classification error by selecting hyper-
parameters and continue updating the values of the hyperparameters based on the error
values until the minimum loss was achieved. That minimum classification error point was
considered the best-tuned hyperparameters for that feature set. However, hyperparameter
tuning is computationally complex and time-consuming. As our objective was to analyze
the performance of ML models in different feature combinations for both EMG and GRF
features, all 8 ML algorithms were not optimized. Only the best-performing algorithm
was optimized. ML model development and tuning of the hyperparameters of the ML
algorithm was implemented in MATLAB version 2020b (MathWorks, Natick, MA, USA).

2.7. ML Model Development

After finding the best performing model, it was used to classify the patients into three
classes, control, DN, and DFU, using the EMG and GRF features” data. ML models were
trained in three different ways. The detailed training process is described below:

1.  Single Channel: Initially, the ML model was trained for individual muscle or GRF
component data. So, we trained ML models for three individual muscle features (GL,
VL, and TA) and three GRF component features (GRFx, GRFy, and GRFz) separately
and observed the classification performance.

2. Two Channel: Second, the ML model was trained with features combined from two
muscles (GL and VL; GL and TA; and TA and VL) or two GRF components (GRFx
and GRFy; GRFx and GRFz; and GRFy and GRFz).

3. Three Channel: Last, we observed the performance of the ML models with all
three muscles (GL, VL, and TA) or three GRF (GRFx, GRFy, and GRFz)
components combined.

The ML model was trained and validated with 5-fold cross-validation. In subject-wise
validation, all the records of each subject were randomly assigned as a group to either the
training set or the test set. A previous study showed that splitting the data into training
and test sets in a record-wise fashion can lead to a massive underestimation of prediction
error achieved by the machine learning algorithm [48]. Neto et al. [49] conducted a study
by training different ML models using the various clinical datasets and showed a high
degree of identity confounding for classifiers using record-wise data splits (splitting data
into train and test set) and suggested the subject-wise data splits (where all records of a
given participant are assigned either to the training or to the test set, but not to both) should
be used in machine learning diagnostic applications.

So based on this observation, we used subject-wise data splits to train our ML model
for classification. As the dataset was imbalanced, the training dataset was augmented
using the Synthetic Minority Oversampling Technique (SMOTE) [50] technique to balance
the dataset. Figure 2 illustrates the flow chart of the data processing and ML model
performance analysis.
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Figure 2. Flow chart of the data processing and ML model performance analysis for DN and DFU
patients’ identification using EMG and GRF features.

2.8. Performance Evaluation of ML Models

The performance of the ML algorithms was evaluated using different evaluation
parameters, such as accuracy, sensitivity, specificity, precision, F score, Receiver operating
characteristics curve (ROC), and Area under the curve (AUC). The model performance
in classifying three experimental groups (control, DN, and DFU) was analyzed using the
incremental feature search technique for all the ranked features in an ascending manner,
starting from only the top 1 feature and then going on from the top 2 features and up. Here,
we wanted to investigate the combined number of top-ranked features needed to obtain
the best performance for respective cases. All processes were conducted for EMG and GRF
data separately.

The target of this work was to find the best ML models for both EMG and GRF signals,
respectively, based on the overall accuracy of the model. These parameters were calculated
from a confusion matrix. A confusion matrix (CM) is one of the most used measures
in classification problems since it offers a simple and intuitive visual representation of
the performance of a given algorithm, in addition to being applicable to both binary and
multi-class classification problems. It showcases the predicted class by a ML model versus
the actual class of all the samples in the dataset and the number of accurately classified or
misclassified samples. Figure 3 illustrates an example of a confusion matrix for a binary
classification problem. Ideally, and in the case of 100% accuracy, all the off-diagonal
elements must be zeros since diagonal blocks of the confusion matrix are considered true
predictions. The confusion matrix has four matrices such as [51]:

True positive (TP): True DN patients

True negative (TN): True Non-DN

False-positive (FP): Non-DN patients, classified as DN patients.
False-negative (FN): DN patients, classified as non-DN patients.

Actual Labelling

Severity lavel Non-DSPN

Non-DSPN True Negative

Predicted

DSPN

Figure 3. Confusion Matrix for two-class classification problem.

