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Abstract: The majority of digital sensors rely on von Neumann architecture microprocessors to
process sampled data. When the sampled data require complex computation for 24 x 7, the processing
element will a consume significant amount of energy and computation resources. Several new sensing
algorithms use deep neural network algorithms and consume even more computation resources.
High resource consumption prevents such systems for 24 x 7 deployment although they can deliver
impressive results. This work adopts a Computing-In-Memory (CIM) device, which integrates a
storage and analog processing unit to eliminate data movement, to process sampled data. This
work designs and evaluates the CIM-based sensing framework for human pose recognition. The
framework consists of uncertainty-aware training, activation function design, and CIM error model
collection. The evaluation results show that the framework can improve the detection accuracy of
three poses classification on CIM devices using binary weights from 33.3% to 91.5% while that on
ideal CIM is 92.1%. Although on digital systems the accuracy is 98.7% with binary weight and 99.5%
with floating weight, the energy consumption of executing 1 convolution layer on a CIM device is
only 30,000 to 50,000 times less than the digital sensing system. Such a design can significantly reduce
power consumption and enables battery-powered always-on sensors.

Keywords: analogy computing; smart sensors; non-ideality errors

1. Introduction

Using connected and intelligent sensors in the indoor spaces to collect data for 24 x 7
is desired to avoid uncomfortableness and lost tracking due to forgettable memory. For
example, observing the gait velocity, activities, and safety at long-term care center or
private space for the elderly or disabilities [1,2]. However, the sensing and computation
will consume significant amount of resources, including energy, computation, storage, and
network bandwidth for long-term monitoring. The above pitfalls limit the use of deploying
connected sensors in indoor spaces.

One example is using low-resolution image sensors to evaluate the quality of sleep
without wearable sensors and revealing privacy by counting the number of turnovers. The
users do not need to wear any devices, and no wires are attached to the bed. Figure 1 shows
the examples of color and corresponding thermal images of the users: Figure 1a,b show the
images for laying down and turning to the right.

The example shows that the difference of thermal images could be used to identify the
pose of the users without revealing their identifies. However, the process of identifying
turn-overs requires increasing the resolution of the thermal images and executing the
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algorithm to detect the turn-overs using a sequence of images. The algorithm can be
executed either on the sensors or on a remote server. Unfortunately, both deployments
consume non-negligible amount of energy, and it is not feasible for mass deployment and
long-term monitoring.

(a) (b)

Figure 1. Color Photos and Thermal Images at Okayama Hospital, Japan: (a) Laydown, (b) Turn to
the right.

This work designs and evaluates the framework of using CIM processing elements,
rather than von Neumann architecture micro-processors, to process thermal images for pose
detection. The developed framework can significantly reduce the resource use, including
energy consumption and storage size, without lowering the detection accuracy. Conducting
a convolution layer whose input size is 30 x 40 pixels and kernel size is 7 x 7 consumes
14.55 m] on a Raspberry PI 3 but only consumes 0.00029 m] on CIM, which reduces the
energy consumption 50,000 times.

CIM is an emerging technology which can do matrix-vector multiplies at 25 Mhz or
higher [3-6] with low-energy consumption. It can be used to enhance the resource use of
conducting neural network based algorithms. CIM chips usually consist of three parts.
The first part is the random access memory (RAM), which is used to store the weight
of the neural network model. In 2017, Zhang [3] reported the use of the 6T SRAM and
amplifiers to conduct an AdaBoost classifier. In 2021, Chen [4] reported to use the DRAM
as the memory part of CIM. Unlike SRAM, which can only store zero or one, DRAM can
store analog weights. The second part is the DAC (Digital-to-Analog Converter), which
transforms the digital inputs to analog voltage or a pulse. Chen’s work [4] shows that one
can store the weights on DRAM, transform the input to a 30 ps to 750 ps pulse and send to
the read-enable pin. The voltage of the Read-Line (RL) is proportional to the dot product of
inputs and weights. The last part is an ADC (Analog-to-Digital Converter), which converts
the analog voltage results back to the digital data. This work uses the CIM chip designed
by Liu and others [6] as the processing unit to execute neural network algorithms. This
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chip uses an 128 x 64 CIM SRAM, which consists of 7-bit DACs and 7-bit ADCs. It also
designs a sign-bit on input DAC, which can switch the precharge RL and makes the CIM
capable of supporting negative inputs.

