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Abstract: Network slicing (NS) is an emerging technology in recent years, which enables network
operators to slice network resources (e.g., bandwidth, power, spectrum, etc.) in different types
of slices, so that it can adapt to different application scenarios of 5 g network: enhanced mobile
broadband (eMBB), massive machine-type communications (mMTC) and ultra-reliable and low-
latency communications (URLLC). In order to allocate these sliced network resources more effectively
to users with different needs, it is important that manage the allocation of network resources. Actually,
in the practical network resource allocation problem, the resources of the base station (BS) are limited
and the demand of each user for mobile services is different. To better deal with the resource allocation
problem, more effective methods and algorithms have emerged in recent years, such as the bidding
method, deep learning (DL) algorithm, ant colony algorithm (AG), and wolf colony algorithm (WPA).
This paper proposes a two tier slicing resource allocation algorithm based on Deep Reinforcement
Learning (DRL) and joint bidding in wireless access networks. The wireless virtual technology divides
mobile operators into infrastructure providers (InPs) and mobile virtual network operators (MVNOs).
This paper considers a single base station, multi-user shared aggregated bandwidth radio access
network scenario and joins the MVNOs to fully utilize base station resources, and divides the resource
allocation process into two tiers. The algorithm proposed in this paper takes into account both the
utilization of base station (BS) resources and the service demand of mobile users (MUs). In the upper
tier, each MVNO is treated as an agent and uses a combination of bidding and Deep Q network
(DQN) allows the MVNO to get more resources from the base station. In the lower tier allocation
process, each MVNO distributes the received resources to the users who are connected to it, which
also uses the Dueling DQN method for iterative learning to find the optimal solution to the problem.
The results show that in the upper tier, the total system utility function and revenue obtained by the
proposed algorithm are about 5.4% higher than double DQN and about 2.6% higher than Dueling
DQN; In the lower tier, the user service quality obtained by using the proposed algorithm is more
stable, the system utility function and Se are about 0.5–2.7% higher than DQN and Double DQN, but
the convergence is faster.

Keywords: network slicing (NS); resource allocation; deep reinforcement learning; bidding

1. Introduction

With the advent of the 5G era, the demand and application of mobile traffic and wire-
less networks have increased dramatically. This huge demand has driven the convergence
of multiple traditional and emerged communications technologies to form the 5G mobile
communications system. 5G mobile communication systems employ new technologies
and new network architectures that enable them to go beyond traditional communications
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and meet the needs of different types of devices and users [1]. As defined by the Interna-
tional Telecommunication Union (ITU), 5G mobile communication system considers three
common scenarios with specific service requirements: eMBB, mMTC, and URLLC [2–4].
EMBB is a scenario with ultra-high transmission data rate and mobility guarantee under
wide coverage, it helps ensure consistent user experience [5], mMTC mainly deals with
the scalable connectivity to a massive number of MTC devices and sensors with diverse
quality of service (Qos) requirements [6]. URLLC is mainly faced with application scenarios
with latency-sensitive and high-reliability requirements for delay and reliability [7]. With
NS techniques, a 5G network can be divided into multiple logical networks on a separate
physical network for services with different requirements. The origin of NS technology
can be traced back to the infrastructure as a service (IAAs) cloud computing model [8].
With this model, different tenants can share the compute resources, network resources, and
storage resources, thus creating different isolated and fully functional virtual networks on
a common infrastructure. NS manages physical and virtual resources based on emerging
technologies such as software defined network (SDN) and network function virtualization
(NFV), so that they can be provided to specific services [9–11], enabling 5G networks to
provide different types of services to customers with different needs [12,13], and the net-
work slice assumes a static resource pool for each slice to ensure the performance isolation
between different types of slices [13,14]. Wireless NS technology divides the existing mobile
network operators (MNOs) into two functionally distinct entities: InPs and MVNOs. Each
InPs has a certain physical wireless network, including physical infrastructure and physical
resources [15]. MVNOs divide the physical wireless network under their own InPs to get
each MVNOs exclusive virtual wireless network and rent the physical resources owned by
the InPs to provide specific services or meet specific service demands for their own MUs.
In this way, the sharing of physical resources can effectively reduce operating expenses
and enable more flexible network operations. Additionally, resources allocated to their
own MUs must meet strict service level agreements (SLAs). And in resource allocation, the
actual needs of users are often determined by the way they request [16].

In the actual network resource allocation problem, users’ statuses are often fluctuating,
and operators are not aware of parts of users’ information such as channel conditions.
Therefore, how MVNO optimally allocates resources for users is a key issue of this re-
search. To solve these optimization problems, recently, some studies have proposed new
approaches such as game theory approaches [17], linear programming approaches [18], etc.
In this paper, we mainly adopt the approach of using DRL combined with bidding to
solve such optimization problems. For this optimization problem of resource allocation,
many algorithms have been proposed in the literature in recent years. In this paper, some
algorithms (some heuristic algorithms) are considered when selecting algorithms. Due
to their own characteristics, they can not guarantee to obtain the global optimal solution
when solving the problem that will produce a huge state space, with poor convergence
and high complexity, and the setting of parameters during simulation will have a great
impact on the experimental results. The optimization problem considered in this paper has
many unknown parameter variables (such as channel state and user information), which
produces a huge state space. Fortunately, the emerging DRL is considered a promising
technique to solve this complex control problem. Therefore, this paper attempts to use DRL
joint bidding to solve the proposed optimization problem. It is found that DRL is very
suitable for the scenarios and optimization problems to be considered. Actions with a high
matching degree can be set in the environment, and states and rewards can be mapped
to DRL, which can be trained to get better strategies. The emerging DRL is considered
a promising technique to solve this complex control problem [19]. Ref. [20] use a DRL
algorithm to solve this optimization problem and get good results. This new intelligent
algorithm can learn knowledge that is not available through traditional methods by big
data training, and uses trial-and-error search methods to interact dynamically with the
environment in real time, which enables unprecedented automation and optimization of
resource allocation [21]. It is also a good approach to treat the resource allocation problem
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as a resource game issue, which needs to consider the dynamic competing behaviors of
users to maximize the overall satisfaction of users [22].

