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Abstract: In this article, an algorithm for joint estimation of communication channel gains and
signal distortions in a direct conversion receiver is proposed. The received signal model uses
approximations with a small number of parameters to reduce the computational complexity of the
resulting algorithm. The estimation algorithm is obtained under the assumption of a priori uncertainty
about the characteristics of the communication channel and noise distribution using the linear least
squares method. Estimation is performed first by the test sequence, then by the information symbols
obtained after detection. In addition, an analysis of the noise immunity of quadrature amplitude
modulation (QAM) signal reception is carried out using different approximating structures in the
estimation algorithm for systems with a single transmitting and receiving antenna (SISO) and
for systems with multiple transmitting and receiving antennas (MIMO). Furthermore, this article
examines the influence of the duration of the test signal, the number of sessions of its transmission,
and the channel extrapolation interval on the quality of signal reception.

Keywords: estimation; approximation; least squares method; a priori uncertainty; direct conversion
receiver; SISO; MIMO

1. Introduction

The tendency of the development of modern communication systems is aimed at
increasing the quantity of transmitted information. This is achieved, for example, by using
high-order modulations such as 64-, 256-, 1024-QAM, OFDM, and MIMO technologies.
In this case, the quality of signal reception plays an important role. One of the methods
for improving the noise immunity of communication systems is the utilization of quasi-
coherent reception, which can be implemented by performing high-quality synchronization
and compensation of signal distortions. The solution to the problem is based on the
estimation of the communication channel and the parameters of the received signal.

The simplest and cheapest reception scheme is the direct conversion procedure, which
transfers the high-frequency received signal to zero frequency and forms in-phase and
quadrature components. However, this method has a major drawback, which consists in the
presence of distortions: the amplitude-phase imbalance between in-phase and quadrature
components (IQ imbalance), frequency shift due to a mismatch between the frequencies of
the received signal and heterodyne, as well as the direct current offset (DC offset) [1–10].
Perhaps the most serious problem is DC offset in the direct conversion receivers. These
DC offsets are mostly generated through self-mixing the local oscillator (LO) signal and
mismatch in the mixers. In direct conversion receivers, the mixer is immediately followed
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by low-pass filters (LPFs) and a chain of high-gain direct-coupled amplifiers that can
amplify small levels of DC offset and saturate the stages that follow. The sensitivity of the
receiver can be directly limited by the DC offset component of the mixer output. Thus,
direct-conversion receivers require appropriate methods to remove undesired DC offsets.
The DC offset of a mixer can be separated into two components, a constant and a time-
varying offset. Many DC offset cancellation techniques have been reported over the past
few years [9,10]. They can be divided into baseband analog and digital techniques. Most of
the reported analog techniques require large off-chip capacitors, and the digital solutions
require complex digital circuitry, which is typically implemented in a separate chip. A
better method is the use of baseband digital signal processing (DSP) techniques for offset
estimation and cancellation.

These mentioned distortions, as a rule, are not constants, but random processes, most
often slowly changing in time. They also, like the channel, greatly affect noise immunity.
With the transition of communication systems to ever higher frequencies, these problems
are only exacerbated. Therefore, the task of creating methods and algorithms for estimating
and compensating for the described distortions and parameters of the communication
channel is relevant. The more accurately they are estimated, the less the probability of an
error in receiving an information symbol will be since it will be possible to provide better
distortion compensation. For example, this will allow the use of error-correcting codes with
less redundancy or reduce the amount of information transmitted over the reverse channel.

There are Bayesian and non-Bayesian approaches to parameter estimation. Obtaining
a Bayesian estimation is associated with a large number of computational difficulties.
Therefore, the maximum likelihood (ML) estimation and maximum a posteriori probability
(MAP) estimation are more often used. The listed methods are based on the knowledge of
a priori information about noise distribution, that is, the probability distribution density
(PDF) is assumed to be known. If PDF is Gaussian, then the ML estimation and MAP
estimation coincide with the Bayesian estimation. If not constants, but random processes are
to be evaluated, then optimal filtering is used (linear Kalman filtering, Kolmogorov-Wiener
filtering, extended Kalman filtering, indirect method of nonlinear filtering) [11–14]. These
methods require knowledge of the state-transition model that describes the process being
evaluated or the correlation function. However, a priori information usually is incomplete
and inaccurate. Therefore, the creation of detailed mathematical models leads to the loss of
the advantages of optimal algorithms over heuristic ones. Thus, if information about the
noise distribution is inaccurate, two approaches are mainly used: adaptive filtering [15]
and a non-parametric approach based on the stochastic approximation method [16]. The
use of adaptive filters leads to a significant complication of algorithms. In addition, they
are usually nonlinear and are utilized approximately. This reduces the accuracy of the
estimation or leads to divergence of such algorithms. In the case of applying stochastic
approximation methods, almost no a priori information is required, but the models on
the basis of which the filters are synthesized are less informative. Thus, the estimations
are asymptotically optimal, therefore, in the transient mode, which is most important in
practice, their accuracy may not be satisfactory. In addition, as a rule, most algorithms are
synthesized for Gaussian noise, which often corresponds to the real situation when the
central limit theorem (CLT) of probability theory is satisfied. For example, this is true if the
noise is the sum of interfering influences from a large number of sources, or normalization
is used. Note, that normalization is a procedure when a random process passes through a
narrowband linear system and becomes Gaussian at its output. However, interference and
noise cannot always be approximated by a normal distribution. For instance, The CLT is
not performed if the receiver does not have a narrow band filter. This situation can be when
we expand the signal bandwidth in order to increase the throughput of the communication
system. Phase noise, narrowband noise, and impulse noise are also non-Gaussian random
processes. Methods of signal processing in the presence of non-Gaussian noise were studied
in [17–23]. Also, for non-Gaussian noise with a known correlation function, a Wiener filter
can be used.
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To estimate the constant parameters, in the situation of a priori uncertainty, the least
squares method (LS) [24] and statistical averaging over time are often used. The second
approach is simple but requires a large number of samples of the received signal. For
example, a DC offset, considering it unchanged during the estimation time, can be found
as the average value of the observed process over time.