Figure 2 illustrates the difference between the von Neumann and CIM architecture
for pose detection. Figure 2a,b show the von Neumann and CIM architecture to detect the
pose. On von Neumann architecture, the sensed data, i.e., raw images, are stored on the
memory and processed on the processing element, i.e., Raspberry Pi. However, on CIM
architecture, the sensed data are stored and processed on the CIM.

Memory Memory
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Raw Image Raw Image
Sensor Box > Rasf;?e“y Sensor Box ~| Fpca CIM Chip

B Output HIDC

Pose Detection Result Pose Detection Result
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Figure 2. The von Neumann and CIM Architecture for Thermal Image Processing.

This work uses Panasonic Grid-EYE thermal sensors, an 8 x 8 pixels infrared array
sensor, to collect the thermal images of the subjects. The thermal images are calibrated
to eliminate distortion and pre-processed to eliminate background noise on a low-power
micro-processor and than upload to FPGA, a programmable integrated circuit. A pre-
trained convolution neural network (CNN) model will also upload to the FPGA, which
will read, write, and operate the CIM SRAM to conduct the convolution layers on CIM.
The framework also implements activation functions on FPGA, such as max-pooling and
leakyReLU. The results show that the accuracy of pose detection can be improved by at
least 25%, compared to the method without enhancing the thermal image on CIM.

The remaining of this paper is organized as follows. Section 2 presents the background
and related works, and Section 3 presents the architecture of the designed framework.
Section 4 presents the designs and implementation for the framework, and Section 5
presents the evaluation results. Finally, Section 6 summarizes the work.

2. Background and Related Works

Digital and analog sensors have been developed to detect various events. In the last
few decades, the sensing technologies have developed to detect semantic events, including
presence of a human or a particular person, the presence of certain gases and temperatures,
and changes in temperature or brightness. Computations are required to process raw
sensing data and to obtain semantic information. This section presents the background of
sensing technology and research related to this work.

2.1. Thermal Sensors

This work uses thermal images as the example of raw inputs to demonstrate and
evaluate the framework of CIM-based smart sensors. Thermal sensors can have the readings
for single point or array of points. The single point thermal sensors are often used to read
the temperature on front-heads and single point of an object. On the other hand, the array
thermal sensors are used to reconstruct of heat-map of an area and, hence, are used to detect
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abnormal temperatures in an area or a surface. The body temperature readings are widely
used in public area to identify the person(s) having fevers. Chou et al. [7] developed the
framework to measure gait velocity using connected low-resolution array thermal sensors.

Figure 3a,b show two thermal heat-map examples of an 8 x 8 pixels thermal image and
an 120 x 160 pixels thermal image. Each pixel has a temperature reading. Specifically, the
examples were collected from Panasonic Grid-EYE [8] and FLIR LEPTON [9] at the same
time and location. Panasonic Grid-EYE thermal camera can output 8 x 8 pixels thermal
data with 2.5 °C accuracy and 0.25 °C resolution between —20 °C and 80 °C at 10 frames
per second. As shown in Figure 3a, it can observe the indoor area to recognize the daily
activity but preserve privacy compared to surveillance camera and high-resolution thermal
image sensors. This work uses ultra-low-resolution thermal sensors to collect the heat-map
of the region of interest.

(@) (b)
Figure 3. Examples of Thermal Heat-Map Images: (a) Low-Resolution Thermal Image; (b) High-

Resolution Thermal Image.

2.2. 5S-RAM CIM

Traditional sensors use either micro-processors or micro-controllers to process the
collected data. Both of them use von Neumann computing architecture, which separates
memory and processing units, for flexibility in last 40 years. There is no question that
von Neumann architecture enables programmability. However, it also imposes significant
overhead to move data between memory and processing units when the system has to
process the collected data repeatedly in order to obtain the desired information. A deep
neural network is one such computing model and performs poorly on von Neumann
architecture. Several works [3,10-12] showed that a customized SRAM chip can be used to
conduct multiply-accumulate (MAC) operations for convolutional networks.

This work uses 6T SRAM CIM designed by Liu and his colleagues [6]. It consists
of 16 computation banks, where all banks share 64 7-bit DACs. Each bank consists of
16 x 64 SRAM cells. Each computing cycle triggers 1 column of each bank to conduct 16
matrix vector multiplies at the same time. Then, the output of all the columns will be
summed up and output to ADC. Hence, the CIM chip can conduct multiplication and
accumulation (MAC) in parallel. Equation (1) shows an example of MAC, which is the core
computation operations of neural network algorithms:

j<64
Yi = TOMTld( Z (X] X W]',l')/64) (1)
j=0
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where X is a 1 x 64 7-bit input array, and W is a 64 x 256 binary weight matrix.

