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Abstract: The belt conveyor is an essential piece of equipment in coal mining for coal transportation,
and its stable operation is key to efficient production. Belt surface of the conveyor is vulnerable to
foreign bodies which can be extremely destructive. In the past decades, much research and numerous
approaches to inspect belt status have been proposed, and machine learning-based non-destructive
testing (NDT) methods are becoming more and more popular. Deep learning (DL), as a branch of
machine learning (ML), has been widely applied in data mining, natural language processing, pattern
recognition, image processing, etc. Generative adversarial networks (GAN) are one of the deep
learning methods based on generative models and have been proved to be of great potential. In this
paper, a novel multi-classification conditional CycleGAN (MCC-CycleGAN) method is proposed
to generate and discriminate surface images of damages of conveyor belt. A novel architecture of
improved CycleGAN is designed to enhance the classification performance using a limited capacity
images dataset. Experimental results show that the proposed deep learning network can generate
realistic belt surface images with defects and efficiently classify different damaged images of the
conveyor belt surface.

Keywords: damage detection; conditional CycleGAN; incremental image fusion; transfer learning

1. Introduction

Although the transformation of energy structures in China has been implemented
for many years and the share of coal and fossil fuels has been declining steadily, there is
still no substitute for coal in China’s industrial production. As the most important coal
transport equipment, it is critical to inspect belt conveyor running status and maintain its
normal operation.

The normal conveyor belt consists of compounded rubber and steel cords [1], which
are used to enhance wear-resisting performance and tensile strength, respectively. However,
the coal transported by belt conveyors inevitably mix with kinds of foreign bodies, such as
sharp metal bars and plates and large rocks, which can damage the belt surface and even
lead to major production accidents. To prevent any kind of tragedy, much research has
been carried out and various approaches to damage inspection have been proposed.

Early studies focused on sensor-based damage detection methods [2], which have
several limitations and are no long studied. With the development of high-performance
chips and processors, researchers proposed defect detection methods based on invisible
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light, such as X-ray or hyperspectral. Although these methods have the advantages of
high accuracy and efficiency, their disadvantages, such as being harmful to human health
and high cost, are unacceptable under some circumstances, which limit their applicability.
Last decade, methods based on machine vision and deep neural networks (DNN) were
paid more and more attention by scholars and engineers. Machine vision-based surface
detection methods for mining conveyor belt surface acquire images or image-like data
by an acquisition module, then process data samples by machine learning algorithms,
such as image segmentation, edge detection, histogram analysis, and Fourier transform.
Delicate designed machine learning detection and classification methods based on machine
vision can solve specific problems, such as belt longitudinal tear, but are vulnerable to
illumination, dust, and temperature. Deep neural networks are another kind of method,
which focus on architecture designing. In addition, the deep neural network can update
parameters by back propagation algorithms with the training dataset of belt defect images
and obtain strong ability of defect detection. Machine learning methods based on the
characteristics of different datasets can be divided into three categories: (1) supervised
learning (SL); (2) unsupervised learning (UL); (3) semi-supervised learning (SSL). The above
image-based belt defect detection approaches depend on manually annotated datasets
containing enormous damaged and non-damaged image datasets, which are defined as
supervised learning. However, it has been demonstrated that supervised learning methods
are extremely effective and of outstanding performance, annotated datasets are high-cost
and even unavailable in some research fields despite their potential problems, such as
data imbalance. On the contrary, unsupervised learning methods try to classify different
classes by training the model with non-annotated datasets. Due to lack of label informa-
tion, unsupervised learning methods sometimes lead to undesirable results. Sometimes
semi-supervised learning methods are a compromise between SL and UL methods, which
are proposed under the condition of merging their advantages.

One of the most promising generative adversarial networks for domain adaptation
is the CycleGAN [3], which consists of two GANs converting images from two different
domains A and B. One generator can transfer images from domain A to new samples which
have similar styles in the domain B. The other generator can do the opposite. Because
of the two transformations of A-to-B and B-to-A, this model is named CycleGAN. The
CycleGAN transfers domain styles using unpaired images from two domains, which is
more flexible and can solve the problem of paired-dataset preparation for other domain
adaptation GAN models.