A review of methods [25–32] for estimating the channel and signal distortion in a
direct conversion receiver showed that most often, the estimation of IQ imbalance is
considered, or high-precision procedures for joint estimation of channel parameters and
signal distortion, such as IQ imbalance, frequency shift, and DC offset, which have a
very high computational complexity [32]. Known algorithms work either according to
special test sequences [29–31] or “blindly” [33]. However, in [33], distortions in the direct
conversion receiver were not taken into account. The estimation algorithms obtained for
certain test signals are not suitable for estimating parameters from the information signals
obtained after symbol detection. This means that this approach requires the transmission
of a test signal again. For example, in [25] the statistical properties of the channel are
known, in [26] it is necessary to know the joint PDF of the signal components. In [27], joint
estimation and compensation of IQ imbalance are considered. LS is used for the synthesis
of the estimation algorithm. The proposed algorithms in [28] do not estimate the frequency
offset and DC offset. The work [29] offers a joint estimation of IQ imbalance and channel
multipliers. The algorithm has been developed for special orthogonal test sequences. The
amplitude-phase imbalance, DC offset, and phase of the signal are estimated from a binary
test sequence in [30,31] using a simplified ML under the assumption of additive Gaussian
white noise. Phase noise and signal amplitude are not included in the consideration. The
frequency offset is considered previously estimated with high accuracy and is also excluded
from the estimated vector. A joint estimation of all distortions is given in [32], but it has a
very high computational complexity.

For a non-stationary Rayleigh channel with a Doppler spread spectrum, an algorithm
for estimating the parameters of a communication channel was proposed in [34]. This
algorithm is based on linear Kalman filtering and approximation of the channel gains by a
sum of quasi-harmonics with unknown amplitudes and phases. The harmonic frequencies
are assumed to be known. The disadvantages of this approach are:

(1) The need to solve the problem of spectral analysis in advance, with the help of which
harmonic frequencies are determined in trigonometric approximation;

(2) The complexity of the channel estimation increases with the number of quasi-harmonics;
(3) Signal distortions of the direct conversion receiver were not taken into account.

Works [35–39] consider algorithms for estimating the communication channel either
without distortion in the direct conversion receiver or taking into account only the am-
plitude and phase imbalance between in-phase and quadrature components. In addition,
the authors of [40] propose a regularizing algorithm for estimating the parameters of a
stationary channel in the presence of a frequency shift, amplitude and phase imbalance, as
well as a DC offset for SISO systems.

The aim of this article is:

(1) To reduce the computational complexity of the algorithm of joint estimation of the
communication channel parameters and signal distortions in the direct conversion
receiver. This algorithm must work both on test sequences of short duration and on
information symbols after detection, assuming a priori uncertainty about the channel
statistics and noise distribution;

(2) The analysis of the noise immunity of QAM signal reception using different approximat-
ing structures for the communication channel gains with few estimated parameters.

Table 1 presents some symbols, vectors, and matrices used in this work.
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Table 1. Symbols, vectors, and matrices used in this work.

Notation of Symbols and Matrices Description

RN ,R2N N(2N)—dimensional real vector space

E(·) Expected value

N Number of transmitting and
receiving antennas

k The number of the transmitting antenna.

l The number of the receiving antenna.

i Discrete time

Yc(i), Ys(i)
In-phase and quadrature components (IQ) of

the received signal

yc,l(i), ys,l(i) Elements of vectors Yc(i), Ys(i)

H1(i), H2(i)
In-phase and quadrature components of the

channel matrix

H1c,lk(i), H1s,lk(i) Elements of the matrix H1(i)

H2c,lk(i), H2s,lk(i) Elements of the matrix H2(i)

Bc(i),Bs(i) IQ vectors of the DC offset

bcl , bsl Elements of vectors Bc(i),Bs(i)

Θ(i) The vector of information symbols M-QAM or
symbols of the test signal

Ik(i), Jk(i) Elements of the vector Θ(i)

d(i) The row vector the form of which is
determined by the type of the approximation

X1c,lk, X1s,lk
Vectors of coefficients of approximation of

elements H1c,lk(i), H1s,lk(i)

a1c0,lk, a1c1,lk, a1s0,lk, a1s1,lk Elements of vectors X1c,lk, X1s,lk

X2c,lk, X2s,lk
Vectors of coefficients of approximation of

elements H2c,lk(i), H2s,lk(i)

a2c0,lk, a2c1,lk,a2s0,lk, a2s1,lk Elements of vectors X2c,lk, X2s,lk

Aυ, Bυ, Cυ, Dυ, υ = 1, . . . , p Harmonic amplitudes in the trigonometric
approximation from [31]

p Approximation order

m The length of the test signal

n1 Number of test signal transmission sessions

K0 The length of the channel extrapolation interval

2. Formulation of the Problem
2.1. Channel Modal

In-phase and quadrature (IQ) vector components Yc(i), Ys(i) ∈ RN with elements
yc,l(i), ys,l(i), l = 1, 2, . . . ., N of the N × N MIMO system after detection are described as

Yc(i) = H1(i)Θ(i) + Bc(i) + µc(i), Ys(i) = H2(i)Θ(i) + Bs(i) + µs(i) (1)

where i = 1, 2, . . . . . . n—discrete time, Θ(i) ∈ R2N—a column vector contained M-QAM
symbols of the signal or the test signal with elements Ik(i), Jk(i), k = 1, 2, . . . ., N ,
Bc(i) ∈ RN , Bs(i) ∈ RN—vectors of the DC offset slowly varying in time with elements
bcl , bsl , µc(i) ∈ RN , µs(i) ∈ RN—noise vector with unknown probability distribution func-
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tion, E(µc(i)) = E(µs(i)) = 0N×1, E(µc(i)µT
c (i)) = E(µs(i)µT

s (i)) = σ2
µIN×N E(·)—expected

value, IN×N—identity matrix.
The channel matrices are H1(i), H2(i) : R2N → RN , H1(i) =

(
Hc1(i) −Hs1(i)

)
N×2N ,

H2(i) =
(

Hs2(i) Hc2(i)
)

N×2N . Matrices Hc1(i), Hs1(i), Hc2(i), Hs2(i), which size is
N × N, have elements H1c,lk(i), H1s,lk(i), H2c,lk(i), H2s,lk(i) defined as

H1c,lk(i) = hc,lk(i) cos(2π∆ f Tci + ϕl(i))− hs,lk(i) sin(2π∆ f Tci + ϕl(i)),
H1s,lk(i) = hc,lk(i) sin(2π∆ f Tci + ϕl(i)) + hs,lk(i) cos(2π∆ f Tci + ϕl(i)),

(2)

H2c,lk(i) = γl(hc,lk(i) cos(2π∆ f Tci + ϕl(i) + ∆ϕl)− hs,lk(i) sin(2π∆ f Tci + ϕl(i) + ∆ϕl)),
H2s,lk(i) = γl(hc,lk(i) sin(2π∆ f Tci + ϕl(i) + ∆ϕl) + hs,lk(i) cos(2π∆ f Tci + ϕl(i) + ∆ϕl)).

(3)

where l, k denote the number of transmitting and receiving antennas, respectively,
l, k = 1, 2, . . . ., N .