Accuracy can be defined as the ratio between the correctly classified subjects to the
total number of subjects, which provides an estimation of the overall performance of the
model regardless of the class. This metric can be easily calculated using the previously
described confusion matrix in Figure 3 by [51]:

Accuracy — Number of correct prediction TP + TN 1)
Y~ Total number of predicted data TP + TN + FP + FN
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However, accuracy can be a misleading measure, especially when dealing with
class-imbalanced datasets. For that reason, other performance metrics must be used to
ensure reliability.

Sensitivity or recall is one of the most important measures, especially in these types of
projects, since it describes the number of subjects that are correctly classified as positive
among all the subjects that are labeled as positive. Typically, in multi-class classification
problems, sensitivity is calculated for each class individually, and then they are combined
either using macro- or micro-averaging techniques. For example, by referring to the
previous confusion matrix, the sensitivity can be obtained as follows [51]:

no of subject accurately classified as positive TP
total no of subject labeled as positive =~ TP +FN

Sensitivity = (2

Furthermore, precision is another measure of performance used when evaluating the
performance of a ML model, which is the ratio of patients who were correctly identified
as positive to the total number of positive predicted patients. It can be maximized by
an impractical classifier, where they never predict the DSPN severity level to avoid false
alarms. For example, Equation (3) can be used to calculate the precision [51].

no of subject classified correctly as Positive TP

P . . — -
recision no of subject classified as Postive TP + FP

®)

Using the previous definitions of precision and recall, a new measure can be defined
by combining both the values in one numeric metric called the F-measure, which is the
harmonic mean of the sensitivity and precision. The F1 score considers both recall and
precision as equally important measures. Usually, there is a trade-off between precision and
recall; thus, the F1 score clarifies how balanced the model is between these two metrics. A
higher score will show a balance between the two measures, while a significant difference
between precision and recall will be penalized by the F-1 score. To calculate the F1 measure,
the following formula is used [51]:

2TP

F L S
1500t = S TP T N

4)

For the three-class problem, all the performance metrics were evaluated for each class,
and the final value was obtained using macro averaging of all classes.

3. Results
The sociodemographic variables of the recruited subjects have been tabulated in

Table 1.

Table 1. Sociodemographic characteristics of the patients. Reprinted with permission from ref. [5].
Copyright Year 2022, Isabel C.N. Sacco, (Physical Therapy, Speech, and Occupational Therapy
Department, School of Medicine).

Control Group (n = 6) Diabetic Group (n = 6) Ulcer Diabetic Group (n=9) r
Age(years) 522+6.9 56.0 £ 8.5 55.6 £ 6.0 0.72
Gender(male/female) 3/3 2/4 1/8 -
Weight (Kg) 61.7 £5.3 66.7 +12.2 83.4 +10.5 <0.001 2
Height (m) 1.7 £ 0.09 1.6 +0.07 1.7 £ 0.07 0.008 2
BMI (kg/m?) 21+17¢ 251+4.0 278 +3.4 0.029 2
Time of DM (years) - 152 £638 143 £58 0.80?
Glycemia(mg/dL) - 142 £ 61.8 188.6 + 61.2 0.17¢
MNSI Questionnaire 4 - 7 7.5 0.72°
MNSI Clinical Examination ¢ - 25 4 0.12°

2 One-Way ANOVA; » Mann-Whitney test; ¢ The significantly different group; ¢ Median.

3.1. Performance Evaluation

After training eight different ML algorithms, we found that the KNN algorithm
outperformed the other algorithms using EMG and GRF data. The hyperparameters of the
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KNN algorithm were tuned using the Bayesian optimization technique. The optimized
KNN model had a set Euclidean distance, number of neighbors set to 1, distance weighting
function set to ‘squaredinverse’, which means the weight is equal to m. We trained
this optimized KNN algorithm for using different feature section techniques for EMG and
GREF data, respectively. In the next section, we will highlight the best-performing results by

the EMG and GRF feature sets.