In this paper, we propose a novel supervised deep neural network based on condi-
tional CycleGAN to detect belt defects and address data imbalance problem. The main
contributions in this paper are described as follows:

(1) Conditional and multi-classification: the multiple classifier and embedded labels [4]
are established and merged into the original CycleGAN model, so that the proposed
network has the ability of belt damage classification and controlled class generation;

(2) Incremental image fusion ratio: the merged image, which would be used as a
training discriminator, is fused by a gradually varied ratio of real image to fake image. Since
the discriminator would be trained by fresh data in each training step, the classification
network has stronger generalization ability and would not tend to be over-fitting;

(3) Hinge loss and transfer learning (TL): to accelerate the training process and make it
more stable, the hinge loss and feature based transfer learning are applied in the network.

The rest paper is organized as follows. Section 2 introduce related works of generative
adversarial network and the background of bel defect detection methods based on ma-
chine vison and deep learning. The proposed multi-classification conditional CycleGAN
algorithm is demonstrated in Section 3, and experiments and corresponding results are
presented in Section 4. Finally, Section 5 concludes this paper and discusses future works.
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2. Related Work

Recent literatures relevant to this paper can be classified into two research streams:
belt surface damage detection methods and generative adversarial networks.

2.1. Belt Surface Damage Detection Methods

The conveyor belt with heavy loads used in power plants, the mining industry, and
chemical field consists of several layers and steel cords which usually are processed with
a variety of chemical components. The goal of conveyor belt damage detection methods
is to inspect the surface or inside of the conveyor belt and classify these damages into
several categories, such as crack or tear. A comprehensive review about conveyor belt
damage detection has been studied in [5], which researched most of the popular conveyor
belt damage detection methods and discussed the advantages and disadvantages between
these methods. The damaged belt detection methods can be classified into magnetic [6,7],
X-ray [8,9], and spectrum [10] methods. Except for above common belt damage detection
methods, weak damage detection methods based on stochastic resonance [11–13] have the
potential to be applied in coal mining fields.

(1) Traditional vision-based belt damage detection methods. With the development
of high-resolution cameras and machine learning algorithms, these methods make online
real-time inspection and classification possible. Various well-designed defect detection
methods for conveyor belt surface are proposed. Traditional machine vision methods focus
on processing images captured by industrial CCD/CMOS cameras and applying classical
machine learning algorithms. Li and Miao [14] proposed a novel longitudinal tear detection
method based on Single Scale Retinex (SSR) algorithm. The enhanced image contrast makes
tear region segmentation efficient and accurate. To alleviate the uneven lighting condition
and enhance image contrast in the underground, a novel AdaBoost algorithm is proposed
in [15] based on multiple weak classifiers with Haar feature. The experimental result shows
that the AdaBoost algorithm is effective in dramatic lighting changes. To address the
conveyor belt damage classification problem, Hao and Liang [16] proposed an improved
multi-class support vector machine (SVM) based on features obtained from preprocessed
images. Visual attention mechanism is introduced to extract underlying salient features
and multi-class SVM is trained with improved kernel function. Despite the possibility of
misclassification, the accuracy is relatively high. Since they are obtained in a dusty and
complex environment, the images captured by industrial cameras with normal lighting are
undesirable for model training and damage detection.

(2) Lasers and hyperspectral camera assisted belt damage detection methods. To
improve the image quality, scholars proposed numerous image fusion algorithms with
auxiliary equipment, such as linear lasers and hyperspectral cameras. Li et al. [17] adopted
industrial camera combined with multiple sets of lasers to capture belt surface images
and proposed a novel belt tear detection method. Then, the segmentation process based
on local adaptive threshold and improved Sobel operator is applied to detect tear points.
Lv et al. [18] proposed an improved gray-gravity center method based on laser line images.
The advantage of assisted laser methods converts blurry belt tear features into several
fracture points in parallel laser lines, which can alleviate the influence of environment con-
dition and make tear detection effective. In [19], a fusion method of Integrative Binocular
Vision Detection (IBVD) based on infrared and visible image is proposed to detect tear
region in conveyor belt. A well-designed light path is split into visible CCD camera and
infrared CCD camera. Visible and infrared images are processed and fused simultane-
ously, which makes use of both cameras’ advantages. Yu et al. [20] analyzed IBVD and
proposed Dual Band Infrared Detection (DBID) method based on mid- and long-infrared
cameras. The damage features are obtained from mid-infrared images and tear features
are suggested in long-infrared image. The experimental result shows that tear region and
tearing precursor can both be detected effectively. An improved multi-spectral analysis
method with a fast Fourier transform (FFT) algorithm was proposed in [10], which can
establish high-contrast thermal image and locate tear regions. The above methods apply
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traditional machine vision algorithms with or without auxiliary equipment, which can
make tear detection possible and effective to a certain extent, but it contains limitations.