At present, a lot of research work has been done based on these two methods. Ref. [23]
used an allocation strategy of orthogonal and multiplexed subchannels to ensure the isola-
tion of inter-slice and solved the problem of minimizing system power in the bidirectional
transmission link. Ref. [24] proposed a new auction-based shared resource and revenue
optimization model. Ref. [25] proposed a stochastic game model to solve the dynamic
resource allocation problem of multi-user virtual enterprise networks and proposed a blind
approximate based great likelihood estimation algorithm to solve the model, thus overcom-
ing the cost of information exchange and computation, but the model does not consider
user-specific demands. Ref. [26] mathematically analyzes the joint optimization of access
control and bandwidth allocation for multiple BS and multiple NS scenarios. However, the
solution is based on the assumption that different users have the same fixed demand rate,
which is unlikely to be found in practice. Ref. [27] proposed an LSTM-based prediction
scheme, and use a power allocation algorithm based on DRL to solve this problem. But in
practical scenarios, different types of user demands need to be considered when solving
the network resource allocation problem. Ref. [28] proposed an optimization framework
based on a resource pricing strategy to maximize resource efficiency and customer profit
by studying the relationship between profit maximization and resource efficiency. Ref. [29]
proposed an AC priority algorithm to meet the high demand and high priority slice to
improve the overall resource demand satisfaction rate, ref. [30] used game theory to analyze
the relationship between InPs and users to optimize the allocation problem and solve the
communication problem during peak hours. Ref. [31] used communication games and
learning mechanisms to solve the distributed problem of wireless NS resources, but without
considering the deployment of users with different types of demand. Ref. [32] proposed an
online resource management for inter-slice genetic slicing policy optimizer, but it ignores
the relationship between the required resources on the different types of slices and the
SLA. Ref. [33] proposed a novel channel information absent Q-learning (CIAQ) algorithm
to speed up the training, but this algorithm is only an auxiliary method for solving the
resources allocation problem. Reference [34] considered the problem of allocating differ-
ent types of resources (bandwidth, cache, backhaul capacity) to network service tenants
based on user demand and proposed a mathematical solution, but when the simulation
parameters are increased proportionally, the optimization problem will become difficult
to solve. Ref. [35] uses a DRL method to control the energy of the UAV scene. Ref. [36]
proposed a DNAF-based DQL merging method that improves the convergence speed of
the algorithm. Ref. [37] proposed an HA-DRL algorithm, that uses heuristic functions to
optimize the exploration of action space.

The bidding methods and the DRL methods have been proposed in the above literature
to solve the resource allocation problems of BS to different users. But some methods do not
consider that users are with different specific needs, and the resource allocation to users
has the problem of poor service quality or waste of resources for a proportion of users,
moreover, some solutions simply consider the service satisfaction rate of users and ignore
the total bandwidth of BS. Some solutions simply consider the user’s service satisfaction
rate and ignore the total bandwidth utilization rate of the BS, which also results in the
waste of wireless network resources. To solve the challenges and problems mentioned
above, this paper proposes a two-tier resource allocation model considering both the BS
resource utilization and user service satisfaction rate. In fact, this paper decomposes a
single objective optimization problem into two-level sub-objective optimization problems,
and creatively uses DRL to solve the two-level resource allocation optimization problem
considering the inconsistency between the upper and lower value spaces. The upper tier
model is for MVNOs to request resources from the BS by bidding, and this paper uses a
combination of bidding and Dueling DQN to solve the optimization problem of this upper
tier model. Likewise, the lower tier model is for MVNOs to allocate the resources which
are received from the BS to its contained users and set the service satisfaction rate of the
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users, the same as the upper tier, the lower tier model is optimized using Dueling DQN.
The main contributions of this paper are as follows.

(1) First, a two tier resource allocation problem in wireless NS is proposed. The
upper tier MVNOs will submit bid prices to the InP for wireless resources. The InP will
further allocate physical resources to the MVNOs based on the bid values of the MVNOs.
Each MVNO will then use the wireless resources allocated by the network to serve its
mobile subscribers.

(2) Second, the algorithm based on Dueling DQN and joint bidding is used to solve
the upper tier resource allocation optimization problem. In this paper, the utility of each
MVNO is obtained by calculating the downlink transmission rate of the user after obtaining
the bandwidth, and the utility function of the whole system is denoted as the weighted
sum of the upper tier benefits and the lower layer utility function. This ensures that the BS
resources are allocated to the maximum extent possible to meet the service demand of the
users more efficiently.