3.2. EMG Signal Analysis

The EMG dataset initially consisted of 19 TD features for each muscle. Here, we
implemented the study channel-wise, assuming each signal feature as channel data. So,
we considered three lower limb muscles, GL, VL, and TA, in one channel analysis, with
19 features proposed by our previous work [37] individually. In two-channel analysis,
we took a combination of two muscles features at a time. For three muscles, we have
six different combinations of features, each having 38 features in each case, and for three
channels, we considered all three muscle features with 57 features. The details of each
channel analysis are added in Table 2. The EMG feature dataset was ranked based on its
importance in identifying DN and DFU. Four different feature selection techniques were
studied. After the features were ranked, the highly correlated features were removed in
all cases. After removing highly correlated features from each channel, we had 11, 22, and
32 features in one, two, and three-channel analyses. The feature list after feature ranking
and highly correlated feature removal can be found in Supplementary Tables S3-5S9 for
all channel analyses. The number of features before and after removing highly correlated
features are listed in Table 2. In Figure 4, the ranked features by four different feature
ranking techniques for GL muscles are shown. The dataset consisted of top-ranked features
after removing highly correlated features, which were used to train the ML models, and
their performance was analyzed. The ROC curve, as well as other evaluation matrices,
were generated using top feature combinations starting from top 1 features, and so on,
incrementally, to observe the performance of the model. In Tables 3-5, we summarized
the best performance by the KNN classifier model in identifying control, DN, and DFU
patients using EMG for one, two, and three-channel analysis, respectively.

Table 2. Number of features extracted from lower limb muscle EMG for a different combination.

Combination Muscles No. of Features After Removing Highly Correlated Features
GL
One Channel VL 19 11
TA

GL-VL 24

Two Channel GL-TA 38 22

TA-VL 22

Three Channel GL-VL-Ta 57 34

Table 3. Evaluation matrix for one-channel analysis for EMG data using different feature
selection techniques.

Muscle Feature Ranking Technique Features Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) AUC
Chi-Square Top 8 81.30 82.22 81.30 81.54 0.83
CL mrmr Top 11 80.92 81.59 80.92 81.11 0.82
Relieff Top 7 84.73 84.89 84.73 84.76 0.85
fscnca Top 10 81.30 82.27 81.30 81.54 0.83
Chi-Square Top 8 80.53 80.91 80.53 80.59 0.82
TA mrmr Top 9 84.35 85.06 84.35 84.48 0.87
Relieff Top 9 81.30 81.58 81.30 81.40 0.82
fscnca Top 11 83.59 83.93 83.59 83.67 0.86
Chi-Square Top 10 74.81 75.55 74.81 75.09 0.80
VL mrmr Top 11 75.95 76.77 75.95 76.24 0.82
Relieff Top 8 77.10 77.96 77.10 77.39 0.83
fsenca Top 11 76.72 77.25 76.72 76.84 0.83
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Figure 4. Top-ranked features from the GL muscle EMG signal by (a) Chi-Square, (b) mrmr, (c) Relieff,
(d) fscnca feature selection techniques.
Table 4. Evaluation matrix for two-channel analysis for EMG data using different feature
selection techniques.
Muscles Feature Ranking Technique Features Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) AUC
Chi-Square Top 15 95.80 96.04 95.80 95.84 0.96
GL-TA mrmr Top 17 94.27 94.38 94.27 94.30 0.95
3 Relieff Top 17 95.04 95.16 95.04 95.05 0.96
fsenca Top 22 93.51 93.67 93.51 93.55 0.94
Chi-Square Top 18 92.37 92.71 92.37 92.44 0.94
TA-VL mrmr Top 13 91.98 92.07 91.98 92.01 0.91
i Relieff Top 17 92.75 93.03 92.75 92.82 0.93
fsenca Top 20 93.51 93.80 93.51 93.58 0.94
Chi-Square Top 12 96.18 96.25 96.18 96.20 0.97
GL-VL mrmr Top 14 93.51 93.59 93.51 93.52 0.95
3 Relieff Top 16 95.80 95.84 95.80 95.81 0.97
fscnca Top 21 92.75 93.12 92.75 92.82 0.96
Table 5. Evaluation matrix for three-channel analysis for EMG data using different feature
selection techniques.
Muscles Feature Ranking Technique Features Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) AUC
Chi-Square Top 27 95.80 95.86 95.80 95.78 0.99
mrmr Top 38 95.42 95.68 95.42 95.41 0.98
GL-TA-VL Relieff Top 23 95.80 95.86 95.80 95.80 097