Note that the results of MAC on analog CIMs do come along with errors because
of the nonideality from ADC and DAC while reading or writing the SRAM. Olleta et
al. shows the transfer curve between ideal values and real values of a 3-bit flash ADC
with a voltage reference equal to 2 V in Figure 2 in [13]. As shown in that figure, the
mapping from the ideal value to the real value is not linear and needs to be measured for
characterizing the ADC under test. The nonideal transfer curve makes it difficult to use
CIM as the processing elements. Hence, when using CIM as the processing element for
neural network algorithms, the major challenge is how to characterize the transfer error
and how to minimize the impact to the correctness of the computation results.

2.3. Quantization Aware Training/Post-Training Quantization

Analog CIM circuits also limit the number of bits for computation. The device designed
by Chiu et al. [11] used 55 nm technology to design and has 2 to 8 bits as the input width,
2 to 8 bits as the weight width, and 7 to 19 bits as the output width. Similarly, the device
designed by Hsu et al. [6] used 28 nm technology to design and has 7 bits as the input
width, 1 to 2 bits as the weight width, and 5 to 7 bits as the output width. Compared to
modern digital processors, these CIM SRAM designs have extreme limitations on data
representation on inputs, weights, and outputs. Hence, the inputs and weights to be used
on analog CIMs have to be quantized onto a specific number of bits in order to fit the circuit
design. Quantization aware training usually has better accuracy, but takes time to retrain
the model with specified precision. However, post-training quantization takes advantage of
the pre-trained model, but the accuracy declines significantly when the specified precision
(i.e., 7 bits) is much lower than the expected precision (i.e., 32 bits or 64 bits).

Figure 4a,b show the results of the post-training quantization SRCNN model and
quantization-aware training SRCNN model [14-16]. By retraining the model instead of
quantizing the pre-trained model, the peak signal-to-noise ratios (PSNR) of the super-
resolution (SR) images increase from 21.5 dB to 22.9 dB. The images enhanced by the
post-training model look after those suffered from applying a low-passed filter.

Figure 4. Quantization SRCNN: (a) Post-Training Quantization; (b) Quantization Aware Training.

2.4. Pose Detection on SRCNN-Enhanced Thermal Images

Shermeyer and Van Etten [17] show that super-resolution can improve the accuracy
of object detection on low-resolution images. Shih et al. [18,19] show that the accuracy of
pose detection on a low-resolution thermal image can be improved by fusing the data from
multiple sensors and an SRCNN [20] trained by an extra high-resolution thermal camera.
They put four 8 x 8 resolution thermal sensors on the corner of a 10 cm x 10 cm plastic
board and a 120 x 160 high-resolution thermal camera in the middle of the board to collect
the data for training SRCNN. Compared with bi-cubic interpolation, SRCNN can enhance
the PSNR from 8.3 dB to 19.5 dB, and the accuracy of the pose detection also increased from
77.93% to 89.30% on modern micro-processors.
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3. System Architecture

Processing sensor data by Neural Network algorithm on von Neumann architecture
microprocessors consume significant amount of resources, including CPU, GPU, storage
space, and network bandwidth. The designed framework takes advantage of analog CIM
SRAM to store and process-collected data on the sensors, rather than on the edge servers or
remote cloud servers. Figure 5 shows the overall system architecture of CIM-based smart
sensors for pose detection.

Processed
Image Weight & Input
> »| DAC
Raw Image
SenSONBOR > Rasﬁ’)'?e"y FPGA CIM Chip
1
<t < ADC
Feature Output
Map
SRCNN Result
\4
Display |«

Pose Detection Result

Figure 5. Overall System Architecture of CIM-Based Smart Sensor.

The framework consists of three major components: one low-power micro-processor,
one FPGA, and one CIM SRAM. The sensor box shown on the left collects raw data for
processing. The details of the sensor box will be illustrated later. A Raspberry Pi board
downloads raw images from the sensors and pre-processes the image to eliminate noise and
background. The FPGA is responsible for converting the received image onto the format
for CIM and conducts the activation layer in the neural networks. The FPGA also writes
the weights onto CIM SRAM and sequentially writes the input data into the DAC buffer.
On the other hand, it retrieves the ADC outputs after the CIM finishes the computation.
When the neural network algorithm completes on CIM, the FPGA will upload the feature
maps to Raspberry Pi to reconstruct the image for SRCNN. While using the framework for
pose detection, the FPGA can output the detection results to the display.