(3) Third, this paper shows the process of mathematical analysis of the proposed
two-tier model and algorithm with its corresponding parameters for problem solving, and
shows how bidding can be used in conjunction with Dueling DQN with the corresponding
parameters. The penalty function is proposed to prevent the MVNO from overbidding,
and the evaluation function to represent the revenue of the MVNO. This paper considers a
radio access network scenario with multiple users sharing aggregated bandwidth under a
single BS, where users are randomly located within the range of the BS and have different
service demands, the BS does not have direct access to the channel information and service
demand information of the users, and each MVNO manages the users in a sub-region. In
future research work, it can take into consideration changes in user location and changes in
service demand, in order to get closer to the actual communication scenario.

The rest of the paper consists of the following: Section 2 presents the two-tier model
proposed in this paper with its mathematical analysis process. Section 3 presents the
solution algorithm and the relevant mathematical background, and details the process of
corresponding parameters when using the Dueling DQN and DQN algorithm in the two-
tier model. The simulation process and results are given in Section 4, and a comparative
analysis is performed. Section 5 concludes the paper and gives an expectation.

2. System Model and Problem Formulation

In this part, we consider a downlink scenario with a single BS, as shown in Figure 1.
This single BS is divided into a physical BS and a set of MVNOs, M = {M1, M2, . . . , Mm},
each MNVO has j users Um =

{
um

j , um
j , . . . , um

j

}
connected, and each MVNOS provides

specific mobile services to its connected users. This BS has resources (shared aggregated
bandwidth) C. Each MVNO is required to bid resources to the BS according to the demands
of the connected users and allocate the resources received from the BS to its connected users.
In this paper, the SLA satisfaction rate (SSR) is used to represent the quality of experience
(QoE) of the users. The core problem of this paper is how to schedule among the MVNOs
and satisfy the demands of the connected users and maximize the total profit of MVNO.
Moreover, the resources of this BS are virtualized and sliced to meet the demands of the
users. The resource allocation problem after NS is divided into two tiers.

2.1. Upper Tier Model

In the upper tier model, based on the number and the QoS requirements of users it
connects, each MVNO has to decide the required wireless bandwidth and estimate a bid
value to submit to InP. The InP will allocate a proportion of its resources (bandwidth) to
each MVNO based on the MVNO’s bid value, which means that the InP will allocate the
largest part of bandwidth to the MVNO which submits the highest bid [6]. The resources
allocated by the BS to the mth MVNO are denoted as cm, and the resources allocated by
the mth MVNO to the users are denoted as cm

j , and each MVNO will count the minimum
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rate demand vm
j,0, and the maximum rate demand vm

j,1 of its linked users and estimate from
these demands.
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Each MVNO gets the minimum rate demand vm
j,0, the maximum rate demand vm

j,1 and
the bid value bm of each MVNO.

∑J
j=0 vm

j,0 < bm < ∑J
j=0 vm

j,1 (1)

cm =
bm

∑M
m=1 bm

C, ∀m ∈ M (2)

ym(cm(b)) = vm(cm(b))− qmbm (3)

The BS are allocated resources cm(b) to MVNOs in proportion to their bids. To pre-
vent MVNOs from excessively increasing their bids, an evaluation function ym(cm(b)) is
established, and qm as a penalty function which will reduce the profit of MVNOs if they
excessively increase their bids, and α is represented by function (5).

qm =
1
α

vm
′
(

1− cm(b)
C

)
(4)

α =
∑M

m=1 bm

R
(5)

The optimization problem of the upper model is to maximize the weighted sum of the
benefits and utility of all MVNOs, i.e.,

maxF = ∑m∈M fm +ω∗∑m∈M ym(cm(b)) (6)

S. t. cm(b) ∩ cn(b) = 0 (7)

∑m∈M cm ≤ C (8)
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∑J
j=1 cm

j ≤ cm (9)

Constraint: constraint (6) ensures the segregation of the resources allocated between
different MVNOs. Since the bandwidth of the BS is limited, constraint (7) ensures that
the bandwidth allocated to all MVNOs does not exceed the total bandwidth of the BS,
and constraint (8) means that the sum of the bandwidth allocated by each MVNO to its
connected users cannot be greater than the bandwidth allocated to itself from the BS. The
problem of each MVNO getting resources by bidding can also be solved by DQN, the exact
process of which will be mentioned later.

2.2. Lower Tier Model

The MVNO is allocated by the resources received from the InP by the upper tier to the
connected users, and the main task in the lower tier model is to find a suitable bandwidth
allocation scheme to maximize the utility function of each MVNO, labeled fm, and the
utility function fm can be expressed as a weighted sum of SEm and SSRum

j
. The computation

of SEm and SSRum
j

is described in the following section.
From Shannon’s formula, it can be calculated that vm

j , vm
j denotes the downlink rate

from the BS to the jth user um
j which is linked to mth MVNO.

vm
j = cm

j log
(

1 + SNRum
j

)
(10)

vm = ∑J
j=1 vm

j (11)

um
j denotes the jth user of the mth MVNO, and SNRum

j
is the signal-to-noise ratio with

the BS um
j .

SNRum
j
=

gum
j

P

N0cm
j

(12)

gum
j

denotes the fading gain of the channel between the BS and um
j , P denotes the

transmitted power, and N0 denotes the one-sided noise spectral density.