fscnca Top 36 95.04 95.04 95.04 95.03 0.98
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From Table 3, it can be observed that the top 7 features from GL muscle EMG using
the Relieff feature ranking technique exhibited better performance with an accuracy of
84.73% in comparison with the other two muscles. For the two-channel, in Table 4, the
top 12 features from the combination of GL and VL muscle EMG using the Chi-Square
feature ranking technique showed a 96.18% accuracy, outperforming the results using
features from the other two muscle combinations. However, in the three-channel, the best
performing model had an accuracy of 95.8% accuracy using the top 22 feature combination
from all three lower limb muscles (Table 5). Among this three-channel analysis, the best
performance was 96.18% using the features extracted from GL and VL muscles EMG and
features ranked using the chi-square feature ranking technique. The related confusion
matrix for this best-performing model is shown in Figure 5. The detailed performance of
the three channels using EMG data is listed in Supplementary Tables S10-516. Figure 6
illustrates the ROC curves using features from different feature selection techniques for
GL muscle.

Control

41 3 0
0 81 8
5 2 127

Figure 5. Confusion matrix for KNN model using the top 12 features extracted from GL and VL
muscles EMG and feature ranked using the chi-square feature ranking technique.
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Figure 6. ROC curve for top-ranked features from the GL muscle EMG signal by (a) Chi-Square,
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(b) mrmr, (c) Relieff, (d) fscnca feature selection techniques.
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3.3. GRF Signal Analysis

From the GRF signal, 195 TD, FD, and TFD features were extracted for three-
dimensional components. Similar to the EMG signal analysis, GRF signal analysis was
also subdivided into three channels. In one-channel analysis, features for individual GRF
components (GRFx, GRFy, and GRFz) were taken into consideration. For the two-channel,
features from two GRF components were used. So, for three components, we had three com-
binations (GRFx-GRFy, GRFx-GRFz, GRFy-GRFz), and for the three-channel analysis, we
considered features from all the GRF (GRFx-GRFy-GRFz) combined. The details of the chan-
nel analysis can be found in Table 6. The ranked features after removing highly correlated
features for all channel analyses are being tabulated in Supplementary Tables S17-523.

Table 6. Number of features extracted from GRF for a different combination.

Combination

Muscles No. of Features After Removing Highly Correlated Features

One Channel

GRFx 56

GRFy 195 50

GRFz 37

Two Channel

GRFx-GRFy 102

GRFx-GRFz 390 87

GRFy-GRFz 86

Three Channel

GRFx-GRFy-GRFz 585 129

Similar to the analysis using EMG, four feature ranking techniques discussed above
were also applied for GRF features for all channel analyses. After ranking the features,
highly correlated features were removed, and the remaining features were used to train
our optimized KNN model. In Table 6, the number of features before and after removing
highly correlated features is shown.

Figure 7 illustrates the ranked features extracted from GRFx signals for the four
different feature ranking techniques. The dataset consisted of top-ranked features after
removing highly correlated features, which were used to train the ML models, and their
performance was analyzed.

From Table 7, it can be observed that the top 19 features from GRFx using the fscnca
feature ranking technique, exhibited better performance with an accuracy of 98.68% in
comparison with the other two muscles. For the two-channel, in Table 8, the top 7 features
from a combination of GRFx and GRFz signals, using the fscnca feature ranking technique
showed a 98.68% accuracy, outperforming the results using features from the other two
muscle combinations. However, in three-channel, the best performing model had an ac-
curacy of 98.68% using the top 24 features combination from all three lower limb muscles
using the fscnca feature ranking technique (Table 9). Among these three-channel analy-
ses, the best performance was achieved with 98.68% accuracy by using the top 7 features
from the fscnca feature ranking technique, extracted from the combination of the GRFx-
GRFz signal. The related confusion matrix for this best performing model is shown in
Figure 8. The detailed performance of all channels using GRF data is listed in Supple-
mentary Tables 524-S30. Figure 9 illustrates the ROC curves using features from different
feature selection techniques for GRFx.

Table 7. Evaluation matrix for one-channel analysis for GRF data using different feature
selection techniques.