Figure 6 shows the thermal sensor box for collecting the infrared data. It consists of
four Grid-EYE [8] sensors and one Lepton [9] camera. The Grid-EYE sensors have ultra-low
resolution and are used for online pose detection; the Lepton thermal image sensor is
used to collect high-resolution reference images for training. Auduino is responsible for
transmitting raw thermal images to the external receiver. Raspberry Pi is responsible for
formatting high-resolution thermal images for output. Thermal data are collected from a
thermal sensor box, and the preprocessing is perfromed on Raspberry Pi. The preprocessing
consists of fusing the data from Grid-EYEs into single image and crops to the target ROI.
The details can be found at Shih et al. [18].

Conducting the computation by the circuits can have very high throughput and energy
efficiency. Still, it is not easy to perform the computing other than addition, such as division
or exponentiation. However, a convolutional neural network consists of convolutional
layers and activation functions. This proposed framework integrates the FPGA and the
CIM SRAM and designs a CIM-friendly CNN model which uses fewer channels, a smaller
kernel size, and customizes the activation function. The goal of this framework is to be
deployed on FPGA and support the CIM’s quantization and uncertainty computation.
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Figure 6. Thermal Box Design.

4. CIM-Friendly Deep Neural Network Training and Inference

This section presents the process of CIM-friendly deep neural network training and
inference. As an example, we designed a two-layer SRCNN without a reconstruction layer
and a four-layer CNN pose-detection model to demonstrate the process.

The training and inference process was designed according to the system architecture
shown in Figure 5. On the Raspberry Pij, it fuses the data from four sensors by bi-cubic
interpolation and crops the image to 30 x 40 pixels resolution. After data preprocessing,
Raspberry Pi will upload the low-resolution images to FPGA through UART. FPGA then
writes the input data and weights to CIM SRAM and retrieves the result from ADC from
CIM SRAM. Between two CIM layers, the normalization layer and LeakyReLU will be
conducted on FPGA. When the SRCNN is conducted, the FPGA sends the feature map to
Raspberry Pi to reconstruct the thermal image; when the pose detection is conducted, the
FPGA outputs the detection results to display. To train a CIM-friendly CNN model, the
process must take into account the errors on CIM SRAM. The errors include quantization
error, non-ideality transfer error, and voltage bias errors.

4.1. Characterization of Non-Ideality Errors

The DAC bias-voltage and the ADC errors are the main causes for CIM non-ideality
errors. This subsection elaborates how errors on CIM SRAM are characterized.

4.1.1. Non-Ideality Transfer Errors Characterization

The non-ideality transfer errors are caused by the non-ideality transfers in ADC,
which are essential in analog CIM SRAM to switch between digital and analog signals. To
completely understand the characteristics of the CIM SRAM, the following three methods
are used to collect the error-mapping tables:

e Random Input: in this method, the input are randomly selected in the range [—63, 63],
and the weights are also randomly selected between —1 and 1.

*  Color Image Data: in this method, the inputs are color images and randomly selected
from CIFAR-10 dataset, which is not the target dataset for training and testing.

¢  Thermal Data: in this method, the inputs are thermal images and randomly selected
from thermal images collected by our sensor box. The main characteristics of thermal
images are the input for the first layer are all positive.

Given the inputs from the above different distributions, the process collects the outputs
and computes their means and standard deviations. For example, for a given input value,
the ideal output of a given MAC operation is supposed to be 4, and the mean of the collected
output is b. All the output value b on CIM will be mapped to a to verify its correctness.
Figure 7 shows the mapping from different inputs.
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Figure 7. Mapping on Different Input Sources.

The blue line shows the ideal mapping, the red line shows the mapping for random
input sources, the yellow line shows the mapping for inputs from the thermal image dataset,
and the green line shows the mapping for the color image dataset. Although these four lines
have similar trends, they do have different characteristics. The main difference between
these two inputs are the scope of the values: the sampled inputs use thermal images where
all values are positive, and the diversity in one convolutional window is small; the color
images also have positive values but wider range; and the random inputs use the complete
range [—63, 63] as the sample space. Among three collected mappings, the random inputs
lead to the closest to the golden mappings. On the other hand, the color image inputs lead
to the least close to the golden mappings. The three different mappings will be used to
train the networks and evaluate their testing accuracy.