(3) Deep learning-based belt damage detection methods. Last decade, deep neural
networks (DNN) with the advantages of strong feature extraction ability and flexible net-
work architectures have attracted more and more attention. Some researchers apply deep
learning algorithms to belt tear detection. Liu et al. [21] established a belt image dataset
and proposed a belt edge detection method based on a Holistically-Nested Edge (HED)
network, which can inspect belt deviation with high precision and be applied to pro-
duction scenarios. An improved YOLOv3 replace the original backbone, Darknet53, as
EfficientNet was proposed in [22] to detect and locate conveyor belt damage region in
real-time. Due to the balanced network architecture in depth and image resolution, it
has reached a good balance between detection speed and mAP (mean Average Precision).
Qu et al. [23] built a deep convolution network to extract belt surface features in different
image scales, which classified real-time frame into certain conveyor belt damage. The
proposed model outputs three scale feature maps and has the ability of detecting different
scale tear regions. Data augmentation was applied in [24] to establish special image dataset
for conveyor belt surface. An improved weighted loss function was used to optimize the
model training process.

2.2. Generative Adversarial Networks

The supervised learning methods are extremely dependent on labeled datasets to
acquire good performance. However, there are few public large-size and high-quality
labeled datasets in special domain, such as mining industry, which leads to a lack of
feature extraction ability and over-fitting for training deep learning networks. Since 2014,
Goodfellow et al. [25] proposed generative adversarial network (GAN), which brings up a
brand new research field for generative models and provides a novel solution to address
training problem of insufficient datasets. Based on the theory of generative models, lots of
derivative models [26] are proposed and applied to image super-resolution and translation,
face synthesis and natural language processing, etc. To generate higher image resolution,
Ledig et al. [27] proposed a novel Super-Resolution GAN (SRGAN). Based on the proposed
perceptual loss function, SRGAN contains the ability of image four times magnification.
An image-to-image translation methods, named pix2pix, based on GAN was proposed by
Isola et al. [28]. The pix2pix approach can synthesize images among various tasks and have
excellent performance. The self-attention mechanism was applied in GAN and a novel
SAGAN model was proposed by Zhang et al. [29]. Based on self-attention mechanism,
the SAGAN can establish internal connection among adjacent regions and the quality of
synthesized images was improved. Yu et al. [30] proposed a novel SeqGAN to address the
problem of the poor performance of the original GAN for generating sequential data. For
damaged belt surface detection, an improved GAN model was proposed in [31] based on
deep convolutional GAN (DCGAN) with labels embedded in latent layer and multi-class
Softmax as activation function. In addition, skip connection is used in both generator and
discriminator networks, which can alleviate the vanishing gradient problem and improve
training speed. GAN models have been widely applied in various domains but mining
industrial and provide a novel solution to DNN train problems, such as class imbalance
and insufficient dataset.

2.3. Discussion

However, although many approaches to detect damaged belts have been developed
in the above literature, they have some common disadvantages, summarized as follows.
Firstly, the X-ray/spectrum-based approaches consist of complex hardware, but the per-
formance is poor. Secondly, the deep learning methods need abundant training samples
which are barely acquirable and expensive. Finally, few research studies have focused on
generative adversarial networks to synthesize artificial samples.
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In this paper, a novel multi-classification conditional CycleGAN is proposed to gener-
ate realistic training images and obtain a well-trained classifier based on limited training
samples. During the training procedure, to address the problem of insufficient training
samples, the incremental image fusion mechanism is proposed. Then the merged images
are fed into the classifier network. Based on above innovations, the proposed algorithm
obtains excellent performance in capacity limited datasets.

3. Materials and Methods
3.1. Basic Theory of Generative Adversarial Networks

Generative adversarial networks, based on generative models and game theory and
as a subset of deep neural networks, contain two independent networks instead of one,
i.e., generator and discriminator, which is the major difference with convolutional neural
networks (CNN). The generator tries to learn feature distribution in real dataset and
mapping from known distribution to training dataset. The desired result for generator is
producing realistic samples which are indistinguishable by discriminator. Nevertheless, the
discriminator is responsible for validating if an input sample is real, or fake. The iterative
training process would end until Nash equilibrium is achieved between the generator and
discriminator. In this situation, any updates for the generator or discriminator could break
the balance. The value function V(G, D) can be described as follows:

minGmaxDV(D, G) = Ey∼pdata logD(x) + Eg∼pg log{1− D[G(g)]} (1)