GRF Component Feature Ranking Technique Features Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) AUC

GRFx

Chi-Square Top 38 97.37 97.41 97.37 97.36 0.98
mrmr Top 50 96.05 96.28 96.05 96.05 0.98
Relieff Top 14 97.37 97.41 97.37 97.36 0.98
fsenca Top 19 98.68 98.72 98.68 98.68 1.00
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Table 7. Cont.

GRF Component Feature Ranking Technique Features Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) AUC
Chi-Square Top 15 92.11 92.28 92.11 92.11 0.95

GRF mrmr Top 34 86.84 87.26 86.84 86.78 0.89

y Relieff Top 35 92.11 92.27 92.11 92.12 0.95

fscnca Top 21 93.42 94.32 93.42 93.40 0.96

Chi-Square Top 24 94.74 94.75 94.74 94.72 0.95

GRE mrmr Top 18 93.42 93.47 93.42 93.42 0.94

z Relieff Top 32 93.42 93.71 93.42 93.41 0.93

fsenca Top 13 93.42 93.65 93.42 93.45 0.95
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Figure 7. Cont.
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Figure 7. Top-ranked features from GRFx signal by (a) Chi-Square, (b) mrmr, (c) Relieff, (d) fscnca
feature selection techniques.
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Table 8.

Evaluation matrix for two-channel analysis for GRF data using different feature

selection techniques.

GRF Component Feature Ranking Technique Features Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) AUC
Chi-Square Top 3 94.74 94.83 94.74 94.67 0.92
. mrmr Top 42 96.05 96.05 96.05 96.05 0.97
GRFy-GRFz Relieff Top 45 94.74 94.82 94.74 94.75 0.96
fscnca Top 20 98.68 98.72 98.68 98.68 1.00
Chi-Square Top 24 94.74 94.93 94.74 94.75 0.96
mrmr Top 19 97.37 97.43 97.37 97.37 0.99
GRFx-GRFz Relieff Top 41 98.68 98.72 98.68 98.68 1.00
fscnca Top 7 98.68 98.72 98.68 98.68 0.98
Chi-Square Top 17 96.05 96.24 96.05 96.07 0.98
mrmr Top 87 97.37 97.43 97.37 97.37 0.97
GREx-GRFy Relieff Top 17 96.05 96.07 96.05 96.04 0.99
fscnca Top 24 98.68 98.72 98.68 98.68 1.00
Table 9. Evaluation matrix for three-channel analysis for GRF data using different feature
selection techniques.
GRF Component Feature Ranking Technique Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) AUC Accuracy (%)
Chi-Square Top 111 97.37 97.41 97.37 97.36 1.00
. y mrmr Top 64 98.68 98.72 98.68 98.68 1.00
GREx-GRFy-GRFz Relieff Top 106 98.68 98.72 98.68 98.68 1.00
fscnca Top 21 98.68 98.72 98.68 98.68 1.00

Control

DN

DFU

Control

20

20

33

Figure 8. Confusion matrix for KNN model using the top 12 features extracted from GRFx and GRFz

signals and feature ranked using the fscnca feature ranking technique.
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Figure 9. ROC curve for top-ranked features from the GRFx signal by (a) Chi-Square, (b) mrmr,
(c) Relieff, (d) fscnca feature selection techniques.

4. Discussion

Diabetic neuropathy (DN) has received the attention of researchers as one of the major
complications for DM patients [52]. It is a long-term chronic complication in diabetic
patients, which involves disfunction of electrophysiological activities in the human body,
starting from the lower limb. Literature showed that DN patients exhibited biomechanical
changes in the gait cycle, effecting an alteration in plantar pressure, kinematic patterns,
ground reaction forces, muscle activation, sensory loss, slower walking speed, changes
in gait velocity, increased risk of falling, and many other lower limb and gait complica-
tions [6,13,17,21,22,53]. With long-term DN, other serious foot complications start to arise.
Planter foot ulceration is one of the major complications of long-term DN, an indication
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of worsening DN [5,15,22,23,54], which is one of the major causes of lower limb amputa-
tions [54-56]. Thus, prediction and on-time treatment of diabetic foot ulcers (DFU) are of
great importance for improving and maintaining patients” quality of life and avoiding the
consequent socioeconomic burden of amputation [57].

