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Abstract: In recent years, the wide application of deep neural network models has brought serious
risks of intellectual property rights infringement. Embedding a watermark in a network model is
an effective solution to protect intellectual property rights. Although researchers have proposed
schemes to add watermarks to models, they cannot prevent attackers from adding and overwriting
original information, and embedding rates cannot be quantified. Therefore, aiming at these problems,
this paper designs a high embedding rate and tamper-proof watermarking scheme. We employ wet
paper coding (WPC), in which important parameters are regarded as wet blocks and the remaining
unimportant parameters are regarded as dry blocks in the model. To obtain the important param-
eters more easily, we propose an optimized probabilistic selection strategy (OPSS). OPSS defines
the unimportant-level function and sets the importance threshold to select the important parameter
positions and to ensure that the original function is not affected after the model parameters are
changed. We regard important parameters as an unmodifiable part, and only modify the part that
includes the unimportant parameters. We selected the MNIST, CIFAR-10, and ImageNet datasets to
test the performance of the model after adding a watermark and to analyze the fidelity, robustness,
embedding rate, and comparison schemes of the model. Our experiment shows that the proposed
scheme has high fidelity and strong robustness along with a high embedding rate and the ability to
prevent malicious tampering.

Keywords: deep neural network; watermarking; wet paper encoding; embedding rate

1. Introduction

With the wide application of artificial intelligence technology, the applications rep-
resented by deep neural network (DNN) models are becoming increasingly extensive.
A DNN is a computational model that mimics the structure and function of a biological
central nervous system, and can be used to estimate complex functions [1]. It is calculated
by connecting a limited number of neurons, with the function of each neuron being to
calculate the result of the nonlinear mapping of a weighted vector. A DNN is a system
that can learn and generalize; it can mine rules from known data to make inferences and
decisions about unknown data. Because a deep representation learning algorithm based on
a DNN won the ImageNet International Computer Vision Competition in 2012, DNNs have
received extensive attention and research in both academia and industry, and have achieved
great success in many fields of application. It is not difficult to foresee that neural networks
will play an increasingly important role in serving different aspects of human society.
However, as a digital product, while a neural network model can condense the designers’
wisdom, it requires considerable training data and computing resources. For example, in
order to accurately recognize faces, tens of millions of face images are usually required
for neural networks to learn and generalize. In addition, neural networks are affected by
their network structure, data scale, and computing resources, with results often taking up
to several weeks to calculate. Due to the very large cost of building a well-trained neural
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network model such models have become an important asset, and many manufacturers
provide corresponding services. Users only need to remotely access an application pro-
gramming interface (API) in order to easily use a relevant model for learning [2]. Moreover,
the malicious use or illegal dissemination of neural network models prompts an urgent
need for copyright protection; neural network watermarking can effectively solve this
problem. Therefore, it is necessary to protect the intellectual property rights of neural
network models from infringement.

The basic framework of neural network watermarking is shown in Figure 1. In the em-
bedding process, watermark information is embedded into a network through a watermark
embedding algorithm. After the watermark embedding model is distributed and applied by
a contractor, a watermark extraction algorithm is used to extract the watermark information
from the model.

·
·
·

x1

x2

x3

xn

·
·
·

y1

y2

y3

ym

·
·
·

x1

x2

x3

xn

·
·
·

y1

y2

y3

ym

Watermark information

Watermark embedding algorithm WM

·
·
·

x1

x2

x3

xn

·
·
·

y1

y2

y3

ym

WM

Distribution and dissemination

Watermark extraction algorithm

Watermark information

Figure 1. Neural network watermarking framework.