4.1.2. Errors Caused by DAC Bias-Voltage

Another cause of the non-ideality errors comes from the bias voltage on DAC. Figure 8
shows the difference on output values between high and low bias input voltages. When
the bias-voltage is low, the CIM SRAM performs very similarly to the expected (gold)
one, plotted by the gray line. However, it only makes use of the voltage range between
—0.5 V and 0.5 V, which cannot fill the entire sampling range of the DAC and wastes the
limited output precision. High bias-voltage can fully use the sampling range of the DAC,
but the errors on both ends of the input ranges are unbearable. Selecting an appropriate
bias-voltage for the user context can have a significant impact on the system.

== DAC bias=0.1V == DAC bias=0.23V Golden

75

50

25 /__/_’_,_,_/_/_

Output Value

-50 -25 0 25 50

Input Value

Figure 8. Difference Between Bias-Voltage.
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4.2. Uncertainty-Aware Training

The training process of the networks to be executed on analog CIM SRAM needs to
tolerate the errors characterized in the above subsection. This subsection describes the
uncertainty aware training process.

The uncertainty aware training process has two types: 1-to-1 mapping and Gaussian
mapping. The first method uses the mean of the collected values for a given input value
as the mapped value during the training process. Hence, it is called 1-to-1 mapping. The
advantage of this method is its low complexity by using a look-up table for the mapping.
The second method uses the Gaussian distribution to map the output value during the
training process. Hence, it is called Gaussian mapping. Figure 9 shows the five example
distributions of the mappings. The orange bar shows the histogram of the collected outputs
for an expected output, and the blue line shows the Gaussian distribution based on the
mean and standard deviation of the collected outputs. As an example, Figure 9c shows
the histogram and distribution of the collected output when the expected output is 0. The
figure shows that the distribution greatly fit the histogram. Note that the distribution may
not fit the histogram when the expected outputs are greater than 15 or less than —15. This
is because the number of samples is smaller and, hence, the mean and standard deviation
do not represent the distribution of the collected samples.

(d) (e)

Figure 9. Error Distribution: (a) Expected = —6; (b) Expected = —3; (c) Expected = 0; (d) Expected = 3;
(e) Expected = 6.

Based on the above observations, the Gaussian mapping method uses the distribution
of each expected output value to map the output value during the training process. As
a result, one output value may be mapped into different values before next operation to
accommodate the errors caused by the non-ideality of the ADC circuits and bias-voltage.

4.3. Network Design for SRCNN on CIM

The SRCNN model used in this work includes three convolutional layers, and the first
two layers and the activation function between them are computed on CIM SRAM and
FPGA. The third layer of SRCNN, which is the reconstruction layer, will be conducted on a
regular CPU or GPU.

The kernel size of the SRCNN model used in this paper is 7-1-5, and the channel size
is 1-64-32-1. The first convolutional layer takes the 49 rows of the DAC buffer as the inputs
and stores the weight on the 64-th columns, 4 columns for each bank. On each iteration, the
CIM broadcasts the inputs and conducts a matrix array multiplication, and this operation
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will repeat four times for each input. A 30 x 40 image will update the inputs for 1200 times.
The output feature map will apply a CIM-friendly normalization function and LeakyReLU
before conducting the second convolutional layer. The second convolutional layer uses a
1 x 1 kernel because the input channel number of the second layer is 64 and fits the width
of CIM SRAM.

4.4. Network Design for Pose Classification on CIM

Figure 10 shows the example thermal images which are used in this work for pose
classification. The camera is set on the ceiling above the bed. The user might be sitting,
lying down, or absent. Each class has 400 images for training, 100 images for testing, and
100 images for verification.

I
(@) (b) ()

Figure 10. Example Data for Pose Detection: (a) Empty; (b) Sitting; (c) Laying.

The pose classification model in this work has two types: the first one uses the low-
resolution thermal image as the input, and the second one uses the feature map of a thermal
image after applying the first two layers of SRCNN shown in Figure 11. The direct method
has a faster inference time and fewer parameters to train. However, the SRCNN method
might have a better outcome but need more time to adjust all parameters, and a deeper
neural network might suffer from the uncertainty of CIM computation.
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Figure 11. Network Architecture for Pose Detection.
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This work also uses a customized normalized function, an activation function, and a
max-pooling after each convolutional layer.