where, G(x) and D(x) represents the generator and discriminator, respectively. pdata and
pG represent training samples’ and generated samples’ distribution, respectively. The
adversarial concept is reflected in the minmax optimization process. The generator tries to
map simple distribution, e.g., normal distribution, to generated distribution Pg, which has
the minimum divergence between distributions Pg and Pdata. In addition, the discriminator
tries to maximize data sampled from real dataset and minimize data sampled from Pg,
which can be treated as a binary classifier. The training process is to minimize cross entropy
between distributions of Pg and Pdata. In practice, the optimizing process is iteratively
performed. In addition, in each iteration, the number of optimizations for generator and
discriminator are not equal, usually multiple times optimizations for discriminator and
one for generator, in order to stabilize training process. In Formulation (1), objective
function is indirectly represented by the expression of the discriminator, hence, GAN is a
kind of machine learning methods, which belongs to implicit objective function. In fact,
optimizing the objective function amounts to finding the minimal value of the Jensen–
Shannon divergence between Pg and Pdata. However, if the low dimensional manifolds
of these two distributions have no intersection, the Formulation (1) would always be a
constant, i.e., log 2, which leads to unstable training and mode collapse.

3.2. The Framework of the Multi-Classification Conditional CycleGAN

Samples of damaged conveyor belt images are scarce and time-consuming since the
acquisition environment in the mine is harsh. Inspired by CycleGAN [32], an improved
Multi-Classification Conditional CycleGAN is proposed to generate damaged conveyor
belt sample images and classify the belt damage. Since the damage styles between belt
and steel plate are similar, we gathered the steel defect dataset from “Severstal: Steel
Defect Detection” at Kaggle.com (accessed on 10 April 2022) and assume that some latent
connections existed between the steel defect dataset and the conveyor belt dataset, since
the damage forms between these datasets are similar except the stylistic difference. In order
to address the problem of different damaged images classification, a multi-class classifier is
introduced in the proposed MCC-CycleGAN, the topology of MCC-CycleGAN is shown
in Figure 1.
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Figure 1. The topology of the proposed MCC-CycleGAN. The G-net transfers real steel surface
images into fake belt surface images, which are fused with real belt surface images. The merged
images, as new training samples, are fed into C-net.

3.3. The Detailed Improvements of the Proposed MCC-CycleGAN
3.3.1. The Network Architectures of the MCC-CycleGAN

The MCC-CycleGAN consists of two Generators, two Discriminators, and one Critic.
The two Generators have same network architecture but do not share weights, since one
Generator is responsible for transferring damaged belt surface images into steel surface
images and the other is does the opposite. The case is the same for the Discriminators.
The Critic neural network is used to classify different type of damaged belt surface im-
ages, which is the essential part in this paper. The adversarial training process between
Generators and Discriminators makes converted damaged steel surface images very sim-
ilar to damaged belt surface images, and vice versa. The real images in the belt dataset
merged with the converted steel surface images can increase the capacity of training dataset
of Critic neural network and avoid over-fitting caused by insufficient training samples. The
network architecture of the improved MCC-CycleGAN is as shown in Figure 2.
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Figure 2. The network architecture of the Generator, Discriminator, and Critic. The residual block is
used in the Generator networks, and the basic block appears in ResNet-34.

To make sure that the Generator can convert the desired type of damaged steel surface
images, the input images combined with embedded labels are fed into the Generator
network. In addition, the training samples for the Discriminator also need to be merged
with embedded labels, so that the Discriminator can distinguish whether the input images
are real or fake, and with correct labels or not. The shape of input for the Generator and
Discriminator is identical, as (batch, channels, height, width) i.e., (batch, 1, 256, 256). The
output of the Generator has same shape, since these are converted images. However, the
Discriminator outputs the shape as (batch, 1), i.e., real or fake. The real images of damaged
belt surface and converted images of damaged steel surface are merged by an incremental
ratio which is described in Section 3.3.3. As training process goes on, the ratio of real images
to converted images decreases. The Critic network can be fed with fresh-new samples,
hence over-fitting can be avoided in training process with limited samples.

The ResNet-34 is adopted as backbone in the Critic, and the original classifier is re-
placed with special designed one, which outputs the classification results. The customized
classifier has two sequential connected Linear layers, which are followed with a convo-
lutional layer to adjust output depth of backbone network. The LeakyReLU activation
layer is applied in the improved MCC-CycleGAN to avoid dying ReLU and vanishing
gradient problems. The description of each network in the MCC-CycleGAN is described in
Table 1. The size of input samples if grayscale image with height of 256 and width of 256.
The number of classes is 3, i.e., two damaged type, tear and crack, one un-damaged type,
perfect, which is encoded as one-hot code.
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Table 1. The description of each network in the MCC-CycleGAN.