Recently, several researchers have proposed embedding digital watermarks in neural
network models to protect developers’ intellectual property. Uchida et al. [3] first proposed
a digital watermarking scheme; the core idea was to embed watermark information consist-
ing of strings of bits in a regularized form into the weight distribution of one of the middle
layers. Fan et al. [4] proposed adding a passport layer to neural networks for intellectual
property rights protection. A new watermark embedding scheme with a compensation
mechanism was proposed by Feng and Zhang [5]. Zhang et al. [6] used a spatial invis-
ible watermarking mechanism, and proposed the first model watermarking framework
for protecting image processing models. Different from the above literature, in which
watermarks were embedded into the static content of models, Rouhani et al. [7] proposed
embedding strings into probability density functions (PDFs) of different network layers;
in this way, the watermark information is embedded in the dynamic content of a DNN.
Generating a watermark depends on both the data and the model. The above schemes
belong to the white box model category [8]. In the verification process of these schemes,
the owner needs to know the internal details of the suspicious model (such as the structure
and parameters) in order to extract its complete watermark and compare the bit error
with the embedded watermark to complete the verification. Therefore, researchers have
proposed methods for adding watermarks to black box models [8] to permit the watermark
to be verified without needing to know the details, for instance, the model parameters.
A black box model is a watermarking method that applies backdoor technology to own-
ership protection. In the process of model training or fine-tuning, the model owner adds
an abstract sample (with a different distribution from the training sample) as a backdoor
sample to the model training set in order to ensure the accuracy of the model in the original
task. The abstract sample is used as the backdoor watermark for ownership authentication
and can be triggered by passing the specific input data to the model, making the watermark
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more flexible and difficult to detect. Zhong et al. [9] proposed a method of adding labels
for key samples and attempted to design a watermark that does not distort the original
decision boundary. Considering that model watermarks may not have strong robustness
to pruning with fine-tuning, Namba R et al. [10] proposed an exponentially weighted
backdoor watermark method, which applies the influence of a backdoor watermark on
parameters to the larger weight parameters (exponentially weighted implementation) in
order to ensure that the watermark is more robust in pruning with fine-tuning. Similarly, in
order to increase robustness against distillation attacks, a watermark scheme proposed by
Szyller S et al. [11] was deployed in the prediction API of a model; the watermark is dynam-
ically added to queries by changing the prediction response of the client. Researchers with
Tencent Suzaku Lab [12] proposed a method for hiding malware in a neural network model
that is similar to using least-significant-bit (LSB) image implications [13] by modifying
the last few model parameters according to malicious code in order to guarantee that it does
not affect the original model’s performance. Wang et al. [14] proposed a malware embed-
ding method of neuronal parameters based on a neural network model and decomposed
the binary bits of malware sequentially to embed the neuron parameters. Each parameter
has 32-bit floating point numbers, and the first 8 bits remain unchanged; in the latter 24-bit
embedding secret information, the embedded capacity is increased.

The above methods involve adding additional information into a DNN. The embed-
ded watermark information can prove the ownership of a model, and embedded malicious
code can be used for model attacks. Although the above schemes maintain high robust-
ness against watermark removal attacks, there are several unresolved problems. First,
the embedded information of the model is not quantified, and all methods require a great
deal of space to embed information; second, they cannot be used to solve the fraudulent
ownership claims of an adversary. That is, if an adversary forges additional watermarks
for a model through an ambiguity attack, both the original and new watermarks can be
detected by the verification program, and the ownership of the model cannot be deter-
mined. The method presented here can prevent the addition of information, meaning that
a watermark cannot be tampered with, and the proposed scheme quantifies the embedded
information of a model.

For the existing embedding watermark models, the embedding position of a water-
mark is not flexible and random. Moreover, due to the limited embedding capacity an
embedded watermark is easily detected, and an attacker who has tampered with it can
easily deny the veracity of the original. The proposed optimized probabilistic selection
strategy (OPSS) computes the importance of convolution layer neuron parameters, defines
the unimportant-level function, and sets the importance threshold to ensure that the pa-
rameter change does not affect most of the characteristics of the model. It can make full
use of redundant neurons and increase the embedding rate in order to solve the problem
of insufficient embedding rate mentioned above. In wet paper coding (WPC), a dry block
has the characteristics of transmitting information, while a wet block cannot be used for this
purpose. We select the important parameters as wet blocks and the rest of the parameters as
dry blocks for watermark steganography. In the process of steganography, dry blocks are
randomly selected for steganography, and an attacker can not accurately locate the location
of steganography, which means that the watermark created using this method cannot be
tampered with. Thus, the contributions of this article are as follows:

1. Using the proposed OPSS, the watermark’s embedding position can be selected.
The OPSS includes two selection operations; Selection 1 is a level selection operation
for filtering out important convolution layers, while Selection 2 sublimates the selected
results in Selection 1 to obtain the important parameter positions of unimportant
layers. This double selection strategy ensures that the important layers and important
parameters are not destroyed and provides randomness and security guarantees
for the subsequent steganography, which is not easy to detect.
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2. By skillfully employing WPC technology, we take the selected important parameters
of the model as the wet block and the rest as the dry block, and embed the secret
information into the dry block. This embedding method increases the embedding
capacity as much as possible and makes the model more stable.