¢  Customized Normalized Function:

Since the output resolution of CIM computation is very small, most of the output
values are less than 20. Hence, if the outputs were not enlarged after two or three
convolutional layers, all outputs will become zero. The proposed normalized function
adjusts the offset of output values to reduce the non-ideality error and enlarge the
outputs by multiplying the power of two.

For a CIM SRAM with 7-bit input and 7-bit output precision, the range output will be
much smaller than input for most of the time. Hence, we only need to focus on the
uncertainty of small values to fix the error. While training a CIM-friendly CNN model,
the model will search for a scale factor and an offset such as the v and p in Batch
Normalization to maximize the accuracy. The convolutional function will become
similar to the following equation:

n
VXYL x Wi+ B @
i=0
where 7 is the number of chunks, I; is the inputs, W; is the weight, 7 is the scaling
factor, and f is the offset.
¢ Activation Function:

This work uses LeakyReLU as the activation function because it is easy to implement
on FPGA, and instead of ReLU function. At the same time, the LeakyReLU can still
preserve the information from a negative value. Since the CIM outputs are integers
and the range is very small, we use 0.5 as the negative slope of the LeakyReLU.

The network accepts two different inputs for pose detection: thermal images and
Feature Map from SRCNN.

¢  Thermal Image Inputs:
This pose-detection network uses a four-layer CNN model with three convolutional
layers and one fully connected layer to process the thermal images as inputs. The
kernel size of the convolutional layers is 3 x 3, and the size of the Max pooling layer is
2 x 2.

e  Feature Map from SRCNN:
Many previous works show that the accuracy of object detection gains benefits from
SRCNN. However, due to the property of CIM computation, it can only conduct the
CNN with quantized weights, and the quality of most images is even worse than
the image only applying bicubic interpolation. Therefore, we design a three-layer
SRCNN model trained by Grid-EYE and Lepton images. After the model is trained,
the framework only use the feature map output from the second layer as shown at
the upper half of Figure 11. The feature map will be used to train the four-layer pose
classification model.

The networks are trained with 150 epochs, where the batch size is 100. The optimizing
function is stochastic gradient descent with a learning rate of 0.001 and a momentum factor
0.9. The negative slope of LeakyRelu is 0.5.

5. Performance Evaluation

This section presents CIM simulation results and on-chip inference results. The neural
networks are trained on an uncertainty-aware and quantized-aware SRCNN model in a
CIM-simulated environment. The evaluation compares the difference between simulated
and inference results.

5.1. Experimental Setting and CIM-Simulated Environment

The performance of the proposed framework is evaluated on both physical devices
and simulated environments in order to study the effectiveness of the uncertainty-aware
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training process. Figure 12 shows the experimental setting for CIM SRAM and FPGA.
The figure shows the CIM SRAM chip, FPGA, level shifter, and personal computer. The
computer is used to emulate the sensor box and Raspberry Pi in order to obtain consistent
and fair results via sending thermal images and receiving the results. The level shifter is
deployed between the FPGA and the CIM SRAM chip to synchronize the voltage between
the two devices.

Figure 12. Experimental Setting for CIM SRAM and FPGA.

To simulate the CIM environment, we rewrite the convolution functions in Pytorch.
The simulated environment splits the channels into several chunks according to the kernel
size. Each chunk has less than or equal to 64 inputs. For example, a 3 x 3 kernel will be
split into 4 channels in a chunk. After conducting the convolution chunk by chunk, the
output will apply the method elaborated in Section 4.2 to simulate the CIM errors.

5.2. Parameters for Activation Functions and Normalization Functions

This subsection presents the parameter configuration for activation function and
normalization functions, which are conducted on FPGA.

Activation Function: ReLU vs. LeakyReLU

Considering the complexity of hardware implementation, our model uses ReLU as
the activation function in the first design. However, due to the uncertainty error of CIM
computation, the output is smaller than expected and makes the most of outputs become
negative and zeroed by ReLU. In our testing data, the most output on an ideal CIM will be
—10 to +10, but in the simulated environment, it will be —17 to +3.