The parameters that are used in models (1)–(3) are presented in Table 2.

Table 2. Parameters of the channel and signal distortion in the direct conversion receiver.

Parameter Description

γl Amplitude imbalance between IQ components at the l-th receiving antenna

∆ϕl Phase imbalance between IQ components at the l-th receiving antenna

bcl , bsl DC offsets of IQ components at l-th receiving antenna

∆ f The frequency offset after demodulation

hc,l k(i), hs,l k(i) Time-varying channel gains

ϕl(i) = ϕl0 + ζl(i) Phase of the signal

ζl(i) Phase noise

ϕl0 An initial random phase

Tc The duration of signal symbols Ik(i), Jk(i) M-QAM

In order to organize quasi-coherent signal reception based on (1), we propose the

estimation algorithm of channel matrices
_
H1(i),

_
H2(i) and the algorithm of distortion

compensation. The article considers the distortions introduced by the communication
channel and a direct conversion receiver.

2.2. Approximation of the Channel Matrix

Since the estimation is carried out under conditions of a priori uncertainty of the
channel characteristics and noise distribution, the simplest method for estimation algorithm
is the method of least squares (LS). In order to reduce the number of computational
operations, it is better to use a linear least squares method, which requires a linear model
comprising a linear combination of the estimated parameters. Therefore, we propose to
approximate the elements of the channel matrices (2), (3) as follows [41,42]:

H1c,lk(i) = d(i)X1c,lk; H1s,lk(i) = d(i)X1s,lk,
H2c,lk(i) = d(i)X2c,lk; H2s,lk(i) = d(i)X2s,lk.

(4)

where X1c,lk, X1s,lk, X2c,lk, X2s,lk are vectors of approximation coefficients, d(i)—a row vector
that depends on the type of approximation. For instance, d(i) =

(
1 i i2 · · · ip )

1×(p+1)
if a polynomial of the p-th order. We propose to use an approximation with one (p = 0,
Xqc,lk = aqc0,lk; Xqs,lk = aqs0,lk, q = 1; 2) or two (p = 1, Xqc,lk =

(
aqc0,lk aqc1,lk

)T ;

Xqs,lk =
(

aqs0,lk aqs1,lk
)T , q = 1; 2) estimated coefficients aqc0,lk, aqc1,lk, aqs0,lk, aqs1,lk to

reduce the number of computational operations:
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1. Polynomial approximation with p = 0: d(i) = 1;
2. Polynomial approximation with p = 1: d(i) =

(
1 i

)
;

3. Logarithmic approximation: d(i) =
(

1 lg(i)
)
;

4. Hyperbolic approximation: d(i) =
(

1 1/i
)
.

2.3. The Algorithm for Estimating Channel Gains and Signals Distortions in a Direct Conversion
Receiver Using a Test Signal

This algorithm is based on a previous algorithm that was published in [41,42]. The
entire time of receiving a signal of length n is divided into n1 intervals of length L = n/n1,
in each of which a test signal of length m is transmitted once. Within each interval, the
estimation of the channel gains (2), (3) is provided, as well as their extrapolation and the
extraction of information symbols over time K0. Then re-estimation (2), (3) takes place
according to the received information sequence, then detection, etc.

The estimation of approximation coefficients based on LS uses the test signal and
in-phase and quadrature components of the received signal yc,l(i), ys,l(i). The algorithm
processes the signal at each receiving antenna in a sliding window of length m:

_
Z1,l = (Dc

TDc)
−1

Dc
TYc,l ;

_
Z2,l = (Ds

TDs)
−1

Ds
TYs,l , l = 1, 2, . . . , N (5)

where
_
Zq,l =

(
_
X

T

qc,l1 · · ·
_
X

T

qc,lN
_
X

T

qs,l1 · · ·
_
X

T

qs,lN
_
b ql

)T

(2N(p+1)+1)×1
, q = 1; 2,

_
b 1l =

_
b cl ,

_
b 2l =

_
b sl , Dc =

(
D1 −D2

→
1
)

m×(2N(p+1)+1)
, Ds =

(
D2 D1

→
1
)

m×(2N(p+1)+1)
,

D1 =


d(i)I1(i) · · · d(i)IN(i)

d(i− 1)I1(i− 1) · · · d(i− 1)IN(i)
... · · ·

...
d(i−m + 1)I1(i−m + 1) · · · d(i−m + 1)IN(i−m + 1)

,

D2 =


d(i)J1(i) · · · d(i)JN(i)

d(i)J1(i− 1) · · · d(i− 1)JN(i− 1)
... · · ·

...
d(i−m + 1)J1(i−m + 1) · · · d(i−m + 1)JN(i−m + 1)

,

Yc,l =
(

yc,l(i) yc,l(i− 1) · · · yc,l(i−m + 1)
)T

m×1, Ys,l =
(

ys,l(i) ys,l(i− 1) · · · ys,l(i−m + 1)
)T

m×1,
→
1 is a

unit vector of size m× 1, i = m+ (j− 1)L; j = 1, 2, . . . , n1 p = 0 or 1, «T» denotes transpose.
The estimation of elements of the channel matrix and the DC offset can be written as

_
Hqc,lk(i−m + s) = d(i−m + s)

_
Xqc,lk,

_
Hqs,lk(i−m + s) = d(i−m + s)

_
Xqs,lk, s = 1, . . . , m, (6)

_
b cl =

_
Z1l(2N(p + 1) + 1, 1);

_
b sl =

_
Z2l(2N(p + 1) + 1, 1). (7)

Further, by the method of averaging over time and transmitting antennas, we obtain
expressions for estimating the amplitude and phase imbalance [38].

_
γ l =

1
N

N

∑
k=1

1
m

m

∑
s=1

√
_
V

2

c,lk(i−m + s) +
_
V

2

s,lk(i−m + s), (8)

∆
_
ϕ l =

1
N

N

∑
k=1

1
m

m

∑
s=1

arctg

_
Vs,lk(i−m + s)
_
Vc,lk(i−m + s)

. (9)
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In (8), (9),
(

_
Vc,lk(i−m + s)

_
Vs,lk(i−m + s)

)T
=

_
Vlk(i − m + s) =

B−1(i−m+ s)
_
H2,lk(i−m+ s);

_
H2,lk(i−m+ s) =

(
_
H2c,lk(i−m + s)

_
H2s,lk(i−m + s)

)T
;

B(i−m + s) =

( _
H1c,lk(i−m + s) −

_
H1s,lk(i−m + s)

_
H1s,lk(i−m + s)

_
H1c,lk(i−m + s)

)
.