3. Compared with the current watermarking models, this scheme makes steganography
more random. The steganography capacity can be increased as much as possible while
ensuring the normal operation of the model, and the attacker cannot deny the original
watermark by tampering with it due to the large amount of embedded information.

2. Preliminaries

In this section, we introduce a number of previous studies as the basis for our proposed
scheme. First, we introduce a probabilistic selection strategy (PSS) for selecting the im-
portant parameters of the model. Second, we introduce the principle of WPC technology,
which enables a watermark to be added to the modifiable part selected in the previous step.
Table 1 shows a list of all the parameters used in the paper.

Table 1. The information embedding ratio is the ratio of all parameters of the model to the amount
of information embedded in the model.

Parameters Definition

FΘ The DNN for watermark embedding
Θl The parameters of the l-th layer
Θ̂l The selected important parameters
pθ The importance value of each parameter θ
Lpθ

The importance layer parameter
L̂pθ

The unimportance layer parameter

N A collection of the number of neurons in each
layer, expressed as [n1, n2, . . . , nl ]

n The number of neural parameters in a level
c The ratio of the number of layers to be embedded
B Watermark information
X The carrier is [0, 1]n

m The secret is [0, 1]q

k The number of neurons embedded in a layer
D A random matrix is [0, 1]q×n

H A matrix consisting of columns corresponding to
k elements in D

wet− indicate The location address of a wet block

2.1. PSS

In order to achieve better model performance, neural networks have recently been
developed to be deeper. For example, VGG19 [15] has 16 convolutional layers. By deepen-
ing the network structure, a network is able to extract more abstract high-order features;
for example, a 512-channel feature map has finally been extracted. Each layer has a large
number of parameters, and there is redundant space. RESNet152 [16], for instance, has
151 convolutional layers. In order to improve the performance of a model, the depth
of the model is deepened, resulting in more convolution layers. It is obvious that there
are many convolution layers in these models. However, if each neural network parameter
is to be changed, the calculation costs will be very large. Several studies [17–20] have
shown that the parameters in a CNN model are not equally important, and certain pa-
rameters contain more useful information for a given task. Intuitively, the importance
of neural network parameters can be measured by the degree of degradation in a model’s
performance caused by removing certain parameters. However, the neurons of a convolu-
tional neural network respond differently to different inputs, meaning that the importance
of the parameters is input-dependent. After a sample is fed into a network, there exists
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a parameter set that makes the model’s performance decrease the fastest when it is re-
moved. To obtain the importance of each parameter, it is possible to consider feeding all
of the samples and then count the frequency at which each parameter is selected as an
indication of parameter importance.

Tian et al. [21] proposed a PSS model to determine the importance of parameters in
a CNN model and found that encrypting less than 8% of the convolutional layer parameters
can effectively reduce the performance of the model. PSS uses the greedy search idea to
construct a discrete optimization problem for model parameter selection, uses reparame-
terization technology to serialize the problem, and finally uses the automatic derivation
framework to obtain the importance of each parameter. The authors identified the impor-
tance of parameters by evaluating the performance degradation of the pretrained model
without these parameters. However, the neurons in a CNN model may have different
responses for various inputs, implying that the importance of parameters is related to
the inputs.

Therefore, the important parameters, Θ̂l , are selected from the convolutional layers
of FΘ. When feeding a sample xn = (n = 1, 2, . . . , N) into FΘ, there exists a parameter
subset Θ̂l of Θl that causes the maximal performance degradation of FΘ when Θ̂l is
removed. Clearly, Θ̂l changes with the input, xn. In order to eliminate such randomness,
the number of times each parameter θ in Θl is selected as a candidate of Θ̂l after feeding all
xn is counted. The selected frequency of a parameter θ in Θl is denoted by pθ . It is clear
that the frequency, pθ , directly reflects the importance of a parameter θ to the pretrained
model. Thus, pθ is the importance of a parameter θ. For simplicity, Θ̂l dominates the set
of the l-th layer and the parameters in it are called dominated parameters. Naturally, Θ̂ is
the dominated set of FΘ.