Akashi et al. [5] showed that DN patients with (DFU) and without a history of plantar
ulceration had a delayed activation peak occurrence in VL and GL muscles and a decrease
in the second peak of vertical ground reaction force compared with the control group dur-
ing gait. However, they did not find any difference in TA muscle time for activation peak
of magnitude. Sacco and Amadio [20] reported delayed muscle activation in VL muscles
during treadmill gait in DN patients, in agreement with the Akashi et al. study [5], where
they suggested that a delayed muscle activation peak can be an indicator of worsening DN,
hence, DFU. However, another study by Sacco and Amadio [20] and Abboud et al. [22] re-
ported that TA muscles also exhibited decreased muscle magnitude and delayed activation
peak, which contradicts the results from Akashi et al. [5]. Similar to this, many studies have
been conducted, which have reported contradictory results [5-7,9,11-16,22,23,25,57].

In such a scenario, only relying on EMG and GRF signal analysis to find biomechanical
changes in DN patients cannot be reliable. Depending on the variability of the recruited
population for these studies, the biomechanical changes in muscle EMG and GRF during
gait can be varied among the same experimental groups, depending on the patient’s
ability to adapt to the changes in gait [6]. Patients did not exhibit any patterned delay
in the muscle activation functions, which can cause unreliable diagnoses. With the help
of Machine Learning (ML), EMG and GREF signal analysis can be made more robust and
overcome the variability in the research regarding the patient’s identification.

Even though many researchers reported finding a relationship in the biomechanical
changes in DN and DFU during gait, the use of machine learning techniques in this domain
is quite new. ML learning-based applications using EMG have received the attention of
researchers for various applications, such as disease diagnosis, prosthetics design, myo-
electric controllers, and security systems. Despite having so much potential, ML has not
been widely studied in clinical biomechanics related to DN and DFU. In the literature, very
few studies have been conducted to identify DN and DFU patients with the help of ML
using biomechanics parameters, such as EMG and GRF. In Sawacha et al.’s [23] study, the
researchers used a K-means clustering classification system to classify the subjects” gait
patterns among DN and Non-DN groups through the analysis of their ground reaction
forces, joints, and segments (trunk, hip, knee, ankle) angles, and moments. However, as the
K-means cluster technique is sensitive to the variation in the gait trails, the reproducibility
of this study is questionable. Fahmida et al. [9] proposed an adaptive neuro-fuzzy infer-
ence system-based classifier for diabetic sensorimotor polyneuropathy (DSPN) severity
classification by using features from three lower limb muscles (TA, VL, GM) EMG during
gait. In their study, they used only two EMG features based on the existing literature time
for activation peak and peak magnitude during gait, with the progression of DSPN severity.
They trained two different models. In one model, they used only the peak magnitudes from
three different lower limb muscles, and in another model, they considered both the features
of all three muscles. They reported 96% and 80% accuracy for both models, respectively.
From this aspect, we investigated a ML-based classification system for identifying DN and
DFU patients by using biomechanical parameters from EMG and GRF during gait.

As per our knowledge, this is the first ML-based work to classify DN and DUF pa-
tients using EMG and GRF data during gait. In this study, we collected data from the
Akashi et al. [5] study, where we had a total of 21 patients” data from three experimental
classes: control (n = 6), DN (n = 6), and DFU (n = 9), and observed the EMG and GRF
characteristics during gait. This study discussed detailed preprocessing of the signals,
extracting and identifying important features from EMG and GRF signals. Eight different
conventional ML algorithms were trained and the KNN algorithm outperformed for identi-
fying DN and DFU for both features from EMG and GRF signals. Hyperparameters of the
KNN algorithm were optimized using the Bayesian Optimization technique.
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This study was conducted for three sub-studies for EMG and GREF, respectively. In
one-channel analysis, we considered the features from only one lower limb muscle or GRF
component. In the two-channel, we considered the feature combinations of two muscles
or GRF components, and in the three-channel, all the muscles or GRF component features
were considered. Depending on the channel, the number of features varied, fed to the ML
model for training. In this study, we trained our ML model in all possible ways to find the
best-performing features.