Network Input Size Output Size Trainable
Parameters Pretrained

G-A

(Batch size, 1, 256, 256)

Identical to input
9,523,319

No

G-B Identical to input No

D-A (Batch size, 1)
6,721,426

No

D-B (Batch size, 1) No

C-net (Batch size, 3) 15,279,936 Partial

The proposed MCC-GAN consists of the transforming network, i.e., the Generator-A
and Generator-B, Discriminator-A and Discriminator-B, and Critic, which is responsible for
damage classification. Generator-A and B, Discriminator-A and B, and Critic are abbrevi-
ated as GA, GB, DA, DB, and C-net, respectively. The steel surface defect images dataset, as
dataset A, and the conveyor belt damage images dataset, as dataset B, are established. Since
the damage types in two datasets are similar but different in style, we assume that certain
underlying relationship exists between the two datasets and the unpaired image-to-image
transform is possible. The GA transforms images x with embedded labels lx in dataset
A into ŷ with same labels lx in dataset B, GA(x) = ŷ, and the GB transforms reversely,
GB(y) = x̂, where x and y are sampled from dataset A and B, respectively. In addition,
DA and DB are responsible for distinguishing whether the input images are sampled from
dataset A or B, or converted by GA and GB. The objective is to make x ≈ x̂ and y ≈ ŷ as
close as possible, so that DA and DB cannot tell the difference. In order to detect different
type of belt surface damages, the classification network, i.e., C-net, is proposed to classify
the real and generated samples in the training process. The generated samples transformed
by GA can significantly increase training dataset and enhance the generalization ability of
C-net, which learns new features in each training step.

3.3.2. The Improved MCC-CycleGAN Loss Function

The loss function improved MCC-CycleGAN consists of the conditional CycleGAN
loss, LGAN , and multi-class classification loss, LMC. The adversarial objective function
with hinge loss can be described as:

LGAN(GA, DB, X, Y) = −E{DB[GA(x, lx), lx]}+ E
{

max
[
0, 1− DB

(
y, ly

)]}
+ E{max[0, 1 + DB(GA(x, lx), lx)]} (2)

where, x ∈ X is sampled image from domain X and lx is the embedding vector correspond-
ing to label of x. GA tries to transfer image x with label lx to ŷ, which looks similar to image
y in domain Y. In addition, GB is responsible for distinguishing whether the input image
GA(x, lx) with label lx is the fake image transferred by GA, or the input image y with label
ly is the real image sampled from domain Y. The hinge loss only punishes positive samples
which less than 1 and negative samples which greater than −1, and the formulation is
much easier than original loss. Hence the training process is much faster and more stable.
In addition, the LGAN(GB, DA, X, Y) is similar as above.

The cycle consistency loss function can be described as:

Lcyc(GA, GB) = Ex∈X{‖ GB[GA(x, lx), lx]− x ‖}+ Ey∈Y
{
‖ GA

[
GB

(
y, ly

)
, ly

]
− y ‖

}
(3)

where the image x sampled from domain X with label lx is converted to fake image
GA(x, lx), which is transferred back to GB[GA(x, lx), lx]. If the GA and GB are well trained,
the L1-norm between image GB[GA(x, lx), lx] and x should be small enough. Same to
GA

[
GB

(
y, ly

)
, ly

]
and y, minimize Lcyc(GA, GB) can ensure the style consistency between

domain X and Y.



Sensors 2022, 22, 3485 9 of 17

The multi-classification loss for the Critic can be described:

Lcritic(C) = Ez∈Mix(X, X̂)[log C(z)] (4)

where X̂ is the domain which contains images GB
(
y, ly

)
. The input image z is merged

by Formulation (2), and the Critic loss is multi-class cross entropy. In the experiments of
different loss choices, such as mean square error (MSE) and cross entropy, the latter has
better performance.

The final loss for MCC-CycleGAN can be described as:

L(GA, GB, DA, DB, C) = LGAN(GA, DB, X, Y) + LGAN(GB, DA, Y, X)
+λLcyc(GA, GB) + Lcritic(C)

(5)

where λ is used for adjusting the punishment among generator, discriminator, and critic:

minGA ,GB ,CmaxDA ,DBL(GA, GB, DA, DB, C) (6)

By minimizing and maximizing the above loss function, the networks of Generator,
Discriminator, and Critic can obtain appropriate weights and the training process is much
more stable and faster. A detailed analysis is presented in Section 4.