Finally, the PSS approach is formulated in the following optimization problem,
Equation (1),

min
pθ∈[0,1]

1
N

N

∑
n=1
L(F (xn, (I − Z(n) �Θl), yn) + λ||Z(n)||0 (1)

where Z(n) = {z(n)θ }θ∈Θl , z(n)θ ∼ Bern(zθ |pθ) is a sample of the binary random variable zθ ,
Θl denotes the parameters of the l-th convolutional layer, I is a vector of ones with the same
length as Θl , and λ is a weighting factor for the regularization term. The elementwise
multiplication (I − Z(n))�Θl is designed to simulate the removal operation by noting
that a parameter θ will be removed from Θl if the corresponding z(n)θ = 1. Thus, the first
term indicates the performance of FΘ after removing a part of the parameters (L(...) is
a performance evaluation function). In order to maximize the performance degradation
of FΘ, which is equivalent to minimizing the first term in (1), the important parameters
θ in Θl should be assigned a large importance (pθ) such that z(n)θ = 1 for most xn

′s. Thus,
we can determine the importance (pθ) of each θ in Θl by solving the problem. It should be
noted that the term ||Z(n)||0 penalizes the number of removed parameters such that fewer
parameters are assigned large importance values.

Figure 2 shows a schematic diagram of the selection process of the PSS. Several pa-
rameters are introduced above and used later. The above is a PSS model for the importance
of neuron parameters in the calculation model. This paper proposes an OPSS which takes
into account the hierarchical importance and calculation cost, which is described in detail
in Section 3.

2.2. WPC

This paper proposes using WPC techniques to embed model watermarks. Wet paper
refers to a portion of a paper that has been moisturized by water and cannot be used
for writing. In this scenario, the important parameters are referred to as a wet block, and
the other parameters are used for information transmission. A recipient can only read the in-
formation, and it is not known whether a parameter has been changed; hence, the safety
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of the model watermark is guaranteed from the sender side. The amount of valid trans-
mission information in the storage information can be approximately equal to the number
of normal storage units, which can be referred to as the number of unimportant parameters.
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Figure 2. A schematic diagram of the PSS.

In summary, the application principle of wet paper encoding in the model watermark is
as follows: set the depth learning model parameter to a binary form X = {0, 1}n; the added
watermark information is m = {0, 1}q and Y is a hidden carrier. Any k element therein is
used as the selection channel, and the sender is denoted as follows:

Hv = m− DX (2)

where D is a random {0, 1}q×n and H is a matrix composed of columns corresponding to k
elements in D. After v is solved, the element corresponding to the nonzero element of X is
modified to obtain a hidden carrier Y. The receiver can extract m, where m = DY.

Figure 3 is a schematic diagram of the application of WPC in the scheme proposed in
this paper. The gray neurons represent the unmodifiable important neurons selected by
OPSS as wet blocks, and their position information is defined as the wet-block indicator in
the WPC algorithm. The remaining white neurons are dry blocks that can be modified.

Figure 3. Schematic diagram of the application of WPC in the proposed scheme.



Sensors 2022, 22, 3489 7 of 15

3. Proposed Scheme

In this section, we show that the proposed scheme is suitable for most deep learning
models; the VGG19 model is used here as a specific example. Selecting the convolutional
layers in the VGG19 model for steganography, a watermark can be added to the model
without affecting the original function of the model by following the new proposed scheme
combining OPSS and WPC, introduced in detail below.

First, the composition of the neuron parameters must be analyzed. A neural net-
work is composed of many neurons, and each neuron is composed of many parameters.
In the common PyTorch and TensorFlow frameworks, the parameters are all 32-bit floating
point numbers. When the information is embedded, the parameters need to be converted
from the decimal space to the nonnegative integer space. Specifying the neural network
parameter as θ, the neural network parameters are set as θ. The floating-point number is
transformed into a non-negative integer by I(θ) as follows:

I(θ) = (θ + T) · 10R (3)

where T is a translation that satisfies T > |min(Θ)|, θ + T translates negative numbers
to the nonnegative space, and R is precision and indicates the number of decimal places
retained. Then, θ + T can be converted to an integer by multiplying 10R. Obviously,
the larger the value of R, the more decimal places are retained for the parameter, and
the more accurate the recovered result is.