On a modern GPU, the accuracy is 98.7% with binary weight and 99.5% with floating
weight. In the mean time, the detection accuracy of a three classes classification on an
ideal CIM chip is 92.9% on average due to the limited computation accuracy and capability.
Table 1 shows the accuracy of the simulated CIM model using ReLU or LeakyReLU with
different negative slopes. While using normal ReLU as an activation function, the accuracy
of the simulated CIM becomes the same as a random model. However, if we replace the
ReLU with LeakyReLU with a 0.25 negative slope, the accuracy can be restored to 51.7%.
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Table 1. The accuracy of three classes classification with different activation functions.

ReLU LeakyReLU(0.5) LeakyReLU(0.25)
33.3% 34.6% 51.7%

Customized Normalization Function

While training a CIM-friendly CNN model, the model will compute a scale factor
and a shift offset as the 7y and § in Batch Normalization to better use the limited bits for
computation. Consequently, the convolutional function becomes the following equation:

n
Yx Y LixWi+p @)
i=0

where 7 is the number of chunks, I; is the inputs, W; is the weight, - is the scaling factor,
and S is the offset. The accuracy can be improved to 91.5% shown in Table 2 when - is 4 and
B is 2. Consequently, the output values of each layer will not be biased to certain ranges.

Table 2. The accuracy of different normalized parameters with LeakyReLU(0.5).

7:4,’3:0 7:4,[3:1 7:41522 'Y:S/ﬁ:() 7:8,!{:1 7:8,[3:2
61.0% 77.9% 91.5% 66.9% 81.7% 66.0%

5.3. SRCNN on Pose Detection

To evaluate the effectiveness of SRCNN on thermal images, we use a dataset with
five different poses, as shown in Figure 13, to evaluate the framework. Table 3 compares
the pose detection accuracy when the SRCNN is conducted to when it is not. The top row
shows the detection accuracy when the thermal images are not processed by SRCNN. In
other words, layer 1 and 2 shown in Figure 11 are skipped. The bottom shows the detection
accuracy when all the layers shown in Figure 11 are conducted. Three columns in Table 3
show the detection accuracy for the networks’ simulated CIM-based platform in order to
evaluate the effectiveness of SRCNN. The first column presents the results of simulating
the binary CIM with non-ideal errors, the second column presents the results of simulating
the binary CIM without non-ideal errors, and the third column presents the results of
floating-point platforms. The normalization parameters 7y of layers 3, 4, and 5 of the CNN
networks for 2 simulated CIM platforms are listed in the top row.

(a) (b) (©) (d) (e)

Figure 13. Input Images for Pose Detection: (a) Standing; (b) Raising hand; (¢) Arms on hips;

(d) Crossing hands; (e) Hands on hips.

The detection accuracies of the pose-detection networks, from layers 3 to 6, shown
in Figure 11, is 52.4% and 70.6% for binary weight CNN model on non-linear and ideal
CIM-based platforms, respectively. The non-linearity transfer errors do not reduce the
detection accuracy. When the floating point weight model is applied, the detection accuracy
becomes 84.4%. After applying the first two layers of the SRCNN model, from layer 1 to 2
shown in Figure 11, the detection accuracy was enhanced to 72.2% and 82.5% for non-ideal
and ideal CIM-based platforms. Again, when the floating point weight model is applied,
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the detection accuracy becomes 92.1%. The above results show that applying SRCNN does
enhance the detection accuracy at all three computing configurations.

Table 3. The accuracy of five classes classification with SRCNN.

On Non-Ideal CIM On Ideal CIM .
v = (4,4,2) v = (84,2) Floating CNN
Accuracy without 50 49 70.6% 84,49,
SRCNN B o . o 8 (o}
Feature Map of Feature Map of Feature Map of
SRCNN On SRCNN On Ideal SRCNN and
Non-Ideal CIM CIM Floating CNN
Accuracy enhanced 72.2% 82.5% 92.1%

by SRCNN

5.4. Transfer Curve Models

The non-ideal errors on the CIM-based platforms are calibrated by the transfer curves
during the computation. However, the method to build the transfer curve can have impacts
on the computation results. This subsection evaluates the computation results for different
transfer curve models. Two models are evaluated in this subsection. The first model uses
random values between [—63, 63] to build the transfer curve model; the second model uses
the random values from sample datasets to build the transfer curve model.

Table 4 compares the SRCNN results for two transfer curve models. Column (a)
shows two sample input images, and Column (b) shows the results from simulated ideal
CIM-based platforms where there are no non-ideal errors. Column (c) and (d) show the
results using the weight which is trained by the error model from [—63, 63] and the sampled
dataset. The SSIMs for the 2 models are 0.45 and 0.65: there are 44% improvement when
the transfer curve model is built upon the sample data.