SEm =
∑um

j ∈Um ∑j∈J vum
j

cm
(13)

SSRum
j

denotes the SSR of the jth user connected by the mth MVNO

SSRum
j
=

∑qm
j ∈Qm

j
αqm

j

∑ Qm
j

(14)

In this paper, the SSR is expressed as the ratio of the number of valid packets success-
fully accepted by the user to the total number of packets sent by the MVNO. qm

j denotes the
packet successfully accepted by the user um

j , and binary αqm
j

denotes whether the accepted
qm

j packet is valid, when vum
j
> vum

j
, αqm

j
= 1, otherwise αqm

j
=0. vum

j
is the downlink

transmission rate that is preset in advance for the user um
j according to the SLA.

max fm = max(ρSEm + ∑
j∈J

ϕj SSRum
j
) (15)

The optimization objective of the lower-tier model is to maximize the total utility
function fm for each MVNO, and fm can be expressed as a weighted sum of SE and SSR. ρ
and ϕ = {ϕ1, ϕ2, . . . , ϕs} denotes the important weights of SE and SSR, respectively.

Notably, this optimization process can be analyzed as a Markov decision process, but
trying to solve (15) is difficult, and using traditional assignment or using the Q-learning al-
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gorithm does not yield a better solution quickly. Fortunately, DRL is useful for solving such
problem, the process of mapping to the Dueling DQN algorithm will be mentioned later.

3. DRL-Based Joint Bidding Resource Allocation Algorithm
3.1. Deep Reinforcement Learning

DQN is a typical DRL algorithm, it is advantageous for solving high computational
problems and decision problems. In DRL, there will be an agent to control the learning
process. The intelligent agent attempts to generate a lot of new data through constant
trial-and-error interaction with the environment, and then learns a set of policies based on
this data that enables it to maximize the cumulative expected reward while finding the best
action for a given state. We can model the agent’s interaction with the environment as a
Markov decision process (S, A, R, P, γ).

The parameters are explained as follows: S is the state space containing the current
state s and the new state s′; A is the action space containing the current action a and the
new action a′; the policy π(·|s) determines how state s is mapped to the action; R is the
reward function obtained by performing the action a under the state s according to the
policy π(·|s) ; P(·|s, a) is the transfer probability and γ is a discount factor.

Additionally, the state value function Vπ(s) can be obtained according to π(·|s) under
the state s.

Vπ(s) = Eπ,P

[
∑∞

t=0 γtRt

∣∣∣S0 = s
]

(16)

Similarly, the action value function Qπ(s, a) obtained by executing the action a under
the state s according to the policy π(·|s) .

Qπ(s, a) = Eπ,P

[
∑∞

t=0 γtRt

∣∣∣S0 = s, A0 = a
]

(17)

The process of interaction between the intelligent body and the environment is as
follows: the agent gets an observation as a state s from the environment and inputs s to
the neural network to get all Qπ(s, a), then uses the ε-greedy strategy selects an action
and makes a decision from Qπ(s, a), and the environment will give a reward and the next
observation based on this action. Finally, the agent is updated according to the reward
given by the environment using Equation (17).

Q∗(s, a) = Q(s, a) + α
(

R + γmaxa′Q
(
s′, a′

)
−Q(s, a)

)
(18)

DQN is based on DL with the addition of neural networks with parameters θ for
parameter updating and action selection. The Q-value function network is updated in
real time and the target Q-value function network is updated every certain number of
iterations. Q(s, a; θ) denotes the value function with parameters θ, the optimal parameters
θ will be obtained by minimizing the TD error squared according to Equation (18) to let
Q(s, a; θ) = Q∗(s, a).

ζ2 =
[
r + γmaxa′∈AQ

(
s′, a; θ

)
−Qθ(s, a; θ)

]2 (19)

The target Q-value of the network of target Q-value functions is

TargetQ = r + γmaxa′Q
(
s′, a; θ

)
(20)

Also, the loss function defined in L(θ) DQN is

L(θ) = E
[
(TargetQ−Q(s, a; θ))2

]
(21)

While Dueling DQN improves on the network structure of DQN, Dueling DQN
divides the Q value into two parts, one for the state value function, and one for the
advantage function, denoted as:
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QDuelingDQN
π(s, a) = Vπ(s) + Aπ(s, a) (22)

Vπ(s) is unconcerned with action a, and only one status value is returned, while
Aπ(s, a) is related to action and state, QDueling

π(s, a) can be expressed in more detail as:

QDueling(s, a; θ, α, β) = Vπ(s; θ, α) + Aπ(s, a; θ, β) (23)

The parameters θ in the formula are shared by the two function networks, and α and
β are their exclusive parameters. In order to increase the identification of the two functions,
the dominant function is generally centralized, that is:

QDueling(s, a; θ, α, β) = Vπ(s; θ, α) + Aπ(s, a; θ, β)− 1
A ∑a′∈A A

(
s, a′; θ, β

)
(24)

3.2. Two Tier Slicing Resource Allocation Algorithm Based on Dueling DQN and Joint Bidding

In actual communication, due to various factors, the channel information and service
demands of users are private. In order to better meet the user demand and to maximize
the utilization rate of physical resources in the BS, MVNO is added between the BS and
users. The MVNOs collect the users’ demand information and channel status, then bid and
obtain resources from the BS, finally allocate resources to users connected to it. This paper
mapped the above problem to a Markov decision process, uses the framework of bidding
for the upper tier model in the allocation process, and uses the DRL for both two tiers to
solve the optimization problem, get the optimal solution by iterative training.