Nonnegative integers can be converted to floating-point numbers using Equation (4)

I−1(s) = s · 10−R − T (4)

3.1. OPSS

Next, based on the PSS in Section 2.1, we propose an OPSS to obtain an improved
scheme. We perform two-step operations in the OPSS. First, we calculates the expected pa-
rameter importance of the current entire layer and select the unimportant layer for the next
step. The specific selection operation process is as follows. First, on the basis of Equation (1)
the importance parameter pθ of the parameter θ of each neuron in the l-th layer of θl can
be obtained, then the importance layer parameter Lpθ

of the l-th layer can be calculated;
that is, through the importance parameter pθ of each parameter θ of the layer, the expected
value of the layer is obtained by accumulating the importance parameters of all neurons
in the current layer. As the value of Lpθ

should be between [0− 1], the volume can be
calculated. The unimportance layer formula for the buildup parameters is as follows:

L̂pθ
= 1− 1

n

n

∑
i=1

pθ
i (5)

where n is the number of neuron parameters θ in the l-th layer and L̂pθ
is the unimpor-

tance value.
The unimportant layer value of each layer can be obtained through Equation (5). The top

80% of the unimportant layers can be selected through multiple tests in the fourth part,
information is not embedded into the remaining important layers, and the original parameter
information is retained, which can ensure that the original function of the model is not
affected. c ∈ [0− 0.8] is the ratio of the number of layers to be embedded with information
to the total number; the larger c is, the more information can be embedded in the model
during steganography.

After selecting the top-ranked unimportant layers, the second selection is based on
the need to embed watermarks or the information size, then the relatively important
parameters in the unimportant layers are selected to avoid the unimportant layers that have
high pθ values. The highly important parameters are selected as the wet block indicators
of WPC in the watermark embedding process. These indicators ensure that the model can
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expand the amount of embedded information as much as possible under the condition
of high fidelity.

Figure 4 is a schematic diagram of the application of WPC in the scheme proposed in
this paper. The gray neurons represent the unmodifiable important neurons selected by
OPSS as wet blocks, and their position information is defined as the wet block indicators
in the WPC algorithm. The remaining white neurons are dry blocks that can be modified.
During Selection 1, we chose CIFAR-10 as the input data for the model. We calculate L̂pθ

(the value of the unimportance of the l-th layer) as a one-dimensional sequence using
Equation (5) and sort this sequence. Then, we set the proportion c of the unimportant layer
to 0.75 and obtain the result, which states that 0, 1, 4, and 8 are important layers and the rest
are unimportant layers. Finally, we proceed to Selection 2 to select the relatively important
parameters of the unimportant layers.
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Figure 4. Schematic diagram of OPSS.

3.2. Our Watermark Embedding Algorithm

In this section, we show the algorithm for embedding watermarks in the proposed
scheme. The process of watermark extraction is directly based on the process of secret
extraction in Section 2.2:

Regarding Algorithm 1, we make the following comments.

1. The method for calculating the important parameters of the neural network model is
not the focus of Section 2.1, therefore the important parameters of F are directly used
as the input of the algorithm.

2. wet-indicate represents the wet-block position, which denotes the position where
the information cannot be embedded; the implicit information indicates that the em-
bedded position is in these layers.

3. Watermark extraction. This is the inverse process of embedding watermarks; wet− indicate
is obtained according to OPSS, H, D, and k are from Algorithm 1, and the watermark
can be extracted using Equation (2).
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Algorithm 1: The embedded watermark model.

Input: The model F (the model level l ∈ (1, 2, . . . , L)), important parameters Θ̂
of F , value of important parameters pθ , neuron number set N = [n1, n2, . . . , nl ],
ratio of the number of layers to be embedded c, watermark information B,
translation T, precision R, random matrix D, random value k, watermark m in
a level.

Output: Watermarked model Fwatermark.

Step 1: For each level to calculate the unimportance L̂pθ
= 1− 1

n

n
∑

i=1
pθ

i

Step 2: Sort L̂pθ
, select the top c× L layers (a total number of L layers) in

the order.
Step 3: Estimate the proportion of important parameters θ in these selected layers

L̂ by watermark information B; obtain wet− indicate, which represents
the wet-block position.