2.4. Communication Channel Extrapolation and Signal Detection

The channel gains can be extrapolated over the interval of length K0, using estimations
(6), (8), (9) in the form

_
H1c,l k(i + n0) = d(i + n0)

_
X1c,lk;

_
H1s,l k(i + n0) = d(i + n0)

_
X1s,lk (10)

_
H2c,l k(i + n0) =

_
γ l cos(∆

_
ϕ l)

_
H1c,l k(i + n0)−

_
γ l sin(∆

_
ϕ l)

_
H1s,l k(i + n0),

_
H2s,l k(i + n0) =

_
γ l cos(∆

_
ϕ l)

_
H1s,l k(i + n0) +

_
γ l sin(∆

_
ϕ l)

_
H1c,l k(i + n0),

(11)

n0 = 1 + (j1 − 1)K0, . . . , j1K0, j1 = 1, . . . , Q.
The length of the extrapolation interval and the number of such intervals are related

by a relation Q = L−m
K0

.
Then DC offset is compensated and a soft solution is found using the Zero Forcing

method. Hard decisions are calculated using the minimum distance criterion between
the soft decision vector for each receiving antenna and the vector of possible information
symbols. If the noise has a Gaussian distribution, then this approach coincides with the
maximum likelihood method.

2.5. The Algorithm for Estimating Channel Gains Using Information Signal

This is widely known that the communication channel changes over time. Therefore,
it is necessary to refine the channel gains estimation using detected symbols. The linear LS
algorithm of estimation was obtained in [41,42]:

_
X l = (DTD)

−1
DTYl , l = 1, 2, . . . , N (12)

Yl =
(

Yc,l Ys,l
)T

2m1×1, Yc,l =
(

yc,l(i0) yc,l(i0 − 1) · · · yc,l(i0 −m1 + 1)
)T

m1×1,

Ys,l =
(

ys,l(i0) ys,l(i0 − 1) · · · ys,l(i0 −m1 + 1)
)T

m1×1,
_
X l =

(
_
X

T

1c,l1 · · ·
_
X

T

1c,lN
_
X

T

1s,l1 · · ·
_
X

T

1s,lN

)T

(2N(p+1))×1
,

D =

(
D11 D12
D21 D22

)
2m1×(2N(p+1))

, m1 ≥ m,

D11 =


d(i0)

_
I 1(i0) · · · d(i0)

_
I N(i0)

d(i0 − 1)
_
I 1(i0 − 1) · · · d(i0 − 1)

_
I N(i0 − 1)

... · · ·
...

d(i0 −m1 + 1)
_
I 1(i0 −m1 + 1) · · · d(i0 −m1 + 1)

_
I N(i0 −m1 + 1)

,

D12 =


−d(i0)

_
J 1(i0) · · · −d(i0)

_
J N(i0)

−d(i0 − 1)
_
J 1(i0 − 1) · · · −d(i0 − 1)

_
J N(i0 − 1)

... · · ·
...

−d(i0 −m1 + 1)
_
J 1(i0 −m1 + 1) · · · −d(i0 −m1 + 1)

_
J N(i0 −m1 + 1)

,



Sensors 2022, 22, 3488 8 of 28

D21 =


d(i0)

_
Vc1(i0) · · · d(i0)

_
VcN(i0)

d(i0 − 1)
_
Vc1(i0 − 1) · · · d(i0 − 1)

_
VcN(i0 − 1)

... · · ·
...

d(i0 −m1 + 1)
_
Vc1(i0 −m1 + 1) · · · d(i0 −m1 + 1)

_
VcN(i0 −m1 + 1)

,

D22 =


d(i0)

_
Vs1(i0) · · · d(i0)

_
VsN(i0)

d(i0 − 1)
_
Vs1(i0 − 1) · · · d(i0 − 1)

_
VsN(i0 − 1)

... · · ·
...

d(i0 −m1 + 1)
_
Vs1(i0 −m1 + 1) · · · d(i0 −m1 + 1)

_
VsN(i0 −m1 + 1)

,

_
Vck(i) =

_
γ l(

_
J k(i) cos(∆

_
ϕ l) +

_
I k(i) sin(∆

_
ϕ l)),

_
Vsk(i) =

_
γ l(−

_
J k(i) sin(∆

_
ϕ l) +

_
I k(i) cos(∆

_
ϕ l)),

k = 1, 2, . . . , N, i0 = i + j1K0, j1 = 1, . . . , Q,
_
γ l , ∆

_
ϕ l—the estimation of amplitude and

phase imbalance (8), (9). After estimating the extrapolation and detection are carried
out again.

Comment. The algorithm, described by Equation (12) can be used for refining
_
H1c,lk(i),

_
H1s,lk(i) by the test signal after estimating (5)–(9).

Figure 1 shows the structure of the signal processing algorithm, described by
Equations (5)–(12).
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Figure 1. The structure of the signal processing algorithm in a MIMO communication system.

3. Simulation Results

The analysis of the considered algorithms for estimating channel gains and signal
distortions in the direct conversion receiver is carried out with the number of transmitting
and receiving antennas: N = 1, 2, 4. The multipliers hc,l k(i), hs,l k(i) in the channel model
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(2), (3) were generated using the Jakes model as a sum of harmonics, taking into account
the Doppler expansion of the signal spectrum subject to Rayleigh fading [31]. The test and
information signal are modulated by M-QAM with the number of positions M = 4; 16; 64.
The phase noise ζl(i) was formed using a second-order sliding average model. The signal
was received in the system without coding. The noise is Gaussian.

3.1. Comparison of the Proposed Algorithms with the Known Algorithm

At the first stage of simulation, the algorithms described by Equations (5) and (6)
with a polynomial approximation of the order p = 1 was compared with the estimation
proposed in [31]. The algorithm [31] utilizes trigonometric approximation and a recurrent
Kalman filter for SISO systems (N = 1) in the absence of an amplitude and phase imbalance,
as well as the DC offset.

The gist of the method from [31] is described below. The channel is approximated by
a trigonometrical series:

hc(i) =
p
∑

υ=0
[Aυ cos(2π fυTi)− Bυ sin(2π fυTi)],

hs(i) =
p
∑

υ=0
[Cυ cos(2π fυTi)− Dυ sin(2π fυTi)],

where Aυ, Bυ, Cυ, Dυ are unknown amplitudes of harmonics, fυ = FD cos
(

πυ
2L0+1

)
,

l = 0, 1, . . . , p, FD is the Doppler shift known in advance, T is a duration of the test
or information signal, L0 is a number of harmonics in the Jakes model.