Algorithm 1 uses the DQN joint with the framework of bidding to solve the optimiza-
tion problem for the upper tier model. After initializing the bidding pool B, the parameters
in the neural net within the DQN (such as (Q, θ, α, β, Q̂, and N). In the simulation, each
MVNO obtains the bidding range to establish a bidding pool B, the total maximum and
minimum demand resources of the users of the MVNO are first estimated, which is repre-
sented by the maximum and minimum value of the sum of the expected rates (set by SLA)
of all users connected to it. It is used to indicate the maximum rate requirement of each
MVNO if the service requirement of each user is the service type with the maximum rate.
After converting the rate requirement to the maximum and minimum bid value according
to a specific ratio, the bid pool B can be established. The upper tier uses the bid pool B
as the action space, and the maximum lower tier action corresponding to each upper tier
action is found in the lower tier and stored in table A.

Algorithm 1 DQN and Joint Bidding Algorithm for Upper Tier Bandwidth Allocation

1: Initialize the Bidding pool B of MVNO and corresponding lower tier action selection table A;

2:
Initialize the action-value function Q, target action-value function Q̂ the replay memory D to
capacity N

3:
Each MVNO m ∈ M estimates the maximum total needed rate and minimum total needed
rate of linked users, then create the Bidding pool B;

4: For bm in B do
5: Find the lower tier optimal allocation action and store it in table A;
6: end for

7:
Random choose an action at i.e., bidding value bmεB and BS distributes cm to each MVNO
according to (2);

8: Repeat
9: For t = 1, to T, do

10:
Calculate the ratio of the allocated bandwidth to its required minimum rate, and take it

as the current state S = s of the last iteration;
11: For m = 1 to M, do
12: Each MVNO m allocates optimal bandwidth cm

j to its users according to table A;
13: Each MVNO m calculates the vm by (9) and (10);
14: Each MVNO m calculates the penalty qm by (4);
15: Each MVNO m and calculates the profit ym by (3) and get the reward rm;
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Algorithm 1 Cont.

16: End for
17: Calculate the total system utility F according to (5);
18: Calculate the total reward r;
19: Choose an action at i.e., bidding value bmεB according to the policy of DQN;
20: InP distributes cm to each MVNO according to (2);
21: Get the state S = s’ after the selection action of this iteration;
22: #Train DQN
23: The agent i.e., each MVNO inputs (s, a, s′, r) into the DQN;
24: The agent stores transition (s, a, s′, r) in D;
25: The agent sample random minibatch of transitions ( s_, a_, s′_, r _) from D;

26:

Set

y_ =

{
r−

r_ + γmaxa∗ Q̂
(
s′_, a∗; θ−

) if episode terminates at step _ + 1
otherwise

27: The agent perform a gradient descent step on (y_−Q(s_, a_; θ))2 with respect to the
network parameters θ;

28: Every steps reset Q̂ = Q;
29: End for
30: Until The predefined maximum number of iterations has been completed.

Before starting the iteration, an upper tier action needs to be randomly selected to
generate the initial state. The components of the iteration process include: getting the
current state s, selecting the action a according to the policy π(·|s) in the current state s
and generating the state s _, calculating the utility function F, and calculating the reward
r. At the beginning of each iteration, the current state s is available. In combination with
the DQN algorithm, the actions in each iteration are selected according to the DQN policy,
the ε-greedy policy, randomly selected an action or selected a better action according
to at = argmaxaQ(ϕ(st), a; θ). The action a = at of each iteration contains the bids of
each MVNO in this iteration a = {b1, b2, . . . , bm}. The InP receives the bids bm from
MVNOs and divides the bandwidth resources proportionally to each MVNO bandwidth
c = {c1 , c 2, . . . , cm} according to Equation (2). Each MVNO will allocate bandwidth cm
to each user and count the rate vm sum of each user, each MVNO can get the ratio of
the allocated bandwidth to its required minimum rate, and take it as the next state s _.
The MVNO also constructs an action space when allocating bandwidth to users, and the
optimal lower-tier action al corresponding to each upper-tier action can be found based on
table A. Then, the MVNO derives a discount function from Equation (4) and calculates the
profit value ym in this iteration from Equation (3) based on the sum of vm and qm. When all
MVNOs in this iteration have performed the above actions, the total utility function F and
the total reward r of the system in this iteration is counted.

Finally, the s, a, s _ and r generated by this iteration are input into the DQN and trained.
In DQN, the agent stores the transition (s, a, s′, r) of each iteration into the experience
pool D, then takes a small random transition ( s_, a_, s′_, r _) from the experience pool D
for training the parameters of the Q-value net, finally updates the parameters of the target
Q-value net by the loss function L(θ).