Step 4: Convert floating-point θ into a nonnegative integer b (watermark
information B) through b = I(θ) = (θ + T) · 10R. Then convert nonnegative
integer b to floating-point θ′ through θ′ = I−1(b) = b · 10−R − T.

Step 5: Generate a random matrix D and a random value k and obtain H by D
and k. Record these values.

Step 6: b is divided equally, [b1, b2, . . . , bm] are denoted as m, X is obtained by
wet− indicate in F .

Step 7: Embed watermark m; after embedding m each time, b = b−m. Repeat
Steps 5–7 until b = 0.

4. Experiments and Comparison

In this section, we report the results of experiments and analyses conducted to evaluate
the fidelity, robustness, and embedding capacity of the proposed scheme in comparison
with other model watermarking schemes.

Here, we briefly introduce the experimental setup, using a CNN model, the classification
VGG19 model, to validate the proposed scheme. The proposed model is mainly used to recog-
nize and classify the dataset images. After determining the training dataset, the model selects
the hyperparameter settings and training strategies for different datasets. The hyperparameter
settings and training strategies are listed in Table 2. We chose to embed a 2560-bit watermark
(64-bit watermarks are already able to prove ownership of models, and a 256-bit watermark
is sufficient for security in law). Our hardware platform was an Nvidia GTX 1080ti with an
Intel(R) Core(TM) i7-10700F CPU@2.90 GHz and 64 GB of memory.

The datasets selected for the experiment were MNIST, CIFAR-10, and ImageNet. MNIST is
a set of handwritten digits. The dataset contains 60,000 examples for training and 10,000 exam-
ples for testing. These numbers have been standardized in size and are located in the center of an
image which has a fixed size of 28× 28. CIFAR-10 is a small dataset for identifying universal
objects. It contains RGB color pictures of ten categories: aircraft, automobile, bird, cat, deer, dog,
frog, horse, ship and truck. The size of the picture is 32× 32. There are 50,000 training pictures
and 10,000 test pictures in the dataset. ImageNet contains 14,197,122 pictures and 21,841 classes,
of which the commonly used subset includes 1000 classes and 1.2 million pictures. It is a widely
used dataset in deep learning, with most current research work on image classification, location,
and detection being based on ImageNet.

Table 2. Hyperparameter settings of VGG19.

Dataset Batch Size Epochs Optimizer Learning Rate Learning Rate Update Strategy

MNIST 64 30 Adm 0.001 Learning rate is fixed
CIFAR-10 64 70 Adm 0.001 Decrease by 1/10 each 30 epochs
ImageNet 64 70 Adm 0.001 Decrease by 1/10 each 30 epochs
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4.1. Fidelity Evaluation

We conducted 10,000 experiments on each dataset and used the average results to
obtain the accuracy of the model before and after embedding the watermark. In Table 3,
the fidelity evaluation of the three sets is listed. The original accuracy of the model is
referred to as the baseline accuracy, while the accuracy of the watermarked model is
the watermarked accuracy.

Table 3. Fidelity evaluation of three sets of watermarked models.

Dataset Baseline Accuracy Watermarked Accuracy

MNIST 95.68% 95.73%
CIFAR-10 92.36% 92.29%
ImageNet 68.84% 68.26%

To fully prove the fidelity of the watermarked model, we used several common DNN
performance metrics for MNIST and ImageNet The results are shown in Table 4 and Figure 5.
The precision, recall, F1, and area under the curve (AUC) scores are used; these values
depend on the true positive (TP), false negative (FN), true negative (TN), and false positive
(FP) values. The corresponding descriptions of the performance metrics are shown below.

Accuracy =
TP + TN

TP + FN + TN + FP
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1score =
2TP

2TP + FN + FP
(9)

AUC score: The AUC statistic is an empirical measure of classification performance
based on the area under a receiver operating characteristic (ROC) curve. The ROC curve
plots sensitivity (TP rate) against specificity (FP rate), and AUC represents the degree
of separability.

Table 4. Fidelity evaluation of two sets of watermarked model.