3.3.3. The Image Fusion Strategy of the MCC-CycleGAN

The C-net is fed with fusion images which are obtained by merging real belt surface
images x with transferred steel surface images GB(y) = x̂ as an incremental fusion rate,
Ratio, which can be described as:

Ratio= 1− log(epoch ∗ 10 + k)
e3 (7)

where k is a constant, and we set k = 5.0 based on multiple experiments. The Ratio curve is as
shown in Figure 3. In addition, the fusion image can be obtained by following formulation:

imgmix = ratio·a + (1− ratio)·img_gA (8)
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In the initial stage of training, the C-net is mainly fed with real belt surface image,
which makes the training of Critic network stable but slow progress. As the training
goes on, the proportion of transferred steel surface image, GB(y) = x̂, increases and the
C-net is trained with new fusion images. Due to the proposed incremental image fusion
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mechanism, the C-net prevent to be over-fitting in training and gain better generalization
ability in testing.

3.3.4. Feature Based Transfer Learning and Fine-Tuning

Feature based transfer learning [33] is applied to speed up the training process and im-
prove the Critic network performance. The basic feature extraction layers of ResNet-34 [34]
and their pretrained weights are used and the customized classifier is designed, which
receives extracted basic features and make the classification. The pretrained ResNet-34
model contains excellent underlying feature extraction abilities, which are used for ex-
tracting simple features, such as edges, shapes, and textures. These basic features also
exist in damaged belt surface images. To shorten training time and improve Critic model
performance, the pretrained model of ResNet-34 is selected as feature extraction model and
the followed special customized module containing multiple layers are treated as classifier.

Since the loaded ResNet-34 model is trained for CIFAR-1000, the number of layers to
be frozen needs to be determined. Verified by multiple experiments, the first seven blocks
of convolutional modules which contain basic features are frozen and the rest of the layers
are trainable. The experimental results described in Section 4 have proved the performance
and efficiency of the proposed Critic model. In general, the trainable parameters can be
reduced to around half and the performance of the Critic network almost keeps the same.

3.4. The Training Procedure of the MCC-CycleGAN

In order to present the network training process thoroughly, the pseudocode of training
is described in Algorithm 1. For each batch of the training procedure, the generator is
trained 3 (n = 3) times and the discriminator or the Critic is trained once, since the training
for generator is much more difficult than training for other networks. In addition, the input
for Critic is the mixed images, which is described in Section 3.3.3. In addition, the specific
implementation of fine-tuning is discussed in Section 3.3.4.

Algorithm 1. MCC-CycleGAN training process. The pseudocode of the proposed network
training process.

1:
Input: hyperparameters (batch size k , epochs e, times of generator training n, learning rate r),
location of dataset A and B

2:
Establish and initialize models : GA, GB, DA, DB and C, setup optimizer: Adam,
Load training dataset A and B, samples a ∈ A and samples b ∈ B

3: For epoch = 1 to e do
4: For t = 1 to n do

5:

Train GA and GB : freeze parameters of DA and DB, generate fake images
img_gA = GA(b) and img_gB = GB(a), compute lossGA, lossGB based
on Equation (2), and losscycle based on Equation (3), then update parameters of
model GA and
GB

6: end for

7:
Train DA and DB : freeze parameters of GA and GB, generate fake images
img_gA = GA(b) and img_gB = GB(a), compute lossGA, lossGB based on
Equation (2), then update parameters of model DA and
DB

8:
Train C : compute the input fusion image imgmix based on Equation (8), feed
imgmix into C, compute losscritic based on Equation (4), then update parameters
of model C

9: end for
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4. Results
4.1. The Hardware Framework of the Conveyor Belt Damage Detection System