Algorithm 2 uses the Dueling DQN algorithm to solve the optimization problem of
the lower-level model. As in Algorithm 1, the parameters (Q, θ, Q̂, and N) in the Dueling
DQN neural network are first initialized and each MVNO creates its lower tier action space
Al after receiving the resources cm allocated from the BS. Before each iteration, each MVNO
will randomly select an action a ∈ Al from its lower action space and execute it. The action a
first divides its resources into resource blocks for three services, then allocates resources cm

j
to users which are connected to it, then count the number of packets successfully received
qm

j by the user and denote it as state s. Then start the iteration, the agent i.e., MVNO
will get the current state s, and choose an action a according to the policy of the Dueling
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DQN policy, the ε-greedy policy, randomly selects an action or selected a better action
according to at = argmaxaQ(ϕ(st), a; θ, α, β), after the allocation process, MVNO counts
the state s′, utility function fm and reward r, finally, input the (s, a, s′, r) into the Dueling
DQN and train the neural network until the predefined maximum number of iterations has
been completed.

Algorithm 2 Dueling DQN Algorithm for Lower Tier Bandwidth Allocation

1: Initialize the action-value function Q, target action-value function Q̂ the replay memory D to
capacity N

2: Each MVNO receives a bandwidth cm from the BS;
3: Each MVNO creates an action space Al ;
4: For m = 1 to M, do
5: MVNO randomly chooses an action a ∈ Al and performs a;
6: MVNO allocates the bandwidth cm

j to users which are connected with it;
7: Calculate the qm

j as state s;
8: For t = 1, to T, do
9: The agent gets the current state s;
10: Choose an action a ∈ Al according to the policy of Dueling DQN;
11: Calculate the total system utility fm according to (15);
12: Calculate the total reward;
13: The agent allocates the bandwidth to users and calculates the state after the selection

action of this iteration as s′;
14: #Train Dueling DQN
15: The agent i.e., each MVNO inputs (s, a, s′, r) into the Dueling DQN;
16: The agent store transition (s, a, s′, r) in D;
17: The agent sample random minibatch of transitions ( s_, a_, s′_, r _) from D;
18: Set

y_ =

{
r−

r_ + γmaxa∗ Q̂
(
s′_, a∗; θ−, α, β

) if episode terminates at step _ + 1
otherwise

19: The agent perform a gradient descent step on (y_−Q(s_, a_; θ, α, β))2 with respect to the
network parameters θ, α and β;

20: Every steps reset Q̂ = Q;
21: End for
22: End for

4. Simulation Results and Discuss

Compared with the latest published literature in recent years, as Table 1, this paper
considers the sliced bandwidth resources as a two tier resource allocation process, and
ensures the service quality of users’ multiple service requirements. Through the simulation,
we get good results by using the DRL joint bidding.

Table 1. Comparison with reference algorithm.

Reference Two Tier Resource
Allocation

Multiple
Service Types

Network
Slicing

DRL Joint
Method

proposed
algorithm Yes Yes Yes bidding

[3] no yes yes no

[12] yes no no no

[38] no yes yes BER

[39] no yes yes no
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4.1. Simulation Parameters

In the scenario considered in this paper, the maximum aggregated bandwidth provided
by a single BS is 10 MHz, and the minimum specification of the bandwidth resource block
is set to rblock = 0.2 MHz, three types of services (i.e., VoLTE, eMBB, and URLLC) and
four MVNOs are provided to the subscribers, and 100 registered subscribers are randomly
present within an approximate circle of 40 m radius around the BS. The transmission power
of the users is 20 dBm, and the transmit power of the BS is 46 dBm. The noise spectral
density of the channel is −174 dBm/Hz under the given channel model. The minimum
rate constraint for VoLTE service is 51 kbs, the minimum rate constraint for eMBB service is
0.1 Gb/s, and the minimum rate constraint for URLLC service is 0.01 Gb/s. The detailed
simulation parameters are shown in the following Table 2.

Table 2. Parameter settings for each service slice.

VoLTE eMBB URLCC

System Bandwidth 10 MHZ

Resource Block Specifications 0.2 MHZ

BS Transmitting Power 46 dBm

User Transmission Power 20 dBm

Signal Path Rayleigh decline

Number of MVNOs 4

Number of Users Total: 100

User Package Size Constant:
40 Byte

Average value: 100 Byte,
maximum value: 250 Byte

Constant:
0.3 MByte

SLA (speed): 51 kbs 100 Mbs 10 Mbs

The simulation sets up 100 users randomly distributed in a single BS coverage area,
and the users have three different service demand types (i.e., VoLTE, eMBB, and URLLC),
and the service demand of each user is also random. An MVNO is set up to pre-allocate
the BS resources between the BS and the users, and the users are connected to different
MVNOs according to their locations. To demonstrate the feasibility and advantages of the
proposed resource allocation algorithm, the following work is carried out in this paper.

Firstly, the proposed model based on bidding and a two tier Dueling DQN algorithm
is simulated through the python platform and simulated with a Double DQN algorithm,
DQN algorithm. and Q-Learning algorithm. After getting the data of the four algorithms
plotted graphs and comparing, it is concluded that the algorithm proposed in this paper
is feasible and has some advantages over the other three algorithms in this paper. The
following is the curve and comparative analysis after plotting some data obtained from
this simulation.