Then the model of the dynamical system and the observational equations can be
written as:

X(i) = X(i− 1) + ζ(i), Y(i) = V(i)F(i)X(i) + µ(i),

where X(i) =
(

A0 · · · Ap C0 · · · Cp B0 · · · Bp D0 · · · Dp
)T

4(p+1)×1 is a vector of

estimated parameters, Y(i) =
(

yc(i) ys(i)
)T , V(i) =

(
I(i) −J(i)
J(i) I(i)

)
, µ(i) =

(
µc(i) µs(i)

)T ,

ζ(i)—noise of the dynamic system,E(ζ(i)) = 0, E(ζ(i)ζT(i)) = σ2
ζ I4(p+1)×4(p+1),

F(i) =

(
cos(2π f0Ti) · · · cos(2π fpTi)01×(p+1) − sin(2π f0Ti) · · · − sin(2π fpTi)01×(p+1)
01×(p+1) cos(2π f0Ti) · · · cos(2π fpTi)01×(p+1) − sin(2π f0Ti) · · · − sin(2π fpTi)

)
.

The estimation that is optimal according to the minimum standard deviation criterion
is written as

_
X(i) =

_
X(i− 1) + K(i)(Y(i)−V(i)F(i)

_
X(i− 1)),

_
h(i) =

(
_
h c(i)

_
h s(i)

)T
= F(i)

_
X(i), i = 1, 2, . . . ,

K(i) = P(i)FT(i)VT(i)[V(i)F(i)P(i)FT(i)VT(i) + σ2
µI2×2]

−1,
P(i) = Γ(i− 1) + σ2

ζ I4(p+1)×4(p+1), Γ(i) = P(i)−K(i)V(i)F(i)P(i).

P(i) = E(X(i)−
_
X(i− 1))(X(i)−

_
X(i− 1))

T
—extrapolation error correlation matrix,

Γ(i) = E(X(i)−
_
X(i))(X(i)−

_
X(i))

T
—filtering error correlation matrix.

Figure 2 shows a symbol error rate (SER) obtained using the algorithms, described by
Equations (5) and (6), with p = 1 and the method [31] with p = 5, σ2

ζ = 10−8, ∆ f = 0 Hz
for 64-QAM modulation of the signal and different lengths of the extrapolation interval
K0. The simulation was carried out for a slow Rayleigh fading channel. The test signal of
the length m = 500 was used n1 = 1 times, the detection sample size is n−m = 6000. The
number of quasi-harmonics in the Jakes model is L0 = 5, a standard deviation (SD) of the
phase noise is about 1 degree, the initial phase is ϕ0 = π

12 , a frequency shift ∆ f varies from
0 to 180 Hz. During the simulation, one sample was taken per symbol (test or information).
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Figure 2. SER versus signal-noise ratio per bit for a 64-QAM signal in a channel with slow Rayleigh
fading in the absence of IQ imbalance and DC offset using Equations (5) and (6) and from [31].

It can be seen that both algorithms have similar performance if the signal-noise ratio
(SNR) is below 20 dB. However, when the SNR value is above 20 dB, the use of the
algorithms, described by Equations (5) and (6) allows obtaining an energy gain of up
to 7 dB compared to the algorithm with trigonometric approximation. In addition, the
algorithms, described by Equations (5) and (6) with the channel extrapolation length K0 = 1
and K0 = 300 for “a)” (K0 = 100 for “b)”) makes it possible to obtain almost the same noise
immunity. This allows estimating the parameters of the channel using information symbols
after the detection less frequently relative to the algorithm [31], for which K0 = 1. Thus,



Sensors 2022, 22, 3488 11 of 28

the computational complexity of the signal processing algorithm is reduced. For example,
for (FD + ∆ f )T = 1.45× 10−4, the number of sessions of the procedure (5), (6) is 100 times
less than in [31].

The computational complexity of the considered algorithms is analyzed. It was defined
as the number of addition and multiplication operations NOP. A detailed description
of finding the approximate number of arithmetic operations is given in Table 3 for the
algorithm [31] and in Table 4 for the algorithm proposed in this article with polynomial
approximation and the estimation of IQ imbalance.

Table 3. Calculation of the computational complexity of the algorithm [31] for SISO systems.

Calculated Member Number of Operations

V(i)F(i) 24(p + 1)

P(i) = Γ(i− 1) + σ2
ζ I4(p+1)×4(p+1) 4(p + 1)

P(i)[V(i)F(i)]T 8(p + 1)(8(p + 1)− 1)

V(i)F(i)P(i)[V(i)F(i)]T 24(p + 1)− 3

V(i)F(i)P(i)[V(i)F(i)]T + σ2
µI2×2 2

[V(i)F(i)P(i)[V(i)F(i)]T + σ2
µI2×2]

−1 8

K(i) = P(i)[V(i)F(i)]T [V(i)F(i)P(i)[V(i)F(i)]T + σ2
µI2×2]

−1 24(p + 1)

Γ(i) = P(i)−K(i)V(i)F(i)P(i) 64(p + 1)2

Y(i)−V(i)F(i)
_
X(i− 1) 16(p + 1)

K(i)(Y(i)−V(i)F(i)
_
X(i− 1)) 12(p + 1)

_
X(i) =

_
X(i− 1) + K(i)(Y(i)−V(i)F(i)

_
X(i− 1)) 4(p + 1)

The algorithm performs NOP = [128(p + 1)2 + 100(p + 1) + 7]m operations in m iterations

Table 4. Calculation of the computational complexity of the algorithms, described by Equations (5),
(8) and (9) for MIMO systems with N transmitting and receiving antennas.

Calculated Member Number of Operations

Dc
TDc [2(6p + 1)N2 + (10p + 3)N](m− 1)

Dc
TYc,l , Ds

TYs,l , l = 1, . . . , N 2[4(p + 1)N + 1]N(m− 1)

(Dc
TDc)

−1, (Ds
TDs)

−1 2(2N(p + 1) + 1)3

_
Z1,l = (Dc

TDc)
−1Dc

TYc,l ;
_
Z2,l = (Ds

TDs)
−1Ds

TYs,l ,
l = 1, . . . , N

2N[8N2(p + 1)2 + 6N(p + 1) + 1]

_
γ l , ∆

_
ϕ l , l = 1, . . . , N [2m(9N + 1) + 2N]N

Total number of operations:
NOP = [10(p + 1)(1 + 2N) + 8N − 3]mN+

+[16N2(p + 1)3 + 8N(p + 1)2(3 + 2N)− 2(p + 1)(4N − 1)]N + 12N2 + 7N + 2

The calculation of the number of operations for the formation of the matrix Ds
TDs is

not performed, because it contains the same elements as the matrix Dc
TDc. The use of poly-

nomial approximation leads to a decrease in computational complexity when calculating
Dc

TDc since it contains repetitive elements.
Table 5 shows the computational complexity of the estimation obtained on the basis of

Tables 2 and 3 for different approximation orders.