The conveyor belt surface damage detection system consists of an image acquisition
module, a transmission module, and a data processing and execution module. The hard-
ware of each module is demonstrated in Figure 4. The image acquisition module includes
the linear industrial camera, gigabit industrial router, linear light source, and controller. The
images acquired by image acquisition module is transmitted to data processing module,
which consists of industrial personal computer (IPC) with high-performance graphics
processing unit (GPU). The postprocessing results are transmitted to execution module
by transmission module, which usually consists of routers and ethernet cables. Alert
or shutting down can be executed in execution module, which consists of center server,
Programmable Logic Controller (PLC) and buzzers. The whole system can be shut down
by PLC when the halt signal emits. If multiple cameras are deployed, gigabit industrial
routers are needed to collect and transmit images from different cameras to one or more
IPCs. Normal industrial cameras, e.g., 2.0 Mega Pixels industrial camera, are capable to
capture clear belt images. Considering the fast speed and large width of conveyor belt,
the linear industrial camera is adopted to acquire high-resolution belt surface image. So, a
high-brightness linear light source is used to provide uniform and stable lighting illumina-
tion. Multiple cameras are connected to a gigabit industrial router, which serves as a data
exchange center and forwards multiple image streams to (IPC). High-performance GPU is
installed in IPC, which performs neural network forward propagation in real-time.
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In training stage, GAN model is trained in data processing server contained several
high-performance GPUs, which still takes hundreds of hours. Signals would be sent to
execution module to ring the alarm or shutdown the conveyor as long as the IPC detects any
conveyor belt damage. The width of conveyor belt is 1.2 m, so the linear industrial camera
with wide-angle lens installed at a suitable distance can acquire high-resolution images.
One set of the belt damage detection devices is deployed in the simulation environment,
but multiple sets of the proposed belt damage detection devices can be deployed every few
hundred meters for vulnerable regions in the production environment.

The improved MCC-CycleGAN is implemented by Pytorch and trained with NVIDIA
RTX3070 8G. The steel image datasets are gathered from “Severstal: Steel Defect Detection” at
Kaggle.com (accessed on 10 April 2022). Samples in the steel dataset are 1600× 256 high-resolution
labeled images, which consist of four defect types: spot, crack, scratch, and tear. The original
samples in the steel dataset are segmented into 256 × 256 images. The tear defect, which is
desired and corresponding to the tear in belt damage dataset, is few centimeters long and
several millimeters width. The scratch defect is similar to the tear and may be multiple
parallel lines, which only damages the steel surface. The crack defect involves large region
on the steel surface, which may present as metal spalling. The spot defect is in millimeter-
level and undesired for belt damage detection and has been removed by data cleaning,
since the conveyor belt damage detection system does not need to detect micro defects on
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the belt surface. The defects of tear and scratch in steel dataset are intended to transfer to
tear defect in conveyor belt dataset, and the crack defect in steel dataset to correspond to
the crack in the belt dataset. After the preprocessing of data cleaning and one-hot encoding
labeling, the custom steel dataset is prepared. The steel image dataset consists of the
damaged steel surface images which are most similar to the damaged belt surface images.
In addition, the belt surface images in the training dataset B are captured with industrial
CMOS camera in the laboratory simulation environment, which is shown in Figure 5. The
industrial camera and light sources are installed under the conveyor belt since the conveyor
belt surface is covered with coals.
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4.2. The Experimental Results and Comparisons

The dataset A and B are described in Table 2. We carefully selected an image dataset
and preprocessed belt surface images. Since the belt images are captured in the laboratory,
the undesirable images were excluded and annotations were added. To reduce the GPU
memory usage, the color images were converted to grayscale. The datasets were split into
training and testing dataset by a ratio of 4 to 1.

Table 2. The description of the image dataset A and B.

Dataset Image Size Capacity Ratio Color Image Annotation

A (256, 256) 1532 4:2:4 (Tear: Crack: Scratch) Yes Yes
B (256, 256) 468 5:3:2 (Tear: Crack: Perfect) No Annotated manually