In the process of simulation for the training network parameters set the reward is
calculated as:

The upper tier reward = 4 + (SE − 230) * 0.1 + (profit − 185) * 0.1 (if the Qoe of
eMBB ≥ 0.975, the Qoe of Volte ≥ 0.98, the Qoe of URLLC ≥ 0.95, the SE ≥ 220 and
the profit ≥ 185). In the preceding conditions, if SE is not satisfied, the reward = 4; if
profit is larger than 170 but also not satisfied the conditions, the reward = (the Qoe of
URLLC − 0.7) * 10; and if the Qoe of URLLC also not satisfied, reward = (the Qoe of
URLLC − 0.7) * 6; if just satisfied the first condition, reward = 0, and if each condition is no
satisfied, reward = −5.

The lower tier rewards are a bit simpler to set up and are part of the rewards that
consist of the upper tier: reward = 4 + (SE − 280) * 0.1 (if the Qoe of eMBB ≥ 0.96, the Qoe
of Volte ≥ 0.98, the Qoe of URLLC ≥ 0.95, the SE ≥ 280); reward = 4 (if SE not satisfied);
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reward = (the Qoe of URLLC − 0.7) * 10(if the Qoe of URLLC is not satisfied); reward = −5
(if each conditions is not satisfied).

In particular, in the upper model, we evaluated the method of joint bidding of Doble
DQN and Dueling DQN, and compared it with the results of traditional DQN, Double DQN,
Dueling DQN, and Q-learning. In the experiment, the learning rates of various algorithms
are set to 0.01. And the importance weight of the optimization objective obtained by
formula (6) and formula (15) is set to ρ = 0.01, ϕ = [1, 1, 1], ω = 0.1. The learning rate of
the Dueling DQN network is set to 0.01, and the choice of Gama value was experimentally
set to 0.95.

In the whole simulation process, 100 user locations are randomly distributed, with
the BS location as the origin, and 4 MVNOs manage four areas, respectively, and collect
their service demands. In this paper, as Table 3, the service types of the users connected by
MVNO-0 include 11 eMBB services, 9 VoLTE services, and 7 URLLC services; the service
types of the users connected by MVNO-1 include 11 eMBB services, 8 VoLTE services, and
7 URLLC services; the service types of the users connected by MVNO-2 include 8 eMBB
services, 6 VoLTE services, and 13 URLLC services. 6 VoLTE services and 13 URLLC services;
MVNO-3 connected users’ service types include 2 eMBB services, 8 VoLTE services, and
7 URLLC services.

Table 3. Number of users with different service requirements connected by MVNO.

Number of Users with Different Service Needs

eMBB VoLTE URLLC

MVNO-0 11 9 7

MVNO-1 11 8 7

MVNO-2 8 6 13

MVNO-3 2 8 7

4.2. Simulation Results and Discuss

The resource allocation algorithm based on bidding and two-tier DRL proposed in
this paper is divided into two tiers.

Figures 2–5 show the optimization curves of the QoE of three types of services and SE
using the proposed algorithm in the lower tier.
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We can see from Figure 2 that the QoE of VoLTE service reaches 1 without optimization,
because the required rate requirement is very small (51 kbs). Providing a small part of the
bandwidth for this service can meet its requirements. From Figures 3 and 4, the QoE of
URLLC and eMBB services fluctuate because the rate requirements of these two services
are large (0.1 Gbs and 1 Gbs). Nevertheless, the QoE of these two services is maintained
between 0.96 and 1.0. Some abnormal values in subsequent iterations are trial and error
attempts made by dueling the DQN algorithm to prevent over optimization.

It can be seen in Figures 5 and 6 that the curves of the SE graph are significantly
different from the curves of the QoE graphs of the other three services, and the SE curve
has a strong correlation with the system utility curve compared to the three service curves.
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However, for each MVNO, its system utility functions and SE shows significant
optimization with increasing iterations, which confirms that using the Dueling DQN
algorithm is a suitable choice for the model optimization problem proposed in this paper.
In MVNO-1, for example, the SE curve fluctuates a lot before 400 iterations, and after
400 iterations, the SE curve has converged to the maximum value of 300 and tends to be
stable, with a few low values after more than 400 iterations but does not affect the overall
trend. The reason for this phenomenon is that the training neural net parameters were set
to be replaced every 200 iterations during the simulation. The neural net parameters were
in a relatively poor state when the training was first performed using DQN, and most of the
assigned actions obtained from the initial neural net parameters and strategy selection were
randomly selected actions in the action space, so the curve showed substantial fluctuations
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at the beginning. When the number of iterations reaches 400 and the neural net parameters
in the Dueling DQN algorithm reach better, the subsequent choices of the allocations all
appear to be better choices.

The changes in system utility, QoE, and SE for MVNO-1 with an increasing number of
iterations using different methods are shown in Figures 7–11.
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Analyzing the curves of QoE for three service types (Figures 7–9), it can be seen that
for VoLTE service, the QoE values of all three methods are stable at 100%. For URLLC
service and eMBB service, the QoE values of four algorithms show some fluctuations of
low values, but all three methods are basically stable at 100%. However, the QoE curves of
the three services obtained by the Dueling DQN algorithm are more stable and less volatile
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than the other three algorithms. It can be observed from the curves of system utility and
SE (Figures 10 and 11) that the DRL algorithms have a significant improvement over the
QL algorithm.
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For the curves of SE and system utility, the curves using the Dueling DQN algorithm
have higher values than the curves of the other methods, and the curves converge and
stabilize at the highest values (SE > 300, utility > 6). After 2200 iterations, the actual
simulation data show that the SE obtained by the Dueling DQN algorithm is about 1%
higher than that of the DQN algorithm, about 2.7% higher than the Double DQN algorithm,
and about 76% higher than the QL algorithm.