Sensors 2022, 22, 3488 12 of 28

Table 5. The computational complexity of the algorithms, described by Equations (5), (8) and (9),
and from [31].

The Order of Approximation Algorithms, Described by
Equations (5), (8) and (9) Algorithm from [31]

p = 1 NOP ∼= 65m + 297 -

p = 2 NOP ∼= 95m + 795 NOP ∼= 1459m

p = 3 - NOP ∼= 2455m

p = 4 - NOP ∼= 3707m

p = 5 - NOP ∼= 5215m

Table 5 shows that the algorithm with a trigonometric approximation is more com-
plicated than the methods (5), (8), (9). For example, for the first order of polynomial
approximation and the signal sample size m = 500, the number of arithmetic operations (5),
(8), (9) is 22 times less than for the algorithm [31] with two quasi-harmonics in trigonometric
approximation and 80 times less if the number of harmonics is five.

3.2. Analysis of Proposed Algorithms with Approximating Structures with a Small Number of
Parameters

The simulation was carried out with the following values of parameters: DC offsets
bcl , bsl , amplitude imbalance γl , phase imbalance ∆ϕl , and the initial random phase ϕl0
were formed as uniformly distributed random variables on the intervals [0, 2], [0.5, 1],[
− π

18 , π
18
]

and [−π, π], respectively, l, k = 1, 2, . . . ., N. The SD of phase noise is about
one degree, the total volume of the signal sample (test signal plus information signal) for
one implementation is 6600 symbols, and the total number of test symbols for the entire
reception time remains constant mn1 = const = 1000.

3.2.1. SISO Systems

We consider a channel with fast Rayleigh fading FDT > 10−3 in this section for
SISO systems.

Model parameters are defined as (FD +∆ f )T = 1.045× 10−3, FD = 4 kHz, ∆ f = 180 Hz,
T = 0.25 µs.

Figures 3–5 show the dependence of the quality of the algorithms, described by
Equation (5), (6) and (12), on the lengths of the test sequence m and the extrapolation
interval K0 for the signal 4-QAM. A polynomial approximation of the zero and first orders
of the channel gains was used for this study. Figure 6 illustrates the noise immunity
curves for receiving 16-QAM and 64-QAM. Figures 7 and 8 show the SD of estimating
unknown parameters of the communication channel and signal distortion in the direct
conversion receiver. The test signal is modulated by 16-QAM and 64-QAM, respectively.
Figure 9 shows constellations of the 64-QAM at the input of the receiver and at the output
of the compensator which uses the algorithms, described by Equations (5)–(9) and (12)
with a zero and first-order polynomial. The SNR was 26 dB per bit. Figures 10 and 11
illustrate variations of the channel gains and their estimations over time for SNR of 26 dB
per bit. Figure 12 shows the extrapolated values of the channel gains obtained using the
Equations (5)–(9) with a zero and first-order polynomial.

Figure 3 shows that the selection of parameters m, K0, n1 makes it possible to obtain
the least probability of signal reception error. Using a first-order polynomial approximation,
this combination is m = 50, K0 = 40, n1 = 20.

This can be easily seen from Figures 3 and 4 that the best performance is for systems
with characteristics m = 50, n1 = 20, K0 = 40 for p = 1 and m = 10, n1 = 100, K0 = 1
for p = 0. In this case, the energy gain is up to 5 dB for p = 1 relative to the algorithm
with p = 0.



Sensors 2022, 22, 3488 13 of 28Sensors 2022, 22, 3488 13 of 28 
 

 

 
Figure 3. SER of 4-QAM versus SNR per bit for the algorithms, described by Equations (5)–(9) and 
(12) with polynomial approximation of the first order for different values of m  and 0K . 

Figure 3 shows that the selection of parameters m , 0K , 1n  makes it possible to ob-
tain the least probability of signal reception error. Using a first-order polynomial approx-
imation, this combination is 0 150, 40, 20m K n= = = . 

This can be easily seen from Figures 3 and 4 that the best performance is for systems 
with characteristics 1 050, 20, 40m n K= = =  for 1p =  and 1 010, 100, 1m n K= = =  for 

0p = . In this case, the energy gain is up to 5 dB for 1p =  relative to the algorithm with 
0p = . 
Figure 5 shows that the use of a first-order polynomial approximation allows obtain-

ing a higher accuracy of estimation than using a zero-order polynomial. So, the standard 
deviation (SD) of estimating the amplitude imbalance is 2.8 times, the phase imbalance is 
1.62 times, and the channel gains are 1.41 times less for the algorithm with 1p =  than for 
the algorithm with 0p = . 

Figure 6 shows that the algorithms, described by Equations (5)–(9) and (12) with 
1p =  provides a higher noise immunity relative to the procedure with 0p = . The first 

order of the polynomial makes it possible to obtain an energy gain of up to 10 dB for a 16-
QAM signal and up to 12 dB for a 64-QAM signal relative to the algorithm using the zero-
order polynomial. 

Figure 3. SER of 4-QAM versus SNR per bit for the algorithms, described by Equations (5)–(9) and (12)
with polynomial approximation of the first order for different values of m and K0.

Figure 5 shows that the use of a first-order polynomial approximation allows obtaining
a higher accuracy of estimation than using a zero-order polynomial. So, the standard
deviation (SD) of estimating the amplitude imbalance is 2.8 times, the phase imbalance is
1.62 times, and the channel gains are 1.41 times less for the algorithm with p = 1 than for
the algorithm with p = 0.

Figure 6 shows that the algorithms, described by Equations (5)–(9) and (12) with
p = 1 provides a higher noise immunity relative to the procedure with p = 0. The first
order of the polynomial makes it possible to obtain an energy gain of up to 10 dB for a
16-QAM signal and up to 12 dB for a 64-QAM signal relative to the algorithm using the
zero-order polynomial.

Figure 7 shows that the use of (5)–(9), (12) with increases on average the accuracy of
estimation of the phase imbalance by 1.65 times, channel gains by 1.41 times relative to the
algorithm with for a 16-QAM signal.

Figure 8 shows that the use of (5)–(9), (12) with p = 1 increases on average the accuracy
of estimation of the phase imbalance by 1.25 times, channel gains by 1.42 times relative to
the algorithm with p = 0 for a 64-QAM signal.
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Figure 9 shows a better compensation of signal distortions when the algorithms,
described by Equations (5)–(9) and (12) with a polynomial of the first order is used relative
to the approximation by a zero-order polynomial.

Also, Figures 10 and 11 illustrate that the quality of the channel estimation is higher
using a polynomial approximation with p = 1, relative to the procedure with p = 0. This is
especially noticeable in Figures 10 and 11b.