This study dealt with a three-class problem, where we considered three classes: con-
trol, DN, and DFU. The evaluation matrixes were calculated depending on the accurate
identification of the correct class. For EMG analysis, we found the best accuracy of 96.18%
using the top 22 features from the chi-square feature ranking technique in the two-channel
analysis of GL-VL. In the GRF analysis, the model showed 98.68% accuracy by using the
top 7 features from the fscnca feature ranking technique from the combination of the GRFx-
GRFz signal. In this study, before training our ML models, we preprocessed the dataset in
a very detailed way involving removing noise and proper filtration, normalization, and
segmentation of the signals, which created this dataset without bias or overfitting issues.
Because of our proper data preprocessing, our work obtained very good performance
with EMG and GRF data analysis in identifying DN and DFU. This indicates that analysis
for sensitive biomechanical data required very detailed preprocessing before being used
for training ML models. With the help of proper preprocessing, higher accuracy can be
achieved. This is one of the major contributions of this study. Another major contribution
of this study is that using the new feature extraction scheme for EMG signals, it helped us
extract important features.

In this research, our goal was to find the best-performing ML models using features
from EMG and GREF signals individually during gate. In this research, we tried to identify
DN and DFU patients from the biomechanical signals such as EMG and GRF with the
help of ML. As per our knowledge, this is the first study where ML application has been
studied for DN and DFU identification from biomechanical signals during gait. This study
demonstrated that both EMG and GRF signals can be used to identify the patient’s class
with higher accuracy, with the help of proper preprocessing of the signals, extracting
and identifying important features, and optimizing the ML algorithm. However, a few
limitations need to be mentioned. One is the small sample size of the study. As the data
were collected from the Akashi et al. study [5], there were only 21 patients” data. Even
though we used the subject-wise data split technique and SMOTE data augmentation
technique to overcome the imbalance and small dataset for ML model training, there is still
a chance of variability in the results when a large number of variations are being exposed.
Another limitation of this study is that we only considered the control, DN, and DFU
patient groups as available in the study [5]. We had no diabetes patients without DN in
this study. In the future, the effect on diabetes patients without DN should be included in
our analysis.

Apart from the mentioned limitation, this study showed a potential use of ML in
the biomechanical domain for DN and DFU identification. If proper preprocessing with
strategic techniques is applied to extract important features from biomechanics parameters
such as EMG and GRE, these can be a potential diagnostic tool for DN and DFU. With valid
data, an early indication of DFU can be made from the EMG and GRF with the help of
machine learning. This is a very initial study in this domain. For years researchers have had
contradictory results with biomechanical changes related to DN. Our work highlights the
potential of ML for DN-related complications by using biomechanical parameters such as
EMG and GRE In the future, we can add a prediction system in ML-based DFU prediction
from EMG and GRF data which will be able to predict patients’ future conditions based
on their biomechanical changes and will help health professionals enhance the healthcare
of diabetic patients in relation to identifying high-risk individuals and provide the proper
treatment and rehabilitation.
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5. Conclusions

In this paper, we applied ML models for identifying DN and DFU using EMG and
GREF signals, which is the first work, as per our knowledge, in this domain. In this work,
we discussed detailed signal processing, feature extraction, feature ranking, and feature
dimension reduction techniques to identify the most important features for DN and DFU
identification. This research considered EMG signals from three different lower limb
muscles and corresponding 3-dimensional GRF signals. Previously in the literature, all the
biomechanical changes due to DN and DFU have been analyzed manually. This is the first
work where the authors have shown that, with the help of ML, DN and DFU patients can be
identified with higher accuracy using features from the EMG and GREF signals individually.
This research proposed the two best models for EMG and GREF, respectively. For EMG
analysis, we found the best accuracy of 96.18% using the top 22 features from the chi-square
feature ranking technique in the two-channel analysis of GL-VL. In the GRF analysis,
the model showed 98.68% accuracy by using the top 7 features from the fscnca feature
ranking technique from the combination of the GRFx-GRFz signal. In conclusion, our study
has shown a potential solution for ML application in DN and DFU patient identification
using EMG and GRF parameters. With careful signal preprocessing with strategic feature
extraction from the biomechanical parameters, optimization of the ML model can be a
potential solution in the diagnosis and stratification of DN and DFU patients from the EMG
and GREF signals.
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