Dataset Precision Recall F1 Score

MNIST 95.32% 94.66% 94.18%
ImageNet 66.70% 68.46% 67.88%
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Figure 5. Area under the ROC curve of the watermarked model.

4.2. Robustness Evaluation

To evaluate the robustness of this model, we used several attack methods, which are
introduced in detail below.

4.2.1. Resisting Fine-Tuning

In most transfer learning scenarios, users need to fine-tune the model using their own
datasets. Therefore, for a watermarked model the watermark should not be destroyed by
a user’s fine-tuning of the model.

We set up two sets of experiments; CIFAR-10 was used to fine-tune the watermarked
MNIST model, and ImageNet was used to fine-tune the watermarked CIFAR-10 model.
Due to the differences in the datasets, we made the following adjustments. First, we
adjusted the size of the images in CIFAR-10 to be the same as those in MNIST. Next, as
the output layer of ImageNet includes 1000 neurons, when fine-tuning it with CIFAR-10
the output layer needed to be modified to include ten neurons. In order to fully consider
the robustness of the watermark, we assume that all layers of the model are fine-tuned
and the training strategy for fine-tuning follows the settings in Table 2. As shown in
Figure 6, we obtain the accuracy results of the fine-tuning process. Furthermore, we can
observe that, in the left figure, when the number of epochs is approximately 30 the accuracy
of the model can reach more than 90%. The accuracy of the model can reach nearly 95%
when the CIFAR-10 dataset is used to fine-tune the MNIST model as well. On the right,
when the number of epochs is approximately 50, the accuracy of the model can reach more
than 85%, and the accuracy of the model can reach nearly 90% when using the ImageNet
dataset to fine-tune the CIFAR-10 model. Even if the model is fine-tuned, the watermark is
not destroyed.
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Figure 6. Changes in model accuracy and watermark loss in watermarked models as the number
of fine-tuning epochs increases.

At the beginning of training, the accuracy rate rises rapidly and the training loss
decreases significantly, indicating that the learning rate is appropriate and the gradient
decline process is carried out. After learning to a certain stage, the accuracy rate and loss
curve of the model tend to be stable and slowly reach a certain fixed value. The problem
of test loss is expressed here as the characteristics of different datasets affecting the training
model. In the process of fine-tuning, the loss of watermark is another expression of test
loss. We can easily find that the watermark loss is almost 0 and test loss is minimal
for the proposed model.

4.2.2. Resisting Watermark Overwriting

In our watermark scheme, a watermark is subtly embedded in the weights of certain
layers via OPSS. When an attacker uses a watermark overwriting attack, because they do
not know where the watermark is embedded, it is difficult for them to destroy the original
watermark of the owner. Obviously, small capacity coverage cannot affect our watermark
model; therefore, we chose thousands of levels of watermark coverage, as shown in Table 5.
Even if an attacker overwrites a 1024-bit or 2560-bit watermark in the model, the loss
of the original watermark is almost negligible. Of course, an attacker can try to overwrite
more watermarks; however, as more watermarks that are embedded, the accuracy loss
of the model increases, eventually making the model unusable.

Table 5. Reserve of the original watermark after overwriting a 1024-bit or 2560-bit watermark.

Dataset Overwriting
Capacity-1024 bits

Overwriting
Capacity-2560 bits

MNIST 99.08% 98.23%
CIFAR-10 98.74% 98.16%
ImageNet 97.39% 96.58%

We added an ablation experiment focusing on the capacity of the embedded water-
mark, which ranges from 512 bits to 5120 bits. The change in accuracy of the model is
shown in Table 6. When the amount of embedded information changes, the resulting
change in model performance can be observed. According to the results, we find that
with increased information embedding the accuracy of the model is not greatly affected.
The reason is that the proposed OPSS in this paper ensures that the important parameters
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of both the important and unimportant layers in the deep learning model are not embedded;
thus, the active neurons work normally. As the prediction results of the model mainly
depend on these neurons, the accuracy of the model changes only slightly. This further
verifies that the model has a large embedding capacity.

Table 6. The relationship between the capacity of the embedded watermark and model accuracy
using MNIST, CIFAR-10, and ImageNet.