Figure 12 shows that the quality of the channel extrapolation is higher if the polynomial
order is p = 1.
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Figure 9. Constellations of the 64-QAM (SNR is 26 dB per bit) at the input of the compensator—(a);
at the output of the compensator which uses the algorithms, described by Equations (5)–(9) and (12)
with p = 0, m = 10, n1 = 100, K0 = 1—(b); p = 1, m = 50, n1 = 20, K0 = 1—(c).

Tables 6–8 show SER of 4, 16, 64-QAM in case of using different approximating
structures in the algorithms, described by Equations (5)–(9) and (12).

Table 6. SER of 4-QAM versus SNR per bit for m = 50, n1 = 20, K0 = 40.

q, dB 2 9 12 19 22 29 32 39

Polynomial approximation, p = 1

SER 2.02× 10−1 6.65× 10−2 3.99× 10−2 1.34× 10−2 9.9× 10−3 4.2× 10−3 2.5× 10−3 7.09× 10−4

Logarithmic approximation

SER 2.0× 10−1 6.7× 10−2 4.04× 10−2 1.36× 10−2 1.0× 10−2 4.2× 10−3 2.6× 10−3 7.7× 10−4

Hyperbolic approximation

SER 2.03× 10−1 6.77× 10−2 4.08× 10−2 1.36× 10−2 1.0× 10−2 4.3× 10−3 2.6× 10−3 8.23× 10−4
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the algorithms, described by Equations (5)–(9) and (12) with 1p =  was used—(a), SNR = 26 dB; the 
enlarged fragment of “a)” part of the Figure—(b). 

Figure 10. Channel gains H1c(i), H1s(i) and their estimation based on the test signal versus time:
the algorithms, described by Equations (5)–(9) and (12) with p = 1 was used—(a), SNR = 26 dB; the
enlarged fragment of “a)” part of the Figure—(b).

Table 7. SER of 16-QAM versus SNR per bit for m = 50, n1 = 20, K0 = 1.

q, dB 6 9 16 19 26 29 36 39

Polynomial approximation, p = 1

SER 3.05× 10−1 2.4× 10−1 8.78× 10−2 4.97× 10−2 1.69× 10−2 1.25× 10−2 6.3× 10−3 4.4× 10−3

Logarithmic approximation

SER 3.47× 10−1 2.4× 10−1 8.86× 10−2 5.06× 10−2 1.68× 10−2 1.25× 10−2 6.4× 10−3 4.4× 10−3

Hyperbolic approximation

SER 3.48× 10−1 2.42× 10−1 8.9× 10−2 5.06× 10−2 1.71× 10−2 1.26× 10−2 6.4× 10−3 4.5× 10−3
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Table 8. SER of 64-QAM versus SNR per bit for m = 50, n1 = 20, K0 = 1.

q, dB 3 6 13 16 23 26 33 36

Polynomial approximation, p = 1

SER 7.3× 10−1 6.06× 10−1 3.08× 10−1 2.1× 10−1 6.77× 10−2 4.1× 10−2 1.45× 10−2 1.12× 10−2

Logarithmic approximation

SER 7.29× 10−1 6.05× 10−1 3.07× 10−1 2.09× 10−1 6.87× 10−2 4.08× 10−2 1.46× 10−2 1.12× 10−2

Hyperbolic approximation

SER 7.29× 10−1 6.06× 10−1 3.09× 10−1 2.12× 10−1 7.03× 10−2 4.15× 10−2 1.55× 10−2 1.11× 10−2
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the algorithms, described by Equations (5)–(9) and (12) with 0p =  was used—(a), SNR = 26 dB; 
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Figure 12 shows that the quality of the channel extrapolation is higher if the polyno-
mial order is 1p = . 

Figure 11. Channel gains H1c(i), H1s(i) and their estimation based on the test signal versus time:
the algorithms, described by Equations (5)–(9) and (12) with p = 0 was used—(a), SNR = 26 dB; the
enlarged fragment of (a,b).
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Figure 12. Extrapolated values of the channel gains H1c(i), H1s(i) versus time for
(FD + ∆ f )T = 1.045× 10−3 and p = 1—(a), p = 0—(b), SNR = 26 dB.

Thus, for a channel with (FD + ∆ f )T = 1.045 × 10−3, algorithms, described by
Equations (5)–(9) and (12) with p = 1 allows getting an energy gain of up to 5 dB for
a 4-QAM signal and 10–12 dB for 16- and 64-QAM signals compared to the algorithm with
p = 0. The use of logarithmic and hyperbolic approximation does not bring benefits in the
noise immunity of signal reception 4-, 16-, 64-QAM.

Next, consider a communication channel for which FD = 4 kHz, ∆ f = 10 kHz,
T = 0.25 µs, (FD + ∆ f )T = 3.5× 10−3. Figure 13 shows the noise immunity curves of
4-QAM for different lengths of the test sequence m and different numbers of transmission
sessions n1. It follows from Figure 13 that the best option is m = 20, n1 = 50. It gives an
energy gain of 1 to 12 dB relative to the other considered options m and n1.

Figure 14 illustrates the reception quality of signals modulated by 16-QAM and
64-QAM. The first order of polynomial was chosen for simulation. Figures 15 and 16
show the realization of the communication channel gains, as well as their estimations and
extrapolated values obtained using the procedure (5)–(9), (12) with p = 1. In this case, we
used 64-QAM and SNR per a bit was 26 dB.
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Therefore, the algorithms, described by Equations (5)–(9) and (12) allows getting the 
lowest SER for 4-QAM, 16-QAM, and 64-QAM for the channel with 3( ) 3.5 10DF f T −+ Δ = ⋅  
if the length of the test signal is 20, the number of transmission sessions is 50. 

Figure 15. Channel gains H1c(i), H1s(i) and their estimation based on the test signal versus time:
(FD + ∆ f )T = 3.5× 10−3, p = 1, SNR = 26 dB.
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Figure 16. Extrapolated values of the channel gains H1c(i), H1s(i) versus time for
(FD + ∆ f )T = 3.5× 10−3 and p = 1, SNR = 26 dB.

Figure 14 shows SER of 16, 64-QAM using algorithms, described by
Equations (5)–(9) and (12) with a polynomial approximation of the first order. It can be
seen that the phase noise and distortions of the direct conversion receiver lead to an in-
crease in SER compared to the situation when only additive noise is taken into account. In
addition, SER, instead of gradually decreasing, has an error floor at high values of SNR
due to the phase noise and inaccurate distortion compensation. This effect is enhanced for
a 64-QAM signal.