And utility has also been slightly improved.
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These four algorithms have obvious optimization for the whole system, and the SE and
utility curves have obvious optimization trends. Through comparison, it is concluded that
the curve obtained by the Dueling DQN algorithm is more stable than other centralized
algorithms. Especially after 2200 iterations, the curve obtained by the Dueling DQN
algorithm rarely fluctuates greatly, and even its average value converges to a relatively
high value, which shows that using the Dueling DQN algorithm to solve the optimization
problem of the lower model is a very effective method.

Figures 12 and 13 show the comparison of profit and utility of the upper model using
different algorithms.
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It can be seen from the line graph that the optimization effect of the upper model using
the DQN algorithm (red curve) is the best. After the number of iterations reaches 3500, the
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profit of MVNO and the utility function of the system gradually converge to about 200
and 9, respectively. The second is the QL algorithm, whose curve is significantly higher
than that of the other two algorithms, but after 3500 iterations, it is more volatile than that
of the DQN algorithm. The two curves obtained by the Double DQN and Dueling DQN
algorithm perform worse. As the advantages of the DQN algorithm over the other three
algorithms cannot be clearly seen from the line graph, the violin graph is used to analyze
and compare the data.
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In the violin diagram, the wider the blue width is, the higher the ratio of the value
here is. The middle line represents the mean value, and the upper and lower lines represent
the maximum and minimum values.

It is obvious from Figures 14 and 15 that, the system utility and MVNO benefit obtained
by using the DQN algorithm are better than the other algorithms. The average values of
Se and utility obtained by the DQN algorithm are the largest, and the values obtained are
concentrated in a relatively high range, which is about 5.4% higher than Double DQN and
about 2.6% higher than Dueling DQN. The reason may be that Double DQN and Dueling
DQN improved by the DQN algorithm pay too much attention to the behavior of trial and
error, but reduce the optimization effect of the system.

In general, it can be seen from Table 4, that the algorithm proposed in this paper is
better than the comparison method in optimization performance, convergence speed, and
convergence stability.

Table 4. The proposed algorithm is compared with other algorithms.

QL DQN Dueling DQN Double DQN

Upper tier
Profit 191 (1.5%) 194 (Proposed) 189 (2.6%) 184 (5.4%)

Total Utility 9.01 (1.1%) 9.13 (Proposed) 8.91 (2.5%) 8.84 (3.2%)

Lower
tier

Qoe of services More unstable More unstable More unstable More unstable

SE 168 (76%) 294 (1%) 297 (Proposed) 289 (2.7%)

Utility 4.43 (34.1%) 5.90 (0.5%) 5.93 (Proposed) 5.85 (1.3%)
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4.3. The Complexity Analysis

In terms of time complexity, the algorithm proposed in this paper needs to generate
the state after the interaction between the environment and MVNO in each iteration, so it is
difficult to obtain the operation time required by the algorithm in each iteration. However,
the preset number of iterations in this paper is 6000.

From the perspective of spatial complexity, the spatial complexity of the DRL algorithm
is obtained according to the number of neural network parameters, real-time addition Ca,
and real-time multiplication cm that needs to be stored. The DRL algorithm used in this
paper uses K hidden full connection layers, and each hidden layer is set with oK neural units.

CP = ∑K
k=1(ok + 1)ok+1 (25)
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CM = ∑K
k=1 okok+1 (26)

CA = ∑K
k=1 okok+1 + ∑K

k=1 ok+1 (27)

The neural network set up in this paper uses the Relu activation function, the number
of hidden layers K = 2, and the number of neurons in the two hidden layers oK, Therefore,
according to formula (22) and formula (25)–(27), we can get the spatial complexity:

C = CV
L + CA

L , L ∈ {P , M, A} (28)

Therefore, it can be deduced that the complexity of the proposed algorithm is low. in
addition, from the results, it can be seen that the proposed algorithm can converge at a
faster speed and get the optimization results.

5. Conclusions

In this paper, we propose a two-tier slicing resource allocation algorithm with Dueling
DQN and joint bidding to solve the optimization problem of resource allocation for multiple
users in RAN scenarios. We first combine Dueling DQN and bidding in the upper tier of the
proposed model to try to maximize the utilization of the BS resources, using an exhaustive
enumeration to obtain the optimal lower tier actions corresponding to the upper tier actions,
and using a penalty function to prevent the MVNOs from overbidding. The Dueling DQN
is used in the lower tier of the model to allocate the resources to the users connected by
each MVNO. Also, in this paper, bidding is combined with the Q-learning algorithm in the
upper tier of the model, and the hard slicing approach is combined with bidding and used
as a comparison to conclude that using the Dueling DQN algorithm in combination with
bidding exhibits better performance. The use of the Dueling DQN algorithm in the lower
tier also shows superiority over the use of the Double DQN algorithm, DQN algorithm, and
the Q-Learning algorithm. In future work, it can take into consideration changes in user
location and changes in service demand, in order to get closer to the actual communication
scenario. And improve the proposed two-tier model by combining the bidding algorithm
with more advanced DL algorithms to obtain a better allocation scheme.
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