Dataset Baseline Accuracy Capacity (bits) Watermarked Accuracy Fine-Tuning Accuracy (30 Epochs)

MNIST 95.68% 512 95.68% 95.65%
95.68% 1024 95.71% 95.68%
95.68% 2560 95.73% 95.60%
95.68% 5120 95.80% 95.73%

CIFAR-10 92.36% 512 92.36% 92.39%
92.36% 1024 92.37% 92.38%
92.36% 2560 92.29% 92.35%
92.36% 5120 92.40% 92.41%

ImageNet 67.84% 512 67.82% 67.89%
67.84% 1024 67.60% 67.74%
67.84% 2560 67.26% 67.37%
67.84% 5120 66.89% 67.11%

4.3. Embedding Capacity

The embedded watermark is a highlight of our scheme. Notably, while there are
a total of approximately 2.0× 107 convolution layer neuron parameters in VGG19, the main
parameters of the model only account for a few, i.e., less than 8%, of the total model
parameters. Furthermore, the embedded information is related to the input data.

We set c = 0.75, as shown in Table 7. Even if we modify the neuron parameters in only
75% of the convolutional layers, the results at this information embedding rate are as high
as 71.98%.

Table 7. The information embedding rate is the rate of all parameters of the model and the amount
of information embedded in the model.

Dataset Information Embedding Rate

MNIST 71.98%
CIFAR-10 70.04%
ImageNet 66.35%

4.4. Comparison with Previous Schemes

In order to fully demonstrate the superiority of our proposed scheme, in this section
we compare it to several previous works.

All comparison results are listed in Table 8, and the results are analyzed in detail
below. In the course of our comparison we found that while the different proposed schemes
all have favorable performance, they have different drawbacks. The main drawback
of Uchida’s scheme is that it cannot resist watermark overwriting attacks. The disadvan-
tage of Rouhani’s scheme lies in its lower watermark capacity, with obvious watermark loss
occuring when a 128-bit watermark is embedded. Although Feng and Zhang’s scheme has
a high embedding capacity, we believe that there is considerable watermark information
embedded in the model in this scheme, which is not a sensible approach. Fan’s scheme
requires changing the structure of the model; while it can prevent an attacker from embed-
ding a new watermark, this approach consumes a very large amount of time. To ensure
that the passport layer is not detected by the user, this approach takes more than twice as
long to train, which greatly limits its use in real scenarios. Researchers at Tencent Suzaku
Lab proposed a method of using LSB image implications in which they directly selected
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the neural parameters to be changed. However, when this method restores the watermark
it is necessary to record the location information of a large number of changed parameters.
The disadvantage of Wang’s scheme is that the parameters are directly replaced accord-
ing to the entire layer, resulting in the embedded information being easily detected and
not being random or secure. This approach cannot resist certain types of model attacks,
and the watermark is easy to find and destroy. We believe that our scheme makes up
for the drawbacks of these schemes. The specifics have been described in the experimen-
tal evaluation, and are not repeated here. The embedding cost refers mainly to the time
required to calculate the importance of the model parameters; the scheme has a low cost
and can ensure the safety, high fidelity, strong robustness, and very high embedding rate
of the model.

Table 8. Comparison of different algorithms (N means failed, Y means passed).

Algorithm Fidelity Robustness Capacity

Uchida Y N High
Rouhani Y Y Low

Fan Y Y -
Feng and Zhang Y Y High

Researchers
of Tencent Suzaku

Lab
Y Y High

Wang Y N High
Ours Y Y Very High

5. Conclusions

This paper proposes the use of an OPSS model to select the important parameters
of the original DNN. The positional information of the important parameters is then
recorded as a wet-block indicator in the WPC and watermark information is embedded
in the position of the unimportant parameters, ensuring that the model has high fidelity.
Compared with previous schemes, our scheme can prevent malicious tampering by at-
tackers and has a higher information embedding rate. The proposed model performs
brilliantly in various tests. For example, it performs well in terms of model fidelity, ro-
bustness, and capacity, and shows both reliability and practical application significance.
The large-capacity availability of the deep learning network watermarking model proposed
in this paper is worth considering. Instead of embedding watermarks, the model can
embed other meaningful or valuable information to achieve different purposes; for ex-
ample, it can embed malicious code as an attack method or carry information for secret
sharing. We intend to continue to explore this topic and discover new ways to evolve
neural network watermarking.
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