Table 4. SRCNN results under different error models.

Error Model by Error Model by
Random Inputs Sampled Dataset

SSIM = 0.45 SSIM = 0.65
@) (b) (©) (d)

Input Images Simulated SRCNN
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The structural similarity index measure (SSIM) index compares the similarity of two
images. The resultant SSIM index is a decimal value between 0 and 1. A value of SSIM = 11s
only reachable in the case of 2 identical sets of data and therefore indicates perfect structural
similarity. A value of SSIM=0 indicates no structural similarity.

5.5. Training with Gaussian Noise

Given the transfer curve model, the framework may use either 1-to-1 mapping or
Gaussian mapping, as shown in Section 4.2. The subsection evaluates the effectiveness of
these two mapping methods.

Table 5 shows image results while conducting the first layer of SRCNN on CIM using
these two mapping methods. Column (a) shows the results from simulated ideal CIM,
Column (b) shows the results while using 1-to-1 mapping method, and Column (c) shows
the results for using Gaussian mapping method. The SSIM of the examples on first row
increases from 0.70 to 0.81, and that on the second row increases from 0.61 to 0.76. The
result shows that using the Gaussian mapping method to emulate the non-ideal errors
during training can better tolerate the uncertainty on CIM devices.

Table 5. SRCNN Results when conducting only the first layer on CIM.

Simulated Ideal CIM Trained with 1-to-1 Mapping Trained with Gaussian

Mapping
SSIM = 0.70 SSIM = 0.81
SSIM = 0.61 SSIM = 0.76

(a) (b) (©)

5.6. Energy Consumption

The energy consumption is evaluated on conducting the convolution networks, which
is the most intensive part of the entire computation flow, on the ARM-based platform and
the CIM-based platform. The energy consumption is measured on both platforms when
conducting the convolution networks computation because all the other computations are
conducted on the same computing devices and have no impact on the difference in energy
consumption. Figure 14 illustrates the setting of energy consumption measurement. The
ARM-based platform, which is a Raspberry Pi device and shown as the left red dashed
rectangle in Figure 14, is connected to a USB power meter. The CIM-based platform,



Sensors 2022, 22, 3491

16 of 17

shown as the right red dashed rectangle in Figure 14 is connected to a Tektronix Keithley
DMMY7510 (https://www.tek.com/en/products/keithley/digital-multimeter /dmm7510
last accssed on 10 January 2022 ) to measure the energy consumption.

¢ USB Power Meter for : : Digital meter for
: ARM-based platforms : ¢ CIM-based platforms 3
Prucéssed .
Image ‘Weight & Inpat
: > »| DAC
Raw Jmage .
Sensor Box ———» Rasf;bie"y FPGA : CIM Chip
-« < +{ ADC
Feature Output .
Map :

RCNN Result

Display

Pose Detection Result

Figure 14. Energy Consumption Measurement for ARM- and CIM-based platforms.

The computation workload for the measurement is conducting the Layer 1 and Layer 2
of the pose detection flow, shown in Figure 11, for 100 thermal images. On the ARM-based
platform, the energy consumed for Layer 1 and Layer 2 are 14.55 mJ and 9.9 m], respectively.
On the CIM-based platform, the energy consumed for both Layer 1 and Layer 2 are 0.00029
mJ. The reduction in energy consumption ranges from 50, 000 and 34, 100 times.

6. Summary

This work proposes a framework to take advantage of CIM SRAM for developing
smart sensors and evaluates its performance. CIM SRAM can conduct matrix multipli-
cation with low energy consumption and high throughput. However, it only supports
integer input and output, making the rounding error a significant challenge while training
a learning model. Moreover, the uncertainty error is another non-negligible challenge at
inference. This work proposes a systematic method to measure the error model of CIM
SRAM and a normalized function to overcome the rounding and uncertainty error. With
proper parameters and the LeakyReLU function, the accuracy of the three classes classifi-
cation can increase from 33.3% to 91.5%. This work also studies the impact of executing
SRCNN on CIM SRAM. The experiments show that running SRCNN on CIM SRAM may
not increase the quality of images, but using the feature maps from SRCNN instead of raw
low-resolution images can help the classification layers distinguish the poses.
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