Figures 15 and 16 show the performance of the channel estimation and extrapolation
for a 64-QAM signal.
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Therefore, the algorithms, described by Equations (5)–(9) and (12) allows getting the
lowest SER for 4-QAM, 16-QAM, and 64-QAM for the channel with (FD + ∆ f )T = 3.5× 10−3

if the length of the test signal is 20, the number of transmission sessions is 50.

3.2.2. MIMO Systems

We consider a channel with (FD + ∆ f )T = 1.045× 10−3. Polynomial, logarithmic,
and hyperbolic functions with two parameters are taken as approximating structures for
the communication channel gains in order to reduce the computational complexity of the
estimation algorithms.

Figure 17 shows the 4-QAM reception immunity curves for a system with two and
four transmit and receive antennas. Figure 18 illustrates the SD of estimating the commu-
nication channel gains for different values of SNR. Estimation of channel multipliers and
distortions in the direct conversion receiver was carried out by the algorithms, described by
Equations (5)–(9) and (12). The length of the test signal is m = 50 symbols, the number of
its transmission sessions is n1 = 20, the length of the channel extrapolation and detection
interval is K0 = 40 symbols. The signal sample size is m1 = 90.
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structures for MIMO systems.

Figure 17 demonstrates that the use of logarithmic and polynomial approximations of
the first order leads to approximately the same 4-QAM signal reception noise immunity
and to a small energy gain at large SNR relative to the hyperbolic approximation. For
instance, the use of polynomial approximation provides an energy gain of 0.5–3 dB at
SNR = 30–35 dB compared to the use of hyperbolic approximation with the same complex-
ity of the algorithms.

Figure 18 demonstrates that the accuracy of the channel estimation is almost the same
for all three considered types of approximation for N = 2. For N = 4 the estimation
accuracy of the logarithmic and polynomial approximations is 1.3 times higher than the
accuracy of the hyperbolic approximation.
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4. Discussion

The choice of approximating functions for channel gains with a small number of
estimated parameters is due to reducing the computational complexity of signal processing
algorithms. This is especially true for multi-user systems, for example, for the Internet of
Things. For a time-varying communication channel, the estimation task becomes more
complicated, since it is necessary to introduce models that predict the state of the channel.
The synthesized in the article algorithms are most efficient under conditions of a priori
uncertainty about the channel statistics and noise distribution. This allows not carrying
out channel identification, which also saves computing resources. Since the channel
changes in time rather quickly, the application of a large number of antennas becomes
more complicated. The larger N, the more difficult it is to estimate the channel with high
accuracy. Since the estimation algorithm was designed for the case of the absence of a
priori information about the channel statistics (for example, the correlation function), it
has been used only for N = 1, 2, 4. However, it is planned to study the possibility of using
N > 4 antennas in future works.

The algorithm for estimating non-stationary channel gains proposed in [31] is compli-
cated (see Table 1) and requires a priori information about the channel. The computational
experiment showed that the estimation algorithms, described by Equations (5)–(9) and (12)
using the approximation in the form of a first-order polynomial outperforms the algo-
rithm from [31]. So for a 64-QAM signal with SNR greater than 20 dB, an energy gain
of up to 7 dB can be achieved (see Figure 2). In addition, the use of (5)–(9), (12) in this
case allows estimating the channel less often than when we use the algorithm [31]. Thus,
at (FD + ∆ f )T = 1.45 × 10−4, the number of sessions of the algorithms, described by
Equations (5) and (6) is 100 times less than in [31].

Obviously, the simplest approach is the approximation of the channel gains by a
constant value over some short time interval, in which the channel is assumed to change
slightly. This corresponds to a zero-order polynomial approximating construction (p = 0).
By adjusting the length of the test sequence m, the number of transmission sessions n1,
and the length of the extrapolation interval K0, it is possible to reduce the probability of
a reception error. For instance, if we consider SISO systems the best choice is m = 10,
n1 = 100, K0 = 1. Nevertheless, as shown by the computational experiment, the algorithms,
described by Equations (5)–(9) and (12), using a polynomial approximation of the first 5 dB
for 4-QAM and 12 dB for 16-QAM and 64-QAM, compared to the algorithm with p = 0
(see order (p = 1) and m = 50, n1 = 20, K0 = 1, allows you to get an energy gain of up
to Figures 4 and 6). For 4-QAM signal, the accuracy of the estimation of the amplitude
imbalance is 2.8 times, the phase imbalance is 1.62 times and the channel gain is 1.41 times
higher using a polynomial of the first order than zero in the estimation algorithm.

The use of three approximating functions, such as first-order polynomial, logarithmic
and hyperbolic, with the same computational complexity of the estimation algorithms,
leads to almost the same noise immunity for the considered m, n1, K0 (SISO systems,
see Tables 2–4). For MIMO systems N = 2, 4, the use of a first-order polynomial and
logarithmic approximation in algorithms, described by Equations (5)–(9) and (12) makes
it possible to slightly increase the accuracy of estimating the channel gains relative to the
hyperbolic approximation. In addition, this approach allows the improvement of the noise
immunity (see Figures 17 and 18) compared to a logarithmic and hyperbolic approximation.
Thus, the SD of the estimation of the channel gains is 1.3 less for the algorithm with
polynomial and logarithmic approximation relative to the hyperbolic one. The use of
polynomial approximation at SNR of 30–35 dB makes it possible to obtain an energy gain
of 0.5–3 dB compared to the use of hyperbolic approximation with the same complexity of
the algorithms.
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5. Conclusions

Finally, we can summarize the main results:
(1) The proposed algorithms, described by Equations (5)–(9) and (12) was obtained

under conditions of a priori uncertainty about the distribution of noise and the statistical
characteristics of the communication channel. (2) Approximation constructions such as first-
order polynomial, logarithmic, and hyperbolic for the considered communication channel
models for SISO systems have quite the same estimation quality. The best approximation
with the minimum number of estimated parameters for MIMO systems is a polynomial of
the first order and logarithmic approximation. (3) It is possible to choose the length of the
test signal and the number of sessions of its transmission, in which the minimum SER will
be provided. (4) The assumption that the channel gains do not change for even a short time
(using a zero-order polynomial) results in a loss in receive immunity. (5) The proposed
estimation algorithms can be implemented using modern DSPs, and for compensation,
a number of companies produce high-precision (with high linearity) IQ demodulator
microcircuits, which provide for the possibility of supplying a digital code to compensate
for conversion errors. For example, in the LTC5594 chip from ANALOG DEVICES. The
LTC5594 contains circuitry for minimizing receiver impairments such as DC offset, phase
and gain error, and nonlinearity. The gain error and phase error adjust, DC offset adjust,
and nonlinearity adjust registers are digitally controlled through a four-wire serial interface.
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