The training loss and accuracy curves of the proposed MCC-CycleGAN and other
comparative classical deep learning networks are shown in Figures 6 and 7, respectively.
We can see from Figure 6 that except of the proposed MCC-CycleGAN, other algorithms
loss curves drop fast and tend to be stable at epoch 110. Combined with Figure 7, accuracies
of contrastive algorithms increase rapidly because of insufficient training. The reason why
the proposed MCC-CycleGAN converges slowly can be explained as follows. The proposed
MCC-CycleGAN contains two sub models for sample generation, which can supplement
the insufficient samples in custom dataset. In addition, considering the proposed image
fusion strategy, the MCC-CycleGAN model is fed with new generated samples before
100 epochs. After 100 epochs, the MCC-CycleGAN model is trained to a certain extent and
the proportion of generated image is decreasing, from 0.9 to 0.65. The training process
tends to be stable after 120 epochs and the loss of the proposed MCC-CycleGAN model is
drastically reduced. So, the low training loss and high training accuracy occur at 140 epochs,
which is slower than other comparative networks.
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Figure 6. The training losses of the MCC-CycleGAN and other classical algorithms. The loss
of proposed MCC-CycleGAN fluctuates around 1.1 and makes no progress, and losses of other
contrastive algorithms decrease fast. At the end of training, losses of all networks stay stable and
tend to be zero.
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The training loss of proposed MCC-CycleGAN keeps relatively high and accuracy
keeps relatively low than other contrastive algorithms, most likely because the low-quality
generated damaged belt surface images and the incremental fusion rate, which also is
the key factors of preventing over-fitting. We can inference that the proposed CycleGAN
generates high-quality images around epoch 140, since the training loss and accuracy
tend to be stable. Some transferred samples are shown in Figure 8. Table 3 shows the
training losses and accuracies of each algorithm at the end of training procedure. Since
the proposed MCC-CycleGAN contains cycle training strategy, two sub models of GAN
(Generator-A and Discriminator-A, and Generator-B and Discriminator-B) and a Critic
model, the training process is more time-consuming, which is revealed in Table 3. However,
the cumbersome model is designed for training a better Critic model and generating new
samples; the Critic model is needed and two sub models of GAN are excluded in the
prediction process. So, the test FPS is quite acceptable, and the proposed Critic model can
satisfy the requirement in industrial application. In addition, during the training process,
the proposed MCC-CycleGAN algorithm can generate new samples, which could be used
for training other algorithms.
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Figure 8. The samples from real belt surface images and transferred images from the steel surface
dataset. Images on the left side are sampled from real belt dataset, and the images on the right side
are transferred ones.

Table 3. The comparison of each algorithms.

MCC-
CycleGAN ResNet-34 ResNet-50 VGG 16 Inception v3 AlexNet

Loss 0.01367 0.00078 0.00079 0.00265 0.00098 0.01571
Acc. 99.53% 98.56% 98.56% 99.42% 96.83% 97.84%

Time consumption for
training (hour) 12.6 h 4.2 h 5.4 h 4.6 h 6.1 h 7.8 h

Test FPS 44.3 47.5 41.6 31.3 37.4 40.1

The results of above networks in test dataset are demonstrated in Figure 9 and Table 4.
It can be seen that mean average precision (mAP) of the proposed MCC-CycleGAN
reaches 96.88% and the proposed network performs excellent in test dataset. However,
the best mAP in all contrastive networks does not pass 70%, which cannot satisfy the
application requirements.
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Figure 9. The results of the accuracies and recalls of all networks.
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Table 4. The test results of the proposed MCC-CycleGAN and other networks.

Evaluation Proposed ResNet-34 ResNet-50 VGG 16 Inception v3 AlexNet

mAP 0.969 0.598 0.590 0.515 0.611 0.681
Macro-F1 0.968 0.611 0.603 0.524 0.620 0.686

As we can see from Figure 9, Tables 3 and 4, all algorithms obtain excellent training
accuracies, but only the proposed MCC-CycleGAN performs well in test set. Hence, except
for the proposed neural network, other classical networks suffer severe over-fitting. In
general, the excellent performance of the proposed MCC-CycleGAN due to outstanding
network architecture and the incremental image fusion mechanism.

4.3. Application of the Proposed MCC-GAN

The proposed MCC-CycleGAN detection system, shown in Figure 10, has been applied
in mining industrial to inspect the state of belt conveyor surface in real-time. The proposed
algorithm can detect and classify the different damage type of conveyor belt surface, and
alert the workers timely when damage happens. The application of the detection system
can significantly reduce work intensity of workers and detect belt damages effectively.
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5. Conclusions

In this paper, an improved Multi-Classification Conditional CycleGAN is proposed to
address the detection problem of damaged conveyor belt surface images. The proposed
MCC-CycleGAN has the advantages of high-performance, fast detection speed, and the
ability to generate new samples. The generated samples improve the generalization of
the Critic model and can be used to the training process for other deep neural networks.
By introducing embedded label vectors and extra Critic network, the proposed network
can make necessary image style transferring and detect damaged belt surface images
in real-time. Using the proposed incremental image fusion mechanism, the proposed
MCC-CycleGAN can obtain excellent performance with very few training samples, which
is almost impossible for other classical convolutional neural networks. However, the
proposed MCC-CycleGAN model is cumbersome and requires long training time, which
limits the model flexibility. Hence, future work can be focused on designing lightweight
architecture and model compression to reduce training time-consumption.

The images from damaged belt surface are blurry and full of noise, which affects
the detection effect. In the future works, we would propose a novel image enhancement
algorithm based on Generative Adversarial Networks to address the problem caused by
poor image quality and improve detection